
SUBJECT CODE : USIT101

IMPERATIVE PROGRAMMING

F.Y.B.SC.(IT)
SEMESTER - I (CBCS)

© UNIVERSITY OF MUMBAI

ipin Enterprises
Tantia Jogani Industrial Estate, Unit No. 2,

Ground Floor, Sitaram Mill Compound,
J.R. Boricha Marg, Mumbai - 400 011

Published by : Director
Institute of Distance and Open Learning ,
University of Mumbai,
Vidyanagari, Mumbai - 400 098.

DTP Composed : Varda Offset and Typesetters
Andheri (W), Mumbai - 400 053.Pace Computronics
"Samridhi" Paranjpe 'B' Scheme, Vile Parle (E), Mumbai - 57.

Printed by :

Programe Co-ordinator : Mandar L. Bhanushe
Head, Faculty of Science and Technology,
IDOL, University of Mumbai – 400098.

Course Co-ordinator : Gouri S. Sawant
Assistant Professor, B.Sc. IT, IDOL,
University of Mumbai- 400098.

Course Writers : Abhijit Kale
Assistant Professor,
VPM’s B.N.Bandodkar college of Science.

: Tejas Jadhav
Assistant Professor,
VPM’s B.N.Bandodkar college of Science.

: Vipul Chavan
Assistant Professor,
VPM’s B.N.Bandodkar College of Science.

: Ashwini Koyande
Assistant Professor,
Vidyalankar School of Information technology,
Wadala, Mumbai.

: Asif Rampurawala
Assistant Professor,
Vidyalankar School of Information technology,
Wadala, Mumbai.

June 2021, Print I

Prof. Suhas Pednekar
Vice Chancellor

University of Mumbai, Mumbai.

Prof. Ravindra D. Kulkarni
Pro Vice-Chancellor,

University of Mumbai.

Prof. Prakash Mahanwar
Director

IDOL, University of Mumbai.

Unit I

Chapter 01 Introduction To Imperative Programming...01

Chapter 02 Programming And User Environments
Understanding Programming Environments..21

Chapter 03 Fundamentals...28

Unit II

Chapter 04 Operators And Expressions - I & II...51&57

Chapter 05 Data Input And Output...72

Unit III

Chapter 06 Conditional Statements...88

Chapter 07 Loops..100

Chapter 08 Functions..111

Unit IV

Chapter 09 Program Structure..125

Chapter 10 Preprocessor..133

Chapter 11 Array..143

Unit V

Chapter 12 Pointers..157

Chapter 13 Advanced Pointers...165

Chapter 14 Structures And Unions..174

CONTENTS

Chapter No. Title Page No.

Syllabus

B. Sc (Information Technology) Semester – I
Course Name: Imperative Programming Course Code: USIT101
Periods per week (1 Period is 50 minutes) 5
Credits 2
 Hours Marks
Evaluation
System

Theory 2½ 75
Examination - 25

Unit Details Lectures
I

Introduction: Types of Programming
languages, History, features and application.
Simple program logic, program development
cycle, pseudocode statements and flowchart
symbols, sentinel value to end a program,
programming and user environments, evolution
of programming models., desirable program
characteristics
Fundamentals:
Structure of a program. Compilation and
Execution of a Program, Character Set,
identifiers and keywords, data types, constants,
variables and arrays, declarations, expressions,
statements, Variable definition, symbolic
constants.

12

II Operators and Expressions:
Arithmetic operators, unary operators,
relational and logical operators, assignment
operators, assignment operators, the
conditional operator,library functions.
Data Input and output:
Single character input and output, entering
input data, scanf function, printf function, gets
and puts functions, interactive programming.

12

III Conditional Statements and Loops: Decision
Making Within A Program, Conditions,
Relational Operators, Logical Connectives, If
Statement, If-Else Statement, Loops: While
Loop, Do While, For Loop. Nested Loops,
Infinite Loops, Switch Statement
Functions:
Overview, defining a function, accessing a
function, passing arguments to a function,
specifying argument data types, function
prototypes, recursion, modular programming
and functions, standard library of c functions,
prototype of a function: foo1lal parameter list,
return type, function call, block structure,

12

passing arguments to a function: call by
reference, call by value.

IV Program structure:
Storage classes, automatic variables, external
variables, static variables, multifile programs,
more library functions, Preprocessor:
Features, #define and #include, Directives and
Macros
Arrays:
Definition, processing, passing arrays to
functions, multidimensional arrays, arrays and
strings.

12

V Pointers:
Fundamentals, declarations, Pointers Address
Operators, Pointer Type Declaration, Pointer
Assignment, Pointer Initialization, Pointer
Arithmetic, Functions and Pointers, Arrays
And Pointers, Pointer Arrays, passing
functions to other functions
Structures and Unions:
Structure Variables, Initialization, Structure
Assignment, Nested Structure, Structures and
Functions, Structures and Arrays: Arrays of
Structures, Structures Containing Arrays,
Unions, Structures and pointers.

12

Books and References:
Sr.
No.

Title Author/s Publisher Editi
on

Year

1.

Programmin
g with C

Byron Gottfried Tata
McGRAWHil
l

2nd 1996

2.

Programmin
g Logic and
Design

Joyce Farell Cengage
Learning

8th 2014

3.

. “C”
Programmin
g

Brian W.
Kernighan and
Denis M.
Ritchie

PHI 2nd

4.

Let us C Yashwant P.
Kanetkar,

BPB
publication

5.

C for
beginners

Madhusuda n
Mothe

X-Team
Series

1st 2008

6. 21st Century C Ben Klemens OReilly 1st 2012

B. Sc (Information Technology) Semester – I
Course Name: Imperative Programming Course Code: USIT101
Periods per week (1 Period is 50 minutes) 5
Credits 2
 Hours

Marks
Theory
Examination

Evaluation System Theory Examination
 Internal

2½ 75
- 25

Syllabus

B. Sc (Information Technology) Semester – I
Course Name: Imperative Programming
Practical

Course Code: USIT1P2

Periods per week (1 Period is 50 minutes) 3

Credits 2
 Hours Marks
Evaluation System Practical Examination 2½ 50

 Internal - -

List of Practical: (Can be done in any imperative language)

1 Basic Programs
a. Write a program to display the message HELLO WORLD.
b.

Write a program to declare some variables of type int, float and
double. Assign some values to these variables and display these
values

c.

Write a program to find the addition, subtraction, multiplication
and division of two numbers

2. Programs on variables:
a. Write a program to swap two numbers without using third

variable.
b. Write a program to find the area of rectangle, square and circle.
c. Write a program to find the volume of a cube, sphere, and cylinder
3. Conditional statements and loops(basic
a.

Write a program to enter a number from the user and display the
month name. If number >13 then display invalid input using
switch case.

b. Write a program to check whether the number is even or odd.
c.

Write a program to check whether the number is positive, negative
or zero.

d. Write a program to find the factorial of a number.
e.

Write a program to check whether the entered number is prime or
not.

f. Write a program to find the largest of three numbers
4. Conditional statements and loops(advanced)
a. Write a program to find the sum of squares of digits of a number.
b. Write a program to reverse the digits of an integer.
c. Write a program to find the sum of numbers from 1 to 100.

d. Write a programs to print the Fibonacci series.
e. Write a program to find the reverse of a number
f. Write a program to find whether a given number is palindrome or

not.
g. Write a program that solve the quadratic equation

2 4

2

b b ac
x

n

  


h. Write a program to check whether the entered number is
Armstrong or not.

i. Write a program to count the digit in a number
5. Programs on patterns:
a. Programs on different patterns
6. Functions:
a. Programs on Functions.
7. Recursive functions:
a. Write a program to find the factorial of a number using recursive

function.
b. Write a program to find the sum of natural number using recursive

function
8. Arrays:
a. Write a program to find the largest value that is stored in the array.
b. Write a program using pointers to compute the sum of all elements

stored in an array
c. Write a program to arrange the ‘n’ numbers stored in the array in

ascending and descending order.
d. Write a program that performs addition and subtraction of

matrices.
e. Write a program that performs multiplication of matrices.
9. Pointers:
a. Write a program to demonstrate the use of pointers.
b. Write a program to perform addition and subtraction of two

pointer variables.
10. Structures and Unions:
a. Programs on structures.
b. Programs on unions.

1

UNIT I

1

INTRODUCTION TO IMPERATIVE

PROGRAMMING

Unit Structure

1.0 Objectives

1.1 Introduction

1.2 Applications of C Programming

1.3 Program Development Life Cycle

1.4 Using Pseudocode Statements And Flowchart Symbols

1.5 Algorithms and Flowchart

1.6 Unit End Questions

1.0 OBJECTIVES

Definition of Imperative Programming:

 The imperative (or procedural) paradigm is the closest to the structure

of actual computers.

 It is a model that is based on moving bits around and changing

machine state.

 Imperative programming is a programming paradigm that uses

statements that change a program‘s state from compilation to running.

 In imperative language natural languages can be used to express

commands for the computer to perform. Imperative programming

focuses on describing how a program operates.

 In contrast to it, Declarative programming, which focuses on what the

program should accomplish without specifying how the program

should achieve the result.

Programming Languages based on the Imperative Paradigm have the

Following Characteristics:

 The basic unit of abstraction is the PROCEDURE, whose basic

structure is a sequence of statements that are executed in succession,

abstracting the way that the program counter is incremented, so as to

proceed through a series of machine instructions residing in sequential

hardware memory cells.

 Variables play a key role, and serve as abstractions of hardware

memory cells. Typically, a given variable may assume many different

2

values of the course of the execution of a program, just as a hardware

memory cell may contain many different values. Thus, the assignment

statement is a very important and frequently used statement.

 The sequential flow of execution can be modified by conditional and

looping statements (as well as by the very low-level goto statement

found in many imperative languages), which abstract the conditional

and unconditional branch instructions found in the underlying

machine instruction set.

1.1 INTRODUCTION

Imperative Programming can be Different Types of:

 Machine and Assembly languages i.e. Low level imperative language.

 Procedural languages i.e. High level imperative language.

 Structural & modular languages

 Object oriented languages

 Event Driven programming languages

 Object Based Languages

 Machine and Assembly Languages are native languages of a computer

for hardware implementation it is designed and written in imperative

style to execute in native code.

 Procedural Programming is a type of imperative programming in

which the program is built from one or more procedures (also termed

subroutines or functions). Procedural programming couldbe

considered a step towards declarative programming. A programmer

can often tell, simply by looking at the names, arguments, and return

types of procedures (and related comments), what a particular

procedure is supposed to do, without necessarily looking at the details

of how it achieves its result. At the same time, a complete program is

still imperative since it fixes the statements to be executed and their

order of execution to a large extent.

 Structured Programming is a programming with a specific structure of

the program and modular programming is added with structured

language to add different functions. These are high level imperative

languages with assignment statements, calculative statements,

evaluation statements to execute complex expressions which may have

arithmetic, relational & logical operators and function evaluations, and

the assignment of the resulting value to memory. Looping statements

like while, do while, for loop, etc. used to execute sequence,

conditional branching, switch case statements and looping statements

and subroutine or procedure call. Imperative languages are like

Fortran, BASIC, Pascal, COBOL, ALGOL language for mathematical

algorithms and C language,

3

 Object Oriented Programming are imperative in style, but added

features to support objects. C++ , JAVA, Perl, Rubey, visual c++ are

object oriented languages & Python languages

 Event Driven Programming languages are imperative style with object

based events handlers Like Visual Basic & PHP with Web designating

languages.

 Object Based Languages are programming languages with imperative

style by introducing pure object oriented concepts and object based

concepts by introducing VB.Net & C#, J# & F# functional languages.

 C is the Mother of all imperative types of programming languages,

since from c language BASIC language is invented and from BASIC

language Visual Basic & VB.Net languages are invented. From C

language C++, VC++, C#, J#, JAVA languages are invented.

 Hence In this Book we are Considering C as a imperative Language &

all examples are covered considering C language only.

Introduction to Programming Languages:

 Programming Language is a language used to communicate with the

computer by writing programs.

 Programming language is widely used in the development of operating

systems.

 An OperatingSystem (OS) is a software (collection of programs) that

controls the various functions of a computer.

 Also it makes other programs on your computer work. For example,

you cannot work with a word processor program, such as Microsoft

Word, if there is no operating system installed on your computer.

 Windows, Unix, Linux, Solaris, and Mac OS are some of the popular

operating systems.

 The same way to run the programs in a particular programming

language we need a language complier.

 You write computer instructions in a computer programming language

such as Visual Basic, C#, C++, or Java. Just as some people speak

English and others speak Japanese, programmers write programs in

different languages.

 The instructions you write using a programming language are called

program code; when you write instructions, you are coding the

program. Every programming language has rules governing its word

usage and punctuation.

 These rules are called the language‘s syntax. Mistakes in a language‘s

usage are syntax errors. After a computer program is typed using

programming language statements and stored in memory, itmust be

4

translated to machine language that represents the millions of on/off

circuits within the computer.

 Your programming language statements are called source code, and

the translated machine language statements are object code.

 Each programming language uses a piece of software, called a

compiler or an interpreter, to translate your source code into machine

language.

 Machine language is also called binary language,and is represented as

a series of 0s and 1s.

 The compiler or interpreter that translates your code tells you if any

programming language component has been used incorrectly. Syntax

errors are relatively easy to locate and correct because your compiler

or interpreter highlights them. If you write a computer program using a

language such as C++ but spell one of its words incorrectly or reverse

the proper order of two words, the software lets you know that it found

a mistake by displaying an error message as soon as you try to

translate the program.

 After a program’s source code is successfully translated to machine

language, the computer can carry out the program instructions.

 When instructions are carried out, a program runs, or executes. some

input will be accepted, some processing will occur, and results will be

the output.

Types of Programming Languages:

1. Machine Level language

2. Assembly language

3. Procedural language (High Level Language)

Machine Language:

Every computer has its own language called machine language. It

depends on the specific Hardware of the computer. A machine language is

also known as low level language also called machine understandable

language. Computer understands & executes the program only in machine

level language. This low level language is in the form of (1‘s and 0‘s)

binary codeLow Level Language requires memorizing or looking up

numerical codes for every instruction that is used. These are machine

dependent languages. These are used for simulation languages, and LISP,

artificial intelligence applications.

Assembly Language:

Assembly language is the mnemonic language written in some

specific symbolic codes, such as ADD, SUB etc. An assembly language

program is first translated into machine language instruction by system

program called assembler, before it can be executed. These Are languages

5

understandable by CPU & ALU section of Computer Assembly languages

are called low level languages.

High Level Language:

A High level language is a simple English like language. A High

levellay program also needs to be transferred into machine language

instructions before it can be executed because computer understands only

machine level language. Rules for programming in a particular high-level

language are much the same for all computers, so that a program written

for one computer can generally be run on many different computers with

little or no alteration. This translation, called compilation is done by a

systems program called a compiler. The original program written in High

level language is called source program and its translation ie., machine

code is called object program. Some popular High Level languages are

Basic, Fortran, Cobol, Pascal, C & C++.High-level language offers three

significant advantages over machine language: simplicity, uniformity and

portability (i.e., machine independence).Compilers and Interpreters A

program written in a high level language must be translated into machine

language before it can be executed. This is known as compilation or

interpretation, depending on how it is carried out.

Compilers translate the entire program into machine language

before executing any of the instructions. Interpreters, on the other hand,

proceed through a program by translating and then executing single

instructions, or small groups of instructions. A compiler or interpreter is

itself a computer program that accepts a high-level program (e.g. a C

program) as input data, and generates a corresponding machine – language

program as output. The original high-level program is called the source

program, and the resulting machine-language program is called the object

program. Every high-level language must have its own compiler or

interpreter for a particular platform. It is generally more convenient to

develop a new program using an interpreter rather than a compiler. Once

an error-free program has been developed, a compiled version will

normally be executed much faster than an interpreted version. Difference

between compiler and interpreter

Sr.No Compiler Interpreter

1. Compiler translates entire

program into machine language at

a time

Interpreter translates and

interpretes line by line into

machine language.

2. It takes a large amount of time to

analyze the source code but the

overall execution time is

comparatively faster

It takes less amount of time

to analyze the source code

but the overall execution

time is slower.

4. It generates the error message

only after scanning the whole

program. Hence debugging is

Continues translating the

program until the first error

is met, in which case it

6

comparatively hard. stops. Hence debugging is

easy.

5. Errors are displayed after entire

program is checked and

Intermediate Object Code is

Generated

Errors are displayed for

every instruction interpreted

(if any) No Intermediate

Object Code is Generated

6 Programming language like C,

C++ use compilers.

Programming language like

Python, Ruby use

interpreters.

History of C Programming Language:

 History of C language is interesting to know. Here we are going to

discuss a brief history of the c language.

 C programming language was developed in 1972 by Dennis Ritchie at

bell laboratories of AT&T (American Telephone & Telegraph),

located in the U.S.A.

 Dennis Ritchie is known as the founder of the c language.

 It was developed to overcome the problems of previous languages

such as B, BCPL, etc.

 Initially, C language was developed to be used in UNIX operating

system. It inherits many features of previous languages such as B and

BCPL.

Let's see the programming languages that were developed before C

language.

Language Year Developed By

Algol 1960 International Group

BCPL 1967 Martin Richard

B 1970 Ken Thompson
Traditional C 1972 Dennis Ritchie

K & R C 1978 Kernighan & Dennis Ritchie

ANSI C 1989 ANSI Committee

ANSI/ISO C 1990 ISO Committee

C99 1999 Standardization Committee

C language has evolved from three different structured language

ALGOL, BCPL and B Language. It uses many concepts from these

languages and has introduced many new concepts such as data types,

struct, pointer. In 1988, the language was formalized by American

National Standard Institute (ANSI). In 1990, a version of C language was

approved by the International Standard Organization (ISO) and that

version of C is also referred to as C89.

Why the Name “C” was given to Language?:

 1. Many of C’s principles and ideas were derived from the earlier

language B. (Ken Thompson was the developer of B Language.) 2. BCPL

7

and CPL are the earlier ancestors of B Language 3. CPL is common

Programming Language. In 1967, BCPL Language (Basic CPL) was

created as a scaled down version of CPL 4. As many of the features were

derived from ―B‖ Language that’s why it was named as ―C‖. 5. After 7-

8 years C++ came into existence which was first example of object

oriented programming.

Features of C Language:

C is the widely used language. It provides many features that are given

below.

1. Simple

2. Machine Independent or Portable

3. Mid-level programming language

4. Structured programming language

5. Rich Library

6. Memory Management

7. Fast Speed

8. Pointers

9. Recursion

10. Extensible

1) Simple:

C is a simple language in the sense that it provides a structured

approach (to break the problem into parts), the rich set of library

functions, data types, etc.

2) Machine Independent or Portable:

Unlike assembly language, c programs can be executed on

different machines with some machine specific changes. Therefore, C is

a machine independent language.

8

3) Mid-level programming language:

Although, C is intended to do low-level programming. It is used

to develop system applications such as kernel, driver, etc. It also supports

the features of a high-level language. That is why it is known as mid-

level language.

4) Structured programming language:

C is a structured programming language in the sense that we can

break the program into parts using functions. So, it is easy to

understand and modify. Functions also provide code reusability.

5) Rich Library:

C provides a lot of inbuilt functions that make the development

fast.

6) Memory Management:

It supports the feature of dynamic memory allocation. In C

language, we can free the allocated memory at any time by calling the

free() function.

7) Speed:

The compilation and execution time of C language is fast since

there are lesser inbuilt functions and hence the lesser overhead.

8) Pointer:

C provides the feature of pointers. We can directly interact with the

memory by using the pointers. We can use pointers for memory,

structures, functions, array, etc.

9) Recursion|:

In C, we can call the function within the function. It provides code

reusability for every function. Recursion enables us to use the approach of

backtracking.

10) Extensible:

C language is extensible because it can easily adopt new features.

1.2 APPLICATIONS OF C PROGRAMMING

C was initially used for system development work, particularly the

programs that make-up the operating system. C was adopted as a system

9

development language because it produces code that runs nearly as fast as

the code written in assembly language. Some examples of the use of C are

 Operating Systems

 Language Compilers

 Assemblers

 Text Editors

 Print Spoolers

 Network Drivers

 Modern Programs

 Databases

 Language Interpreters

 Utilities

First C Program:

Before starting the abcd of C language, you need to learn how to

write, compile and run the first c program.

To write the first c program, open the C console and write the following

code:

1. #include <stdio.h>

2. int main(){

3. printf("Hello C Language");

4. return 0;

5. }

#include <stdio.h> includes the standard input output library functions.

The printf() function is defined in stdio.h .

int main() The main() function is the entry point of every program in c

language.

printf() The printf() function is used to print data on the console.

return 0 The return 0 statement, returns execution status to the OS. The 0

value is used for successful execution and 1 for unsuccessful execution.

How to compile and run the c program:

There are 2 ways to compile and run the c program, by menu and by

shortcut.

By menu:

Now click on the compile menu then compile sub menu to compile the

c program.

Then click on the run menu then run sub menu to run the c program.

10

By shortcut

Or, press ctrl+f9 keys compile and run the program directly.

You will see the following output on user screen.

You can view the user screen any time by pressing the alt+f5 keys

Now press Esc to return to the turbo c++ console.

1.3 PROGRAM DEVELOPMENT LIFE CYCLE

Program Development Cycle:

Programmer for developing the program can not directly start any

program or project. Programmer has to understand whole program or

project, has to analyze the sequence and flow of the program

11

1. Understand the problem.

2. Plan the logic.

3. Code the program.

4. Use software (a compiler or interpreter) to translate the program into

machine language.

5. Test the program.

6. Put the program into production.

7. Maintain the program.

1. Understanding the Problem:

Professional computer programmers write programs to accomplish

the requirements of users or end users.

Examples of end users include payroll management system, they

needs a printed list of all employees, a Billing department that wants a list

of clients who are 30 or more days overdue on their payments, they need

their deduction information. Since programmers are providing a service to

these users, programmers must first understand what the users want. When

a program runs, you usually think of the logic as a cycle of input

processing-output operations, but when you plan a program, you think of

the output first. After you understand what the desired result is, you can

plan the input and processing steps to achieve it.

Suppose the manager needs a list of all employees who have been

here over five years, because we want to invite them to a special thank-

you dinner. On the surface, this seems like a simple request. An

experienced programmer, however, will know that the request is

incomplete. For example, you might not know the answers to the

following questions about which employees to include: Does the manager

want a list of full-time employees only, or a list of full and part-time

employees together?

Does she want to include people who have worked for the

company on a month-to month contractual basis over the past five years,

or only regular, permanent employees?

Do the listed employees need to have worked for the organization

for five years as of today, as of the date of the dinner, or as of some other

cutoff date?

What about an employee who worked three years, took a two-year

leave of absence, and has been back for three years?

The programmer cannot make any of these decisions; the user must

address these questions to manager.

12

For example, no one knew they wanted to play Angry Birds or

leave messages on Facebook before those applications were developed.

Mobile app developers also must consider a wider variety of user skills

than programmers who develop applications that are used internally in a

corporation. Mobile app developers must make sure their programs work

with a range of screen sizes and hardware specifications because software

competition is intense and the hardware changes quickly.

2. Planning the Logic:

The main important part of the program is planning the program‘s

logic. During this phase of the process, the programmer plans the steps of

the program, deciding what steps to include. You can plan the solution to a

problem in many ways. The two most common planning tools used are

flowcharts and pseudocode. You may hear programmers refer to planning

a program as ‘‘developing an algorithm.’’ An algorithm is the sequence of

steps or rules you follow to solve a problem.

The programmer shouldn‘t worry about the syntax of any

particular language during the planning stage, but should focus on figuring

out what sequence of events will lead from the available input to the

desired output. Planning the logic includes thinking carefully about all the

possible data values a program might encounter and how you want the

program to handle each scenario. The process of walking through a

program’s logic on paper before you actually write the program is called

desk-checking.

3. Coding the Program:

After the logic is developed, only then can the programmer write

the source code for a Program in a respective programming language. The

logic developed to solve a programming problem can be executed using

any number of languages. Only after choosing a language must the

programmer be concerned with correct syntax.

4. Using Software to Translate the Program into Machine Language:

Even though there are many programming languages, each

computer knows only one language— its machine language, which

consists of 1s and 0s. Computers understand machine language because

they are made up of thousands of tiny electrical switches, each of which

can be set in either the on or off state, which is represented by a 1 or 0,

respectively.

Languages like Java or Visual Basic are available for programmers

because someone has written a translator program (a compiler or

interpreter) that changes the programmer’s English-like high-level

programming language into the low-level machine language that the

computer understands.

13

When you learn the syntax of a programming language, the

commands work on any machine on which the language software has been

installed. However, your commands then are translated to machine

language, which differs in various computer makes and models.

 Diagram referred from programming logic and design by Joyce Farrell.

If you write a programming statement incorrectly the translator

program doesn‘t know how to proceed and issues an error message

identifying a syntax error.

Typically, a programmer develops logic, writes the code, and

compiles the program, receiving a list of syntax errors. The programmer

then corrects the syntax errors and compiles the program again. Correcting

the first set of errors frequently reveals new errors that originally were not

apparent to the compiler.

5. Testing the Program:

A program that is free of syntax errors is not necessarily free of

logical errors. A logical error results when you use a syntactically correct

statement but use the wrong one for the current context.

Input myNumber

setmyAnswer = myNumber * 2

outputmyAnswer

If you execute the program, provide the value 2 as input to the

program, and the answer 4 is displayed, you have executed one successful

test run of the program. Testing of logical errors, syntactically errors are

done.

6. Putting the Program into Production:

 Once the program is thoroughly tested and debugged, it is ready

for the organization to use. Putting the program into production might

14

mean simply running the program once, if it was written to satisfy a user‘s

request for a special list then we can finalize the program.

7. Maintaining the Program:

After programs is completed making necessary changes is called

maintenance. Maintenance can be required for many reasons: for example,

because new tax rates are legislated, the format of an input file is altered,

or the end user requires additional information not included in the original

output specifications. you make changes to existing programs, you repeat

the development cycle. That is, you must understand the changes, then

plan, code, translate, and test them before putting them into production.

1.4 USING PSEUDOCODE STATEMENTS AND

FLOWCHART SYMBOLS

When programmers plan the logic for a solution to a programming

problem, they often use one of two tools: pseudocode (pronounced ‘‘sue-

doe-code’’) or flowcharts. Pseudocode is an English-like representation of

the logical steps it takes to solve a problem. A flowchart is a pictorial

representation of the same thing. Pseudo is a prefix that means ‘‘false,’’

and to code a program means to put it in a programming language;

therefore, pseudocode simply means ‘‘false code,’’ or sentences that

appear to have been written in a computer programming language but do

not necessarily follow all the syntax rules of any specific language.

Writing Pseudocode:

You have already seen examples of statements that represent

pseudo code earlier in this chapter, and there is nothing mysterious about

them. The following five statements constitute a pseudocode

representation of a number-doubling problem:

start

input myNumber

set myAnswer = myNumber * 2

output myAnswer

stop

Using pseudocode involves writing down all the steps you will use

in a program. Usually, programmers preface their pseudocode with a

beginning statement like start and end it with a terminating statement like

stop. The statements between start and stop look like English and are

indented slightly so that start and stop stand out. Most programmers do not

bother with punctuation such as period sat the end of pseudocode

statements, although it would not be wrong to use them if you prefer that

style. Similarly, there is no need to capitalize the first word in a sentence,

although you might choose to do so. This book follows the conventions of

15

using lowercase letters for verbs that begin pseudocode statements and

omitting periods at the end of statements. Pseudocode is fairly flexible

because it is a planning tool, and not the final product. Therefore, for

example, you might prefer any of the following:

• Instead of start and stop, some pseudocode developers would use the

terms begin and end.

• Instead of writing input myNumber, some developers would write

getmyNumber or read myNumber.

• Instead of writing set myAnswer = myNumber * 2, some developers

would write calculate myAnswer = myNumber times 2 or

computemyAnswer as myNumber doubled.

• Instead of writing output myAnswer, many pseudocode developers

would write display myAnswer, print myAnswer, or write myAnswer.

The point is, the pseudocode statements are instructions to retrieve

an original number from an input device and store it in memory where it

can be used in a calculation, and then to get the calculated answer from

memory and send it to an output device so a person can see it. When you

eventually convert your pseudocode to a specific programming language,

you do not have such flexibility because specific syntax will be required.

For example, if you use the C# programming language and write the

statement to output the answer, you will code the following: Console.

Write (myAnswer);

The exact use of words, capitalization, and punctuation are important in

the C# statement, but not in the pseudocode statement.

1.5 ALGORITHMS AND FLOWCHART

Algorithms:

1. A sequential solution of any program that written in human language,

called algorithm.

2. Algorithm is first step of the solution process, after the analysis of

problem, programmer write the algorithm of that problem.

3. Example of Algorithms:

Q. Write am algorithm to find out number is odd or even?

Ans.

step 1 : start

step 2 : input number

step 3 : rem=number mod 2

step 4 : if rem=0 then

print "number even"

else

print "number odd"

endif

step 5 : stop

16

Flowchart:

Defination: Graphical representation of any program is called flowchart.

Flowchart is a diagrammatic representation of sequence of logical steps

of a program. Flowcharts use simple geometric shapes to depict processes

and arrows to show relationships and process/data flow.

Flowchart Symbols:

Here is a chart for some of the common symbols used in drawing

flowcharts.

Symbol Symbol Name Purpose

 Start/Stop Used at the beginning

and end of the

algorithm to show

start and end of the

program.

 Process Indicates processes

like mathematical

operations.

 Input/ Output Used for denoting

program inputs and

outputs.

 Decision Stands for decision

statements in a

program, where

answer is usually Yes

or No.

 Arrow Shows relationships

between different

shapes.

 On-page Connector Connects two or more

parts of a flowchart,

which are on the same

page.

 Off-page Connector Connects two parts of

a flowchart which are

spread over different

pages.

Guidelines for Developing Flowcharts:

These are some points to keep in mind while developing a

flowchart −

 Flowchart can have only one start and one stop symbol

 On-page connectors are referenced using numbers

 Off-page connectors are referenced using alphabets

17

 General flow of processes is top to bottom or left to right

 Arrows should not cross each other

Example Flowcharts:

Here is the flowchart for going to the market to purchase a pen.

Here is a flowchart to calculate the average of two numbers.

Sentinel Value to End a Program

Using a Sentinel Value to End a Program

The logic in the flowchart for doubling numbers, shown in Fig.

1.8, has a major flaw—the program contains an infinite loop.

18

If, for example, the input numbers are being entered at the

keyboard, the program will keep accepting numbers and outputting their

doubled values forever. Of course, the user could refuse to type any more

numbers. But the program cannot progress any further while it is waiting

for input; meanwhile, the program is occupying computer memory and

tying up operating system resources.

 Any infinite loop in a program has a problem that you can input

values infinite time, processing will be done, result will be displayed.

Loop will be continued infinite times. Solution to stop is turn off your

computer, Solution is to somewhere Refuse input value or stop accepting

input value.

A better way to end the program is to set a predetermined value for

myNumber that means ‘‘Stop the program!’’ For example, the

programmer and the user could agree that the user will never need to know

the double of 0 (zero), so the user could enter a 0 to stop. The program

could then test any incoming value contained in myNumber and, if it is a

0, stop the program.

Testing a value is also called making a decision.

You represent a decision in a flowchart by drawing a decision

symbol, which is shaped like a diamond. The diamond usually contains a

question, the answer to which is one of two mutually exclusive options—

often yes or no.

The question to stop the doubling program should be ‘‘Is the value

of myNumber just entered equal to 0?’’ or ‘‘myNumber = 0?’’ for short.

The complete flowchart will now look like the one shown in Fig.

19

Flowchart with sentinel value equal to zero

One drawback to using 0 to stop a program, of course, is that it

won‘t work if the user does need to find the double of 0. In that case, some

other data-entry value that the user never will need, such as 999 or –1,

could be selected to signal that the program should end.

A preselected value that stops the execution of a program is often

called a dummy value because it does not represent real data, but just a

signal to stop. Sometimes, such a value is called a sentinel value because it

represents an entry or exit point, like a sentinel who guards a fortress.

For one thing, an input record might have hundreds of fields, and if

you store a dummy record in every file, you are wasting a large quantity of

storage on ‘‘non data.’’ Additionally, it is often difficult to choose sentinel

values for fields in a company’s data files.

Any balance Due, even a zero or negative number, can be a

legitimate value, and any customerName, even ‘‘ZZ’’, could be someone‘s

name. Fortunately, programming languages can recognize the end of data

in a file automatically, through a code that is stored at the end of the data.

Many programming languages use the terme of (for end of file) to refer to

this marker that automatically acts as a sentinel.

Here In this example, therefore, uses eof to indicate the end of data

whenever using a dummy value is impractical or inconvenient. In the

flowchart shown in Fig. 1.10, the eof question is shaded.

20

1.6 UNIT END QUESTIONS

1. What is Imperative Programming? What are its Types?

2. Write a Difference between Compiler and Interpreter.

3. Explain History of C Programming Language.

4. Enlist Features of C Programming. Explain any 4 in Brief.

5. Explain Program Development Life Cycle in Detail.

6. What is Flowchart ? What is the use of Flowchart?

21

2

PROGRAMMING AND USER

ENVIRONMENTS UNDERSTANDING

PROGRAMMING ENVIRONMENTS

Unit Structure

2.0 Objectives

2.1 Introduction

2.2 Understanding the evolution of programming models:

2.3 Unit End Questions

2.0 OBJECTIVES

Understanding Programming Environments

You can type a program into one of the following:

● A plain text editor

● Turbo c editor

A text editor that is part of an integrated development environment

A text editor is a program that you use to create simple text files. It is

similar to a word processor, but without as many features.

22

You can use a text editor such as Notepad that is included with

Microsoft Windows. The C Developing Environment is a screen display

with windows and pull-down menus. The program listing, error messages

and other information are displayed in separate windows.

The menus may be used to invoke all the operations necessary to

develop the program, including editing, compiling, linking, and debugging

and program execution.

If the menu bar is inactive, it may be invoked by pressing the [F10]

function key. To select different menu, move the highlight left or right

with cursor (arrow) keys. You can also revoke the selection by pressing

the key combination for the specific menu.

2.1 INTRODUCTION

Invoking the Turbo C IDE:

The default directory of Turbo C compiler is c:\tc\bin. So to invoke

the IDE from the windows you need to double click the TC icon in the

directory c:\tc\bin.

The alternate approach is that we can make a shortcut of tc.exe on

the desktop. Opening New Window in Turbo C

To type a program, you need to open an Edit Window. For this,

open file menu and click ‘‘new’’.

A window will appear on the screen where the program may be typed.

23

Writing a Program in Turbo C:

When the Edit window is active, the program may be typed. Use

the certain key combinations to perform specific edit functions.

Saving a Program in Turbo C:

 To save the program, select save command from the file menu.

This function can also be performed by pressing the [F2] button. A dialog

box will appear asking for the path and name of the file. Provide an

appropriate and unique file name. You can save the program after

compiling too but saving it before compilation is more appropriate

Making an Executable File in Turbo C:

The source file is required to be turned into an executable file. This

is called ‘‘Making’’ of the .exe file. The steps required to create an

executable file are:

1. Create a source file, with a .c extension.

2. Compile the source code into a file with the .obj extension.

3. Link your .obj file with any needed libraries to produce an executable

program

All the above steps can be done by using Run option from the menu bar or

using key combination

Ctrl+F9 (By this linking & compiling is done in one step).

Understanding User Environments:

Compiling and linking in the Turbo C IDE: In the Turbo C IDE,

compiling and linking can be performed together in one step. There are

24

two ways to do this: you can select Make EXE from the compile menu, or

you can press the [F9] key

Correcting Errors in Turbo C:

If the compiler recognizes some error, it will let you know through

the Compiler window. You‘ll see that the number of errors is not listed as

0, and the word ―Error‖ appears instead of the word ―Success‖ at the

bottom of the window. The errors are to be removed by returning to the

edit window.

Usually these errors are a result of a typing mistake. The compiler

will not only tell you what you did wrong, they‘ll point you to the exact

place in your code where you made the mistake.

Executing a Programs in Turbo C:

If the program is compiled and linked without errors, the program

is executed by selecting Run from the Run Menu or by pressing the

[Ctrl+F9] key combination.

Exiting Turbo C IDE An Edit window may be closed in a number

of different ways. You can click on the small square in the upper left

corner, you can select close from the window menu, or you can press the

Alt+F3 combination. To exit from the IDE, select Exit from the File Menu

or press Alt+X Combination.

Evolution of Programming Models:

25

Software technology has a growth of a tree. Software evolution has

a layer of growth. Each layer representing an improvement over the

previous one.

The oldest programming languages required programmers to work

with memory addresses and to memorize awkward codes associated with

machine languages.

Newer programming languages look much more like natural

language and are easier to use, partly because they allow programmers to

name variables instead of using unwieldy memory addresses Initially the

programs are to be written in machine language but it is in the form of 0‘s

and First hence difficult to remember.

Second layer of assembly language which has Mnemonics in the

form of English language. Language used by ALU section of the CPU.

Third layer is procedure oriented language (POP) language. In this

a problem is viewed as a sequence of Instructions. All functions or tasks

are combined in one procedure program.

In the fourth layer the program is divided into functions.

Instructions of the program is divided into groups known as functions.

In multi function program, many important data items are placed

as global so that they may be accessed by all the functions. Each function

may have its own local data. In the fifth layer, modularization is used with

the help of functions and in large programs it is very difficult to identify

what data is used by which function. Hence data hiding concept can be

provided using functions.

In object oriented, following characteristics are followed:

1. Large programs are divided into smaller programs known as functions

called objects.

2. Data hiding concept is provided.

Currently, two major models or paradigms are used by

programmers to develop programs and their procedures:

Procedural programming focuses on the procedures that

programmers create along with modularization That is, procedural

programmers focus on the actions that are carried out—for example,

getting input data for an employee and writing the calculations needed to

produce a paycheck from the data.

Object-oriented programming focuses on objects, or ‘‘things,’’ and

describes their features (also called attributes) and behaviors.

26

For example, object-oriented programmers might design a payroll

application by thinking about employees and paychecks, and by describing

their attributes. Employees have names and Social

Security numbers, and paychecks have names and check amounts.

Then the programmers would think about the behaviors of employees and

paychecks, such as employees getting raises and adding dependents and

paychecks being calculated and output. Object-oriented programmers

would then build applications from these entities.

2.3 UNDERSTANDING THE EVOLUTION OF

PROGRAMMING MODELS:

1. The oldest computer programs were written in many separate modules.

2. Procedural programmers focus on actions that are carried out by a

program.

3. Object-oriented programmers focus on a program’s objects and their

attribute and behaviors.

Desirable Program Characteristics:

These characteristics apply to programs that are written in any

programming language:-

1. Integrity:

This refers to the accuracy of the calculations. Integrity is needed

to perform correct calculations if any enhancement is done otherwise there

will be no use of enhancement and all enhancement will be meaningless

Thus, the integrity of the calculations is an absolute necessity in any

computer program.

2. Clarity:

Refers to the overall readability of the program, with specific logic.

If a program should not be complicated it should be clearly written, it

should be possible for another programmer to follow the program logic

without much effort. It should also be possible for the original author to

follow his or her own program after being away from the program for an

extended period of time. One of the objectives in the design of C is the

development of clear, readable and disciplined approach to programming

3. Simplicity:

The clarity readability of the program and accuracy of a program

are usually enhanced by keeping things as simple as possible, uniqueness

and consistency should be included with the overall program objectives. In

fact, it may be desirable to sacrifice a certain amount of computational

27

efficiency in order to maintain a relatively simple, straightforward

program structure.

4. Efficiency:

It is concerned with execution speed and efficient memory

utilization. Many complex programs require a tradeoff between these

characteristics. Hence experience and common sense are key factors are

used to increase efficiency of the program.

5. Modularity:

Many programs can be broken down into a series of identifiable

subtasks. It is good programming practice to implement each of these

subtasks as a separate program module. In C programming language, such

modules are written as functions. The use of a modular programming

structure enhances the accuracy and clarity of a program, and it facilitates

future program alterations.

6. Generality:

Program to be as general as possible, within reasonable limits. For

example, we may design a program to read in the values of certain key

parameters rather than placing fixed values into the program. As a rule, a

considerable amount of generality can be obtained with very little

additional programming effort. All programs should be written in a

generalized manner.

2.3 UNIT END QUESTIONS

1. Explain Program Characteristics in Detail.

2. Draw and Explain Evolution of Programming Model.

3. Explain the process of program execution.

4. What is IDE ? Explain TurboC Functions in Detail.

28

3

FUNDAMENTALS

Unit Structure

3.0 Objectives

3.1 Introduction

3.2 Program Structure

3.3 The C Character Set

3.4 Data Types In C Language

3.5 C Expressions

3.6 Symbolic Constants In C Language

3.7 Unit End Questions

3.0 OBJECTIVES

Structure of a C Program:

Every C program consists of one or more modules called

functions. One of the functions must be called main.

The program will always begin by executing the main function,

which may access other functions. Any other function definitions must be

defined separately, either ahead of or after main Each function must

contain:

1. A function heading, which consists of the function name, followed by

an optional list of arguments, enclosed in parentheses.

2. A list of argument declarations, if arguments are included in the

heading.

3. A compound statement, which comprises the remainder of the

function.

The arguments are symbols that represent information being

passed between the function and other parts of the program. (Arguments

are also referred to as parameters.)Each compound statement is enclosed

within a pair of braces, i.e., { }. The braces may contain one or more

elementary statements (called expression statements) and other compound

statements. Thus compound statements may be nested, one within another.

Each expression statement must end with a semicolon (;). Comments

(remarks) may appear anywhere within a program, as long as they are

placed within the delimiters / * and */ (e.g., /* t h i s is a comment */).

Such comments are helpful in identifying the program's principal features

or in explaining the underlying logic of various program features. These

program components will be discussed in much greater detail later in this

29

book. For now, the reader should be concerned only with an overview of

the basic features that characterize most C programs.

3.1 INTRODUCTION

EXAMPLE - Area of a Circle Here is an elementary C program

that reads in the radius of a circle, calculates its area and then writes the

calculated result.

/* program to calculate the area of a circle */

/* TITLE(COMMENT) */

#include <stdio.h> / * LIBRARY FILE ACCESS */

main() / * FUNCTION HEADING */

float radius, area; / * VARIABLE DECLARATIONS */

printf ("Radius = ? / * OUTPUT STATEMENT (PROMPT) * /

“) ;

scanf ("%'f “ , &radius) ; / * INPUT STATEMENT * /

area = 3.14159 * radius * radius; /* ASSIGNMENT STATEMENT */

printf ("Area = %f “,area) ; / * OUTPUT STATEMENT */

The comments at the end of each line have been added in order to

emphasize the overall program organization.

Normally a C program will not look like this. Rather, it might

appear as shown below.

/ * program to calculate the area of a c i r c l e */

#include <stdio.h>

main()

float radius, area;

printf ("Radius = ? ") ;

scanf ("%f &radius) ;

area = 3.14159 * radius * radius;

pintf ("Area = %f “, area) ;

The following features should be pointed out in this last program.

1. The program is typed in lowercase. Either upper- or lowercase can be

used, though it is customary to type ordinary instructions in lowercase.

Most comments are also typed in lowercase, though comments are

Sometimes typed in uppercase for emphasis, or to distinguish certain

comments from the instructions.

2. The first line is a comment that identifies the purpose of the program.

3. The second line contains a reference to a special file (called stdio .h)

which contains information that must be included in the program when

it is compiled. The inclusion of this required information will be

handled automatically by the compiler.

30

4. The third line is a heading for the function main. The empty

parentheses following the name of the function indicate that this

function does not include any arguments.

5. The remaining five lines of the program are indented and enclosed

within a pair of braces. These five lines comprise the compound

statement within main.

6. The first indented line is a variable declaration. It establishes the

symbolic names radius and area as floating-point variables (more

about this in the next chapter).

7. The remaining four indented lines are expression statements. The

second indented line (p r i n t f) generates a request for information

(namely, a value for the radius). This value is entered into the

computer via the third indented line (scanf).

8. The fourth indented line is a particular type of expression statement

called an assignment statement. This statement causes the area to be

calculated from the given value of the radius. Within this statement the

asterisks (*) represent multiplication signs.

9. The last indented line (p r i n t f) causes the calculated value for the

area to be displayed. The numerical value will be preceded by a brief

label.

10. Notice that each expression statement within the compound statement

ends with a semicolon. This is required of all expression statements.

Finally, notice the liberal use of spacing and' indentation, creating

whitespace within the program. The blank lines separate different parts of

the program into logically identifiable components, and the indentation

indicates subordinate relationships among the various instructions. These

features are not grammatically essential, but their presence is strongly

encouraged as a matter of good programming practice.

Execution of the program results in an interactive dialog such as

that shown below. The user's response is underlined, for clarity.

Radius = 7 3

Area = 28.274309

3.2 PROGRAM STRUCTURE

Hello World Example:

A C program basically consists of the following parts:

 Preprocessor command

 Functions

 Variables

31

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello World":

#include intmain()

{

/* my first program in C */

printf("Hello, World! \n");

return 0;

}

Let us take a look at the various parts of the above program:

1. The first line of the program #include is a preprocessor command,

which tells a C compiler to include stdio.h file before going to actual

compilation.

2. The next line intmain() is the main function where the program

execution begins.

3. The next line /*...*/ will be ignored by the compiler and it has been put

to add additional comments in the program. So such lines are called

comments in the program.

4. The next line printf(...) is another function available in C which causes

the message "Hello, World!" to be displayed on the screen.

5. The next line return 0; terminates the main() function and returns the

value 0.

Compile and Execute C Program:

Let us see how to save the source code in a file, and how to compile and

run it. Following are the simple steps:

1. Open a text editor and add the above-mentioned code.

2. Save the file as hello.c

3. Open a command prompt and go to the directory where you have

saved the file.

4. Type gcchello.c and press enter to compile your code.

5. If there are no errors in your code, the command prompt will take you

to the next line and would generate a.out executable file.

6. Now, type a.out to execute your program.

7. You will see the output "Hello World" printed on the screen.

$ gcchello.c

$./a.out

32

Hello, World!

Make sure the gcc compiler is in your path and that you are running it in

the directory containing the source file hello.c.

3.3 THE C CHARACTER SET

C uses the uppercase letters A to Z, the lowercase letters a to z, the

digits 0 to 9, and certain special characters as building blocks to form

basic program elements (e.g., constants, variables, operators, expressions,

etc.). The special characters are listed below.

Most versions of the language also allow certain other characters, such as

@ and $, to be included within strings and comments.

Identifiers and Keywords:

Identifiers are names that are given to various program elements,

such as variables, functions and arrays. Identifiers consist of letters and

digits, in any order, except that the first character must be a letter. Both

upper- and lowercase letters are permitted, though common usage favors

the use of lowercase letters for most types of identifiers. Upper- and

lowercase letters are not interchangeable (i.e., an uppercase letter is not

equivalent to the corresponding lowercase letter.) The underscore

character (-) can also be included, and is considered to be a letter. An

underscore is often used in the middle of an identifier. An identifier may

also begin with an underscore, though this is rarely done in practice.

EXAMPLE The following names are valid identifiers.

X Y12 sum-1 _temperature

Names area tax-r ate

TABLE

Keywords:

The following list shows the reserved words in C. These reserved

words may not be used as constants or variables or any other identifier

names.

33

Auto char signed default

register short If long

static void Float continue

else return Switch while

goto const Extern unsigned

Do sizeof Break typedef

int volatile Case double

for enum Union struct _Packed

3.4 DATA TYPES IN C LANGUAGE

Data types specify how we enter data into our programs and what

type of data we enter. C language has some predefined set of data types to

handle various kinds of data that we use in our program. These data types

have different storage capacities.

C language supports 2 different type of data types,

Primary data types:

These are fundamental data types in C namely integer(int),

floating(float), charater(char) and void.

Derived data types:

Derived data types are like arrays, functions, structures and

pointers. These are discussed in detail later.

Data types in c refer to an extensive system used for declaring

variables or functions of different types. The type of a variable determines

how much space it occupies in storage and how the bit pattern stored is

interpreted.

The types in C can be classified as follows –

Sr. No. Types & Description

1 Basic Types

They are arithmetic types and are further classified into: (a)

integer types and (b) floating-point types.

2 Enumerated types

They are again arithmetic types and they are used to define

variables that can only assign certain discrete integer values

throughout the program.

3 The type void

The type specifier void indicates that no value is available.

4 Derived types

They include (a) Pointer types, (b) Array types, (c) Structure

types, (d) Union types and (e) Function types.

34

The array types and structure types are referred collectively as the

aggregate types. The type of a function specifies the type of the function's

return value. We will see the basic types in the following section, where as

other types will be covered in the upcoming chapters.

Integer Types:

The following table provides the details of standard integer types

with their storage sizes and value ranges

Type Storage size Value range

Char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

Int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to

2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

Short 2 bytes -32,768 to 32,767
unsigned short 2 bytes 0 to 65,535

Long 8 bytes -9223372036854775808 to

9223372036854775807

unsigned long 8 bytes 0 to 18446744073709551615

To get the exact size of a type or a variable on a particular

platform, you can use the sizeof operator. The expressions sizeof(type)

yields the storage size of the object or type in bytes. Given below is an

example to get the size of various type on a machine using different

constant defined in limits.h header file

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include <float.h>

int main(intargc, char** argv) {

printf("CHAR_BIT : %d\n", CHAR_BIT);

printf("CHAR_MAX : %d\n", CHAR_MAX);

printf("CHAR_MIN : %d\n", CHAR_MIN);

printf("INT_MAX : %d\n", INT_MAX);

printf("INT_MIN : %d\n", INT_MIN);

printf("LONG_MAX : %ld\n", (long) LONG_MAX);

printf("LONG_MIN : %ld\n", (long) LONG_MIN);

printf("SCHAR_MAX : %d\n", SCHAR_MAX);

printf("SCHAR_MIN : %d\n", SCHAR_MIN);

printf("SHRT_MAX : %d\n", SHRT_MAX);

printf("SHRT_MIN : %d\n", SHRT_MIN);

printf("UCHAR_MAX : %d\n", UCHAR_MAX);

printf("UINT_MAX : %u\n", (unsigned int) UINT_MAX);

printf("ULONG_MAX : %lu\n", (unsigned long) ULONG_MAX);

printf("USHRT_MAX : %d\n", (unsigned short) USHRT_MAX);

return 0;

}

35

When you compile and execute the above program, it produces the

following result on Linux −

CHAR_BIT : 8

CHAR_MAX : 127

CHAR_MIN : -128

INT_MAX : 2147483647

INT_MIN : -2147483648

LONG_MAX : 9223372036854775807

LONG_MIN : -9223372036854775808

SCHAR_MAX : 127

SCHAR_MIN : -128

SHRT_MAX : 32767

SHRT_MIN : -32768

UCHAR_MAX : 255

UINT_MAX : 4294967295

ULONG_MAX : 18446744073709551615

USHRT_MAX : 65535

Floating-Point Types:

The following table provide the details of standard floating-point types

with storage sizes and value ranges and their precision

Type Storage size Value range Precision

float 4 byte 1.2E-38 to

3.4E+38

6 decimal places

double 8 byte 2.3E-308 to

1.7E+308

15 decimal

places

long double 10 byte 3.4E-4932 to

1.1E+4932

19 decimal

places

The header file float.h defines macros that allow you to use these

values and other details about the binary representation of real numbers in

your programs. The following example prints the storage space taken by a

float type and its range values

#include <stdio.h>

#include <stdlib.h>

#include <limits.h>

#include <float.h>

int main(intargc, char** argv) {

printf("Storage size for float : %d \n", sizeof(float));

printf("FLT_MAX : %g\n", (float) FLT_MAX);

printf("FLT_MIN : %g\n", (float) FLT_MIN);

printf("-FLT_MAX : %g\n", (float) -FLT_MAX);

printf("-FLT_MIN : %g\n", (float) -FLT_MIN);

36

printf("DBL_MAX : %g\n", (double) DBL_MAX);

printf("DBL_MIN : %g\n", (double) DBL_MIN);

printf("-DBL_MAX : %g\n", (double) -DBL_MAX);

printf("Precision value: %d\n", FLT_DIG);

return 0;

}

When you compile and execute the above program, it produces the

following result on Linux −

Storage size for float : 4

FLT_MAX : 3.40282e+38

FLT_MIN : 1.17549e-38

-FLT_MAX : -3.40282e+38

-FLT_MIN : -1.17549e-38

DBL_MAX : 1.79769e+308

DBL_MIN : 2.22507e-308

-DBL_MAX : -1.79769e+308

Precision value: 6

The void Type:

The void type specifies that no value is available. It is used in three kinds

of situations

Sr.No. Types & Description

1 Function returns as void

There are various functions in C which do not return any

value or you can say they return void. A function with no

return value has the return type as void. For example, void

exit (int status);

2 Function arguments as void

There are various functions in C which do not accept any

parameter. A function with no parameter can accept a void.

For example, int rand(void);

3 Pointers to void

A pointer of type void * represents the address of an object,

but not its type. For example, a memory allocation function

void *malloc(size_t size); returns a pointer to void which can

be casted to any data type.

37

Constants:

Constants are of fixed values that do not change during the

execution of a program. There are various types of constants. The types

are illustrated in the following figure.

Integer constants:

An integer constant refers to a sequence of digits. There are three

types of integer constants, namely, decimal integer, octal integer and

hexadecimal integer.

Decimal integer consists of a set of digits from 0 to 9, preceded by

an optional + or – sign. Examples, 123 -321 0 64932

Octal integer consists of a set of digits from 0 to 7, with a leading 0.

Examples, 037 0 0437 0551

A sequence of digits preceded by 0x or 0X is considered as

hexadecimal integer. They may also includes letters from A to F or from a

to f. The letters represents the numbers from 10 to 15.

38

Examples, 0X2 0x9F

0Xbcd 0x

Real constants: Real constants are used to represent quantities that are

very continuously, such as distances, temperature etc. These quantities are

represented by numbers containing fractional parts.

Examples,

0.00832 -0.75 33.337

Single character constants: A single character constants contains a single

character enclosed within a pair of single quote marks.

Example, ‗5

‘X’ ‘:’

String constants : A string constant contains a string of characters

enclosed within a pair of double quote marks. Examples, ‘‘Hello !’’

‘‘1987’’

Variables:

A variable is nothing but a name given to a storage area that our

programs can manipulate. Each variable in C has a specific type, which

determines the size and layout of the variable's memory; the range of

values that can be stored within that memory; and the set of operations

that can be applied to the variable.

The name of a variable can be composed of letters, digits, and the

underscore character. It must begin with either a letter or an underscore.

Upper and lowercase letters are distinct because C is case-sensitive.

Based on the basic types explained in the previous chapter, there

will be the following basic variable types:

Type Description

Char Typically a single octet (one byte). This is an

integer type.

int The most natural size of integer for the machine

float A single-precision floating point value.

double A double-precision floating point value

void Represents the absence of type. C

Variable Definition in C:

A variable definition tells the compiler where and how much

storage to create for the variable. A variable definition specifies a data

type and contains a list of one or more variables of that type as follows:

typevariable_list;

39

 Here, type must be a valid C data type including char, w_char, int,

float, double, bool, or any user-defined object; and variable_list may

consist of one or more identifier names separated by commas. Some valid

declarations are shown here: Variable Definition in C :A variable

definition tells the compiler where and how much storage to create for the

variable. A variable definition specifies a data type and contains a list of

one or more variables of that type as follows:

inti, j, k;

char c, ch;

float f salary;

double d;

The line int i, j, k; declares and defines the variables i, j and k;

which instruct the compiler to create variables named i, j, and k of type

int.

Variables can be initialized (assigned an initial value) in their declaration.

The initialize consists of an equal sign followed by a constant expression

as follows:

typevariable_name = value;

Some examples are:

Extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

C –Arrays:

Arrays a kind of data structure that can store a fixed-size sequential

collection of elements of the same type. An array is used to store a

collection of data, but it is often more useful to think of an array as a

collection of variables of the same type.

Instead of declaring individual variables, such as number0,

number1, ..., and number99, you declare one array variable such as

numbers and use numbers[0], numbers[1], and ..., numbers[99] to

represent individual variables. A specific element in an array is accessed

by an index.

All arrays consist of contiguous memory locations. The lowest

address corresponds to the first element and the highest address to the last

element.

40

Declaring Arrays :

To declare an array in C, a programmer specifies the type of the

elements and the number of elements required by an array as

follows −

typearrayName [arraySize];

This is called a single-dimensional array. The arraySize must be

an integer constant greater than zero and type can be any valid C data

type. For example, to declare a 10-element array called balance of type

double, use this statement −

double balance[10];

Here balance is a variable array which is sufficient to hold up to 10 double

numbers.

Initializing Arrays:

You can initialize an array in C either one by one or using a single

statement as follows −

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } cannot be larger than the

number of elements that we declare for the array between square brackets

[].

If you omit the size of the array, an array just big enough to hold the

initialization is created. Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

You will create exactly the same array as you did in the previous

example. Following is an example to assign a single element of the

array −

41

balance[4] = 50.0;

The above statement assigns the 5th element in the array with a

value of 50.0. All arrays have 0 as the index of their first element which is

also called the base index and the last index of an array will be total size of

the array minus 1. Shown below is the pictorial representation of the array

we discussed above –

Accessing Array Elements:

An element is accessed by indexing the array name. This is done

by placing the index of the element within square brackets after the

name of the array. For example −

double salary = balance[9];

The above statement will take the 10th element from the array and

assign the value to salary variable. The following example Shows how to

use all the three above mentioned concepts viz. declaration, assignment,

and accessing arrays –

#include <stdio.h>

int main () {

int n[10]; /* n is an array of 10 integers */

inti,j;

 /* initialize elements of array n to 0 */

for (i = 0; i< 10; i++) {

n[i] = i + 100; /* set element at location i to i + 100 */

}

 /* output each array element's value */

for (j = 0; j < 10; j++) {

printf("Element[%d] = %d\n", j, n[j]);

 }

return 0;

}

42

 When the above code is compiled and executed, it produces the

following result −

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

Arrays in Detail:

Arrays are important to C and should need a lot more attention.

The following important concepts related to array should be clear to a C

programmer

Sr.No. Concept & Description

1 Multi-dimensional arrays

C supports multidimensional arrays. The simplest form of the

multidimensional array is the two-dimensional array.

2 Passing arrays to functions

You can pass to the function a pointer to an array by specifying

the array's name without an index.

4 Pointer to an array

You can generate a pointer to the first element of an array by

simply specifying the array name, without any index.

3.5 C EXPRESSIONS

An expression is a formula in which operands are linked to each

other by the use of operators to compute a value. An operand can be a

function reference, a variable, an array element or a constant.

Let's see an example:

1. a-b;

In the above expression, minus character (-) is an operator, and a,

and b are the two operands.

There are four types of expressions exist in C:

Arithmetic expressions

 Relational expressions

 Logical expressions

43

 Conditional expressions

Each type of expression takes certain types of operands and uses a

specific set of operators. Evaluation of a particular expression produces a

specific value.

For example:

1. x = 9/2 + a-b;

The entire above line is a statement, not an expression. The portion after

the equal is an expression.

Arithmetic Expressions:

An arithmetic expression is an expression that consists of operands

and arithmetic operators. An arithmetic expression computes a value of

type int, float or double.

When an expression contains only integral operands, then it is

known as pure integer expression when it contains only real operands, it is

known as pure real expression, and when it contains both integral and real

operands, it is known as mixed mode expression.

Evaluation of Arithmetic Expressions:

The expressions are evaluated by performing one operation at a

time. The precedence and associativity of operators decide the order of the

evaluation of individual operations.

When individual operations are performed, the following cases can be

happened:

44

 When both the operands are of type integer, then arithmetic will be

performed, and the result of the operation would be an integer value.

For example, 3/2 will yield 1 not 1.5 as the fractional part is ignored.

 When both the operands are of type float, then arithmetic will be

performed, and the result of the operation would be a real value. For

example, 2.0/2.0 will yield 1.0, not 1.

 If one operand is of type integer and another operand is of type real,

then the mixed arithmetic will be performed. In this case, the first

operand is converted into a real operand, and then arithmetic is

performed to produce the real value. For example, 6/2.0 will yield 3.0

as the first value of 6 is converted into 6.0 and then arithmetic is

performed to produce 3.0.

Let's understand through an example.

6*2/ (2+1 * 2/3 + 6) + 8 * (8/4)

Evaluation of expression Description of each operation

6*2/(2+1 * 2/3 +6) +8 * (8/4) An expression is given

6*2/(2+2/3 + 6) + 8 * (8/4) 2 is multiplied by 1, giving value 2.

6*2/(2+0+6) + 8 * (8/4) 2 is divided by 3, giving value 0.

6*2/ 8+ 8 * (8/4) 2 is added to 6, giving value 8.

6*2/8 + 8 * 2 8 is divided by 4, giving value 2.

12/8 +8 * 2 6 is multiplied by 2, giving value 12.

1 + 8 * 2 12 is divided by 8, giving value 1.

1 + 16 8 is multiplied by 2, giving value 16.

17 1 is added to 16, giving value 17.

Relational Expressions:

 A relational expression is an expression used to compare two

operands.

 It is a condition which is used to decide whether the action should be

taken or not.

 In relational expressions, a numeric value cannot be compared with the

string value.

 The result of the relational expression can be either zero or non-zero

value. Here, the zero value is equivalent to a false and non-zero value

is equivalent to true.

Relational

Expression

Description

x%2 = = 0 This condition is used to check whether the x is an

even number or not.

 The relational expression results in value 1 if x is an

even number otherwise results in value 0.

a!=b It is used to check whether a is not equal to b.

45

 This relational expression results in 1 if a is not equal

to b otherwise 0.

a+b = = x+y It is used to check whether the expression "a+b" is

equal to the expression "x+y".

a>=9 It is used to check whether the value of a is greater

than or equal to 9.

Let's see a simple example:

1. #include <stdio.h>

2. int main()

3. {

4.

5. int x=4;

6. if(x%2==0)

7. {

8. printf("The number x is even");

9. }

10. else

11. printf("The number x is not even");

12. return 0;

13. }

Output :

Logical Expressions:

 A logical expression is an expression that computes either a zero or

non-zero value.

 It is a complex test condition to take a decision.

Let's see some example of the logical expressions.

Logical Expressions Description

(x > 4) && (x < 6) It is a test condition to check

46

whether the x is greater than 4 and

x is less than 6. The result of the

condition is true only when both the

conditions are true.

x > 10 || y <11 It is a test condition used to check

whether x is greater than 10 or y is

less than 11. The result of the test

condition is true if either of the

conditions holds true value.

! (x > 10) && (y = = 2) It is a test condition used to check

whether x is not greater than 10 and

y is equal to 2. The result of the

condition is true if both the

conditions are true.

Let's see a simple program of "&&" operator.

1. #include <stdio.h>

2. int main()

3. {

4. int x = 4;

5. int y = 10;

6. if ((x <10) && (y>5))

7. {

8. printf("Condition is true");

9. }

10. else

11. printf("Condition is false");

12. return 0;

13. }

Output

Let's see a simple example of "| |" operator

47

1. #include <stdio.h>

2. int main()

3. {

4. int x = 4;

5. int y = 9;

6. if ((x <6) || (y>10))

7. {

8. printf("Condition is true");

9. }

10. else

11. printf("Condition is false");

12. return 0;

13. }

Output

Conditional Expressions:

 A conditional expression is an expression that returns 1 if the

condition is true otherwise 0.

 A conditional operator is also known as a ternary operator.

The Syntax of Conditional operator:

Suppose exp1, exp2 and exp3 are three expressions.

exp1 ?exp2 : exp3

The above expression is a conditional expression which is

evaluated on the basis of the value of the exp1 expression. If the condition

of the expression exp1 holds true, then the final conditional expression is

represented by exp2 otherwise represented by exp3.

Let's understand through a simple example.

1. #include<stdio.h>

2. #include<string.h>

3. int main()

4. {

5. int age = 25;

48

6. char status;

7. status = (age>22) ? 'M': 'U';

8. if(status == 'M')

9. printf("Married");

10. else

11. printf("Unmarried");

12. return 0;

13. }

Output:

Statements:

A statement causes the computer to carry out some action. There

are three different classes of statements in C.

They are expression statements, compound statements and control

statements.

An expression statement consists of an expression followed by a

semicolon. The execution of an expression statement causes the

expression to be evaluated.

EXAMPLE 2.28 Several expression statements are shown below.

a = 3;

c=a+b;

++i;

printf ("Area = %f 'I, area) ;

9

The first two expression statements are assignment-type

statements. Each causes the value of the expression on the right of the

equal sign to be assigned to the variable on the left. The third expression

statement is an incrementing-type statement, which causes the value of ito

increase by 1.

49

The fourth expression statement causes the printf function to be

evaluated. This is a standard C library function that writes information out

of the computer (more about this in Sec. 3.6). In this case, the message

Area = will be displayed, followed by the current value of the variable

area. Thus, if area represents the value loo., the statement will generate the

message

Area = 100.

The last expression statement does nothing, since it consists of

only a semicolon. It is simply a mechanism for providing an empty

expression statement in places where this type of statement is required.

Consequently, it is called a null statement.

A compound statement consists of several individual statements

enclosed within a pair of braces { }.

The individual statements may themselves be expression

statements, compound statements or control statements. Thus, the

compound statement provides a capability for embedding statements

within other statements. Unlike an expression statement, a compound

statement does not end with a semicolon.

EXAMPLE - A typical compound statement is shown below.

pi = 3.141593;

circumference = 2. * pi * radius;

area = pi * radius * radius;

This particular compound statement consists of three assignment-

type expression statements, though it is considered a single entity within

the program in which it appears. Note that the compound statement does

not end with a semicolon &er the brace.

3.6 SYMBOLIC CONSTANTS IN C LANGUAGE

● When a constant is used at many places in a program ,due to some

reason if the value of that constant needs to be changed,then change at

every statement where that constant occurs in the program –so

modification of program becomes difficult.

● Symbolic constant is defined as below:

#define symbolic_name value

Example :

#define FLAG 1

#define PI 3.1415

50

Here,FLAG and PI are symbolic constants.For better readability,it is

advisable to use uppercase character in the naming of symbolic

constants.see there is no semicolon ‘;’ at the end.

Program:

/* program illustrating use of declaration,assignment of value to

variables.also explains how to use symbolic constants.

program to calculate area and circumference of a circle */

#include<stdio.h>

#include<conio.h>

#define PI 3.1415 /* NO SEMICOLON HERE */

void main ()

{

 float rad = 5; /*DECLARATION AND ASSIGNMENT*/

 float area,circum; /* DECLARATION OF VARIABLE*/

 area=PI*rad*rad;

 circum=2*PI*rad;

 printf(―AREA OF CIRCLE = %f\n”,area);

 printf(―CIRCUMFERENCE OF CIRCLE =%f\n”,circum);

 getch();

 clrscr();

}

OUTPUT :

AREA OF CIRCLE =78.537498

CIRCUMFERENCE OF CIRCLE =31.415001

3.7 UNIT END QUESTIONS

1. What is Charset? Explain with Example.

2. What is Keyword? Explain with Example.

3. What is the Use of sizeof() method ? Explain with Example.

4. Draw and Explain Hierarchy of DataTypes.

5. What is Variable? Explain with Example.

6. What is Expression? Explain Arithmetic Expression in Detail.

51

4I

OPERATORS AND EXPRESSIONS - I

Unit Structure

4I.0 Objectives

4I.1 Introduction

4I.2 Unary Operators

4I.3 Unit End Questions

4I.0 OBJECTIVES

 We have already seen that individual constants, variables, array

elements and function references can be joined together by various

operators to form expressions. We have also mentioned that C includes a

large number of operators which fall into several different categories. In

this chapter we examine certain of these categories in detail. Specifically,

we will see how arithmetic operators, unary operators, relational and

logical operators, assignment operators and the conditional operator are

used to form expressions. The data items that operators act upon are called

operands. Some operators require two operands, while others act upon

only one operand. Most operators allow the individual operands to be

expressions. A few operators permit only single variables as operands

(more about this later).

4I.1 INTRODUCTION

ARITHMETIC OPERATORS:

There are five arithmetic operators in C. They are

Operator Purpose

+ Addition

- Subtraction

* Multiplication

/ Division

% Remainder after integer division

The % operator is sometimes referred to as the modulus operator.

 There is no exponentiation operator in C. However, there is a

library function (POW) to carry out exponentiation. The operands acted

upon by arithmetic operators must represent numeric values. Thus, the

operands can be integer quantities, floating-point quantities or characters

(remember that character constants represent integer values, as determined

52

by the computer’s character set). The remainder operator (%) requires that

both operands be integers and the second operand be nonzero. Similarly,

the division operator (/) requires that the second operand be nonzero.

 Division of one integer quantity by another is referred to as integer

division. This operation always results in a truncated quotient (i.e., the

decimal portion of the quotient will be dropped). On the other hand, if a

division operation is carried out with two floating-point numbers, or with

one floating-point number and one integer, the result will be a floating-

point quotient.

EXAMPLE - Suppose that A and B are integer variables whose values are

10 and 3, respectively. Several arithmetic expressions involving these

variables - are shown below, together with their resulting values.

 Expression Value

A + B 13

A – B 7

A * B 30

A / B 3

A % B 1

 Notice the truncated quotient resulting from the division operation,

since both operands represent integer quantities.

 Also, notice the integer remainder resulting from the use of the

modulus operator in the last expression.

 Now suppose that A and B are floating-point variables whose

values are 12.5 and 2.0, respectively. Several - arithmetic expressions

involving these variables are shown below, together with their resulting

values.

Expression Value

A + B 14.5

A – B 10.5

A * B 25.0

A / B 6.25

4I.2 UNARY OPERATORS

 C includes a class of operators that act upon a single operand to

produce a new value. Such operators are known as unary operators. Unary

operators usually precede their single operands, though some unary

operators are written after their operands.

 Perhaps the most common unary operation is unary minus, where a

numerical constant, variable or expression is preceded by a minus sign.

(Some programming languages allow a minus sign to be included as a part

53

of a numeric constant. In C, however, all numeric constants are positive.

Thus, a negative number is actually an expression, consisting of the unary

minus operator, followed by a positive numeric constant.)

 Note that the unary minus operation is distinctly different from the

arithmetic operator which denotes subtraction (-). The subtraction operator

requires two separate operands.

EXAMPLE 3.10 Here are several examples which illustrate the use of the

unary minus operation

-743 -0X7FFF -0.2 -5E-8

-root1 -(x + Y) -3 *(x + y)

 In each case the minus sign is followed by a numerical operand

which may be an integer constant, a floating-point constant, a numeric

variable or an arithmetic expression.

 There are two other commonly used unary operators: The

increment operator, ++, and the decrement operator, —. The increment

operator causes its operand to be increased by 1, whereas the decrement

operator causes its operand to be decreased by 1. The operand used with

each of these operators must be a single variable.

Relational And Logical Operators:

There are four relational operators in C. They are

Operator Meaning

< less than

<= less than or equal to

> greater than

>= greater than or equal to

 These operators all fall within the same precedence group, which is

lower than the arithmetic and unary operators. The associativity of these

operators is left to right.

 Closely associated with the relational operators are the following

two equality operators,

Operator Meaning

= = equal to

!= not equal to

 The equality operators fall into a separate precedence group,

beneath the relational operators. These operators also have a left-to-right

associativity. These six operators are used to form logical expressions,

which represent conditions that are either true or false. The resulting

54

expressions will be of type integer, since true is represented by the integer

value 1 and false is represented by the value 0.

EXAMPLE - Suppose that i, j and k are integer variables whose values

are 1, 2 and 3, respectively. Several logical expressions involving these

variables are shown below.

Expression Intecmetation Value

I < j True 1

(i+j) >=k True 1

(j + k) > (i + 5) False 0

k I= 3 False 0

j == 2 True 1

In addition to the relational and equality operators, C contains two logical

operators (also called logical connectives). They are

Operator Meaning

&& And

II Or

These operators are referred to as logical and and logical or, respectively.

 The logical operators act upon operands that are themselves logical

expressions. The net effect is to combine the individual logical

expressions into more complex conditions that are either true or false. The

result of a logical and operation will be true only if both operands are true,

whereas the result of a logical or operation will be true if either operand is

true or if both operands are true. In other words, the result of a logical or

operation will be false only if both operands are false.

 In this context it should be pointed out that any nonzero value, not just 1,

is interpreted as true.

EXAMPLE - Suppose that i is an integer variable whose value is 7, f is a

floating-point variable whose value is 5.5, and c is a character variable that

represents the character ‘ w ‘ . Several complex logical expressions that

make use of these variables are shown below.

Expression Interpretation Value

(i >= 6) && (c == ‘w’) True 1

(i >= 6) 11 (c == 119 True 1

(f < 11) && (i > 100) False 0

(c != ‘p’) II ((i + f) <= 10) True 1

 The first expression is true because both operands are true. In the

second expression, both operands are again true; hence the overall

expression is true. The third expression is false because the second

55

operand is false. And finally, the fourth expression is true because the first

operand is true.

Assignment Operators :

 There are several different assignment operators in C. All of them

are used to form assignment expressions, which assign the value of an

expression to an identifier. \

 The most commonly used assignment operator is =.

Assignment expressions that make use of this operator are written in the

form

identifier = expression

where identifier generally represents a variable, and expression represents

a constant, a variable or a more complex expression.

EXAMPLE - Here are some typical assignment expressions that make use

of the = operator.

a=3

x=y

delta = 0.001

sum = a + b

area = length * width

 The first assignment expression causes the integer value 3 to be

assigned to the variable a, and the second assignment causes the value of y

to be assigned to x. In the third assignment, the floating-point value 0.001

is assigned to delta.

 The last two assignments each result in the value of an arithmetic

expression being assigned to a variable (i.e., the value of a + b is assigned

to sum, and the value of length * width is assigned to area).

The Conditional Operator:

 Simple conditional operations can be carried out with the

conditional operator (? :). An expression that makes use of the conditional

operator is called a conditional expression. Such an expression can be

written in place of the more traditional if -else statement.

A conditional expression is written in the form

expression 1 ? expression 2 : expression 3

56

 When evaluating a conditional expression, expression 1 is

evaluated first. If expression 1 is true (i.e., if its value is nonzero), then

expression 2 is evaluated and this becomes the value of the conditional

expression. However, if expression 1 is false (i.e., if its value is zero), then

expression 3is evaluated and this becomes the value of the conditional

expression. Note that only one of the embedded expressions (either

expression 2 or expression 3) is evaluated when determining the value of a

conditional expression.

EXAMPLE: In the conditional expression shown below, assume that i is

an integer variable.

(i < 0) ? 0 : 100

 The expression (i < 0) is evaluated first. If it is true (i.e., if the

value of i is less than 0), the entire conditional expression takes on the

value 0. Otherwise (if the value of i is not less than 0),the entire

conditional expression takes on the value 100.

In the following conditional expression, assume that f and g are floating-

point variables.

(f<g)?f :g

 This conditional expression takes on the value off if f is less than

g; otherwise, the conditional expression takes on the value of g. In other

words, the conditional expression returns the value of the smaller of the

two variables.

4I.3 UNIT END QUESTIONS

1. What is Operator ? Explain Arithmetic Operators in Detail.

2. What is Operator ? Explain Assignment Operators in Detail.

3. Write program to Create Calculator (+ - * /) in C

4. Explain conditional operator (? :) with Example.

57

4II

OPERATORS AND EXPRESSIONS – II

Unit Structure

4II.0 Objectives

4II.1 Introduction

4II.2 Operators Precedence In C

4II.2 Unit End Questions

4II.0 OBJECTIVES

 An operator is a symbol that tells the compiler to perform specific

mathematical or logical functions. C language is rich in built-in operators

and provides the following types of operators

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

We will, in this chapter, look into the way each operator works.

4II.1 INTRODUCTION

Arithmetic Operators:

 The following table shows all the arithmetic operators supported

by the C language. Assume variable A holds 20 and variable B holds 30

then

Operator Description Example

+ Adds two operands. A + B = 50

-

Subtracts second

operand from the first.

A - B = -10

* Multiplies both

operands.

A * B = 600

/ Divides numerator by

de-numerator.

B / A = 1.5

%

Modulus Operator and

remainder of after an

integer division.

B % A = 0

58

++

Increment operator

increases the integer

value by one.

A++ = 21

—

Decrement operator

decreases the integer

value by one.

14 A-- = 9

Relational Operators:

 The following table shows all the relational operators supported by C.

Assume variable A holds 20 and variable B holds 30 then

Operator Description Example

== Checks if the values of

two operands are equal

or not. If yes, then the

condition becomes

true.

(A == B) is not true.

!= Checks if the values of

two operands are equal

or not. If the values are

not equal, then the

condition becomes

true.

(A != B) is true.

> Checks if the value of

left operand is greater

than the value of right

operand. If yes, then

the condition becomes

true.

(A > B) is not true.

< Checks if the value of

left operand is less

than the value of right

operand. If yes, then

the condition becomes

true.

(A < B) is true.

>= Checks if the value of

left operand is greater

than or equal to the

value of right operand.

If yes, then the

condition becomes

true.

(A >= B) is not true.

<= Checks if the value of

left operand is less

than or equal to the

value of right operand.

If yes, then the

condition becomes

true.

(A <= B) is true.

59

Logical Operators:

 Following table shows all the logical operators supported by C

language. Assume variable A holds 1 and variable B holds 0, then

Operator Description Example

&& Called Logical AND

operator. If both the

operands are non-zero,

then the condition

becomes true.

(A && B) is false.

|| Called Logical OR

Operator. If any of the

two operands is non-

zero, then the

condition becomes

true.

(A || B) is true.

! Called Logical NOT

Operator. It is used to

reverse the logical

state of its operand. If

a condition is true,

then Logical NOT

operator will make it

false.

!(A && B) is true.

Bitwise Operators:

 Bitwise operator works on bits and perform bit-by-bit operation. The truth

tables for &|, and ^ is as follows

p Q p & q p | q p ^ q

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume A = 60 and B = 13 in binary format, they will be as follows “

A = 0011 1100

B = 0000 1101

————————

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

 The following table lists the bitwise operators supported by C.

Assume variable ‘A’ holds 60 and variable ‘B’ holds 13, then

60

Operator

Description Example

&

Binary AND Operator copies a bit to the

result if it exists in both operands.

(A & B) = 12,

i.e., 0000 1100

| Binary OR Operator copies a bit if it

exists in either operand

(A | B) = 61, i.e.,

0011

1101

^

Binary XOR Operator copies the bit if it

is set in one operand but not both.

(A ^ B) = 49, i.e.,

0011 0001

~ Binary One’s Complement Operator is

unary and has the effect of ‘flipping’

bits.

(~A) = ~(60),

i.e,. -0111101

<< Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right

operand.

A << 2 = 240 i.e.,

1111 0000

>> Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 = 15 i.e.,

0000 1111

Assignment Operators:

 The following table lists the assignment operators supported by the

C language.

Operator Description Example

= Simple assignment operator.

Assigns values from right side

operands to left side operand

C = A + B will assign

the value of A + B to C

+= Add AND assignment operator. It

adds the right operand to the left

operand and assign the result to the

left operand.

C += A is equivalent to

C = C + A

-= Subtract AND assignment operator.

It subtracts the right operand from

the left operand and assigns the

result to the left operand.

C -= A is equivalent to

C = C - A

*= Multiply AND assignment

operator. It multiplies the right

operand with the left operand and

assigns the result to the left

operand.

C *= A is equivalent to

C = C * A

/= Divide AND assignment operator.

It divides the left operand with the

right operand and assigns the result

to the left operand.

C /= A is equivalent to

C = C / A

61

%= Modulus AND assignment

operator. It takes modulus using

two operands and assigns the result

to the left operand.

C %= A is equivalent

to C = C % A

<<= Left shift AND assignment

operator.

C <<= 2 is same as C =

C << 2

>>= Right shift AND assignment

operator.

C >>= 2 is same as C =

C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C =

C & 2

^= Bitwise exclusive OR and

assignment operator.

C ^= 2 is same as C =

C ^ 2

|= Bitwise inclusive OR and

assignment operator.

C |= 2 is same as C = C

| 2

Misc Operators ↦ sizeof & ternary:

 Besides the operators discussed above, there are a few other

important operators including sizeof and ? : supported by the C Language.

Operator Description Example

sizeof() Returns the size of a

variable.

sizeof(a), where a is

integer, will return 4.

& Returns the address of

a variable.

&a; returns the actual

address of the variable.

* Pointer to a variable. *a;

? : Conditional

Expression.

If Condition is true ?

then value X :

otherwise value Y

4II.2 OPERATORS PRECEDENCE IN C

 Operator precedence determines the grouping of terms in an

expression and decides how an expression is evaluated. Certain operators

have higher precedence than others; for example, the multiplication

operator has a higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because

operator * has a higher precedence than +, so it first gets multiplied with

3*2 and then adds into 7.

 Here, operators with the highest precedence appear at the top of the

table, those with the lowest appear at the bottom. Within an expression,

higher precedence operators will be evaluated first.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

62

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<=

&= ^= |=

Right to left

Arithmetic Operator:

Example:

#include <stdio.h>

main() {

 int a = 21;

 int b = 10;

 int c ;

 c = a + b;

 printf(“Value of c is %d\n”, c);

 c = a - b;

 printf(“Value of c is %d\n”, c);

 c = a * b;

 printf(“Value of c is %d\n”, c);

 c = a / b;

 printf(“Value of c is %d\n”, c);

 c = a % b;

 printf(“Value of c is %d\n”, c);

 c = a++;

 printf(“Value of c is %d\n”, c);

 c = a—;

 printf(“Value of c is %d\n”, c);

}

Result :

Value of c is 31

63

Value of c is 11

Value of c is 210

Value of c is 2

Value of c is 1

Value of c is 21

Value of c is 22

Relational Operator

Example:

#include <stdio.h>

main() {

 int a = 21;

 int b = 10;

 int c ;

 if(a == b) {

printf(“a is equal to b\n”);

 } else {

printf(“a is not equal to b\n”);

 }

 if (a < b) {

printf(“a is less than b\n”);

 } else {

 printf(“a is not less than b\n”);

 }

 if (a > b) {

 printf(“a is greater than b\n”);

 } else {

 printf(“a is not greater than b\n”);

 }

 /* Lets change value of a and b */

 a = 5;

 b = 20;

 if (a <= b) {

 printf(“a is either less than or equal to b\n”);

 }

 if (b >= a) {

 printf(“b is either greater than or equal to b\n”);

 }

}

64

Result:

a is not equal to b

a is not less than b

a is greater than b

a is either less than or equal to b

b is either greater than or equal to b

Logical Operator

Example :

#include <stdio.h>

main() {

 int a = 5;

 int b = 20;

 int c ;

 if (a && b) {

 printf(“Condition is true\n”);

 }

 if (a || b) {

 printf(“Condition is true\n”);

 }

 /* lets change the value of a and b */

 a = 0;

 b = 10;

 if (a && b) {

 printf(“Condition is true\n”);

 } else {

 printf(“Condition is not true\n”);

 }

 if (!(a && b)) {

 printf(“Condition is true\n”);

 }

}

Result :

Condition is true

Condition is true

65

Bitwise Operator

Example:

#include <stdio.h>

main() {

 unsigned int a = 60; /* 60 = 0011 1100 */

 unsigned int b = 13; /* 13 = 0000 1101 */

 int c = 0;

 c = a & b; /* 12 = 0000 1100 */

 printf(“Value of c is %d\n”, c);

 c = a | b; /* 61 = 0011 1101 */

 printf(“Value of c is %d\n”, c);

 c = a ^ b; /* 49 = 0011 0001 */

 printf(“Value of c is %d\n”, c);

 c = ~a; /*-61 = 1100 0011 */

 printf(“Value of c is %d\n”, c);

 c = a << 2; /* 240 = 1111 0000 */

 printf(“Value of c is %d\n”, c);

 c = a >> 2; /* 15 = 0000 1111 */

 printf(“Value of c is %d\n”, c);

}

Result:

Value of c is 12

Value of c is 61

Value of c is 49

Value of c is -61

Value of c is 240

Value of c is 15

Assignment Operator

Example:

#include <stdio.h>

main() {

 int a = 21;

 int c ;

 c = a;

66

 printf(“= Operator Example, Value of c = %d\n”, c);

 c += a;

 printf(“+= Operator Example, Value of c = %d\n”, c);

 c -= a;

 printf(“-= Operator Example, Value of c = %d\n”, c);

 c *= a;

 printf(“*= Operator Example, Value of c = %d\n”, c);

 c /= a;

 printf(“/= Operator Example, Value of c = %d\n”, c);

 c = 200;

 c %= a;

 printf(“%= Operator Example, Value of c = %d\n”, c);

 c <<= 2;

 printf(“<<= Operator Example, Value of c = %d\n”, c);

 c >>= 2;

 printf(“>>= Operator Example, Value of c = %d\n”, c);

 c &= 2;

 printf(“&= Operator Example, Value of c = %d\n”, c);

 c ^= 2;

 printf(“^= Operator Example, Value of c = %d\n”, c);

 c |= 2;

 printf(“|= Operator Example, Value of c = %d\n”, c);

}

 Result:

 = Operator Example, Value of c = 21

 += Operator Example, Value of c = 42

 -= Operator Example, Value of c = 21

 *= Operator Example, Value of c = 441

 /= Operator Example, Value of c = 21

 %= Operator Example, Value of c = 11

 <<= Operator Example, Value of c = 44

 >>= Operator Example, Value of c = 11

 &= Operator Example, Value of c = 2

 ̂ = Operator Example, Value of c = 0

 |= Operator Example, Value of c = 2

67

Size of and ternary operator

Example:

#include <stdio.h>

main() {

 int a = 4;

 short b;

 double c;

 int* ptr;

 /* example of sizeof operator */

 printf(“Size of variable a = %d\n”, sizeof(a));

 printf(“Size of variable b = %d\n”, sizeof(b));

 printf(“Size of variable c= %d\n”, sizeof(c));

 /* example of & and * operators */

 ptr = &a; /* ‘ptr’ now contains the address of ‘a’*/

 printf(“value of a is %d\n”, a);

 printf(“*ptr is %d.\n”, *ptr);

 /* example of ternary operator */

 a = 10;

 b = (a == 1) ? 20: 30;

 printf(“Value of b is %d\n”, b);

 b = (a == 10) ? 20: 30;

 printf(“Value of b is %d\n”, b);

}

Result:

 Size of variable a = 4

 Size of variable b = 2

 Size of variable c= 8

 value of a is 4

 *ptr is 4.

 Value of b is 30

 Value of b is 20

Operators Precedence

Example:

#include <stdio.h>

main() { int a = 20;

 int b = 10;

 int c = 15;

 int d = 5;

 int e;

68

 e = (a + b) * c / d; // (30 * 15) / 5

 printf(“Value of (a + b) * c / d is : %d\n”, e);

 e = ((a + b) * c) / d; // (30 * 15) / 5

 printf(“Value of ((a + b) * c) / d is : %d\n” , e);

 e = (a + b) * (c / d); // (30) * (15/5)

 printf(“Value of (a + b) * (c / d) is : %d\n”, e);

 e = a + (b * c) / d; // 20 + (150/5)

printf(“Value of a + (b * c) / d is : %d\n” , e);

return 0;

}

Result:

Value of (a + b) * c / d is : 90

Value of ((a + b) * c) / d is : 90

Value of (a + b) * (c / d) is : 90

Value of a + (b * c) / d is : 50

C – Library functions:

 Library functions in C language are inbuilt functions which are

grouped together and placed in a common place called library.

 Each library function in C performs specific operation.

 We can make use of these library functions to get the pre-defined

output instead of writing our own code to get those outputs.

 These library functions are created by the persons who designed and

created C compilers.

 All C standard library functions are declared in many header files

which are saved as file_name.h.

 Actually, function declaration, definition for macros are given in all

header files.

 We are including these header files in our C program using

“#include<file_name.h>” command to make use of the functions those

are declared in the header files.

 When we include header files in our C program using

“#include<filename.h>” command, all C code of the header files are

included in C program. Then, this C program is compiled by compiler

and executed.

List Of Most Used Header Files In C Programming Language:

 Check the below table to know all the C library functions and header

files in which they are declared.

 Click on the each header file name below to know the list of inbuilt

functions declared inside them.

Header file Description

stdio.h This is standard input/output header file in which

Input/Output functions are declared

conio.h This is console input/output header file

69

string.h All string related functions are defined in this

header file

stdlib.h This header file contains general functions used

in C programs

math.h All maths related functions are defined in this

header file

time.h This header file contains time and clock related

functions

ctype.h All character handling functions are defined in

this header file

stdarg.h Variable argument functions are declared in this

header file

signal.h Signal handling functions are declared in this file

setjmp.h This file contains all jump functions

locale.h This file contains locale functions

errno.h Error handling functions are given in this file

assert.h This contains diagnostics functions

LIBRARY FUNCTIONS

The C language is accompanied by a number of library functions

that carry out various commonly used operations or calculations. These

library functions are not a part of the language per se, though all

implementations of the language include them. Some functions return a

data item to their access point; others indicate whether a condition is true

or false by returning a 1 or a 0, respectively; still others carry out specific

operations on data items but do not return anything. Features which tend

to be computer-dependent are generally written as library functions.

For example, there are library functions that carry out standard

input/output operations (e.g., read and write characters, read and write

numbers, open and close files, test for end of file, etc.), functions that

perform operations on characters (e.g., convert from lower- to uppercase,

test to see if a character is uppercase, etc.), functions that perform

operations on strings (e.g., copy a string, compare strings, concatenate

strings, etc.), and functions that carry out various mathematical

calculations (e.g., evaluate trigonometric, logarithmic and exponential

functions, compute absolute values, square roots, etc.). Other kinds of

library functions are also available.

Library functions that are functionally similar are usually grouped

together as (compiled) object programs in separate library files. These

library files are supplied as a part of each C compiler. All C compilers

contain similar groups of library functions, though they lack precise

standardization. Thus there may be some variation in the library functions

that are available in different versions of the language.

A typical set of library functions will include a fairly large number

of functions that are common to most C compilers, such as those shown in

Table 3-2 below. Within this table, the column labeled “type” refers to the

70

data type of the quantity that is returned by the function. The void entry

shown for function and indicates that nothing is returned by this function.

A library function is accessed simply by writing the function name,

followed by a list of arguments that represent information being passed to

the function. The arguments must be enclosed in parentheses and

separated by commas. The arguments can be constants, variable names, or

more complex expressions. The parentheses must be present, even if there

are no arguments.

A function that returns a data item can appear anywhere within an

expression, in place of a constant or an identifier (Le., in place of a

variable or an array element). A function that carries out operations on

data items but does not return anything can be accessed simply by writing

the function name, since this type of function reference constitutes an

expression statement.

Function Type Purpose

abs (i) Int Return the absolute value of i.

ceil (d)

double Round up to the next integer

value (the smallest integer that is

greater than or equal to d).

cos (d) double Return the cosine of d.

cosh (d) double Return the hyperbolic cosine of d.

exp(d)

double Raise e to the power d (e =

2.7182818 * is the base of the

natural (Naperian) system of

logarithms).

fabs (d) double Return the absolute value of d.

floor (d)

double Round down to the next integer

value (the largest integer that

does not exceed d).

fmod (d1,d2)

double Return the remainder (i.e., the

noninteger part of the quotient) of

d1 /d2, with same sign as d1 .

Getchar()

Int Enter a character from the

standard input device.

log (d) double Return the natural logarithm of d.

pow(d1,d2) double Return dl raised to the d2 power.

printf(...) Int Send data items to the standard

output device

putchar(c) Int Send a character to the standard

output device.

rand() Int Return a random positive integer.

sin (d) double Return the sine of d.

sqrt(d) double Return the square root of d

srand (u) Void Initialize the random number

generator

scanf(...) Int Enter data items from the

standard input device

71

tan (d) double Return the tangent of d.

toascii(c) Int Convert value of argument to

ASCII.

tolower (c) Int Convert letter to lowercase

toupper(c) . Int Convert letter to uppercase

Note: Type refers to the data type of the quantity that is returned by the

function

c - denotes a character-type argument

i - denotes an integer argument

d - denotes a double-precision argument

u - denotes an unsigned integer argument

EXAMPLE - Lowercase to Uppercase Character Conversion Here is a

complete C program that reads in a lowercase character, converts it to

uppercase and then displays the uppercase equivalent.

/* read a lowercase character and display its uppercase equivalent */

#include <stdio.h>

#include <ctype.h>

main ()

{

int lower, upper;

lower = getchar();

upper = toupper(lower);

putchar(upper);

}

This program contains three library functions: getchar, toupper and

putchar. The first two functions each return a single character (getchar

returns a character that is entered from the keyboard, and to upper returns

the uppercase equivalent of its argument). The last function (putchar)

causes the value of the argument to be displayed.

Notice that the last two functions each have one argument but the

first function does not have any arguments, as indicated by the empty

parentheses.

Also, notice the preprocessor statements #include <stdio. h> and

#include <ctype. h>, which appear at the start of the program. These

statements cause the contents of the files stdio. h and ctype .h to be

inserted into the program the compilation process begins. The information

contained in these files is essential for the proper functioning of the library

functions getchar, putchar and toupper.

4.II UNIT END QUESTIONS

1. What is the use of sizeof & ternary operator ?

2. Explain Operators Precedence in C .

3. Write a Program to Demonstrate Bitwise Operator

4. Write a Program to Demonstrate Logical Operator

5. What are the Library functions ? Explain with example.

72

5

DATA INPUT AND OUTPUT

Unit Structure

5.0 Objectives

5.1 Introduction

5.2 Unit End Questions

5.0 OBJECTIVES

We have already seen that the C language is accompanied by a

collection of library functions, which includes a number of input output

functions. In this chapter we will make use of six of these functions:

getchar, putchar, scanf, printf, gets and puts. These six fuctions permit the

transfer of information between the computer and the standard input

output devices (e.g., a keyboard and a TV monitor). The first two

functions, getchar and putchar, allow single characters to be transferred

into and out of the computer; scanf and printf are the most complicated,

but they permit the transfer of single characters, numerical values and

strings; gets and puts facilitate the input and output of strings. Once we

have learned how to use these functions, we will be able to write a number

of complete, though simple, C programs.

An input output function can be accessed from anywhere within a

program simply by writing the function name, followed by a list of

arguments enclosed in parentheses. The arguments represent data items

that are sent to the function. Some input output functions do not require

arguments, though the empty parentheses must still appear.

The names of those functions that return data items may appear

within expressions, as though each function reference were an ordinary

variable (e.g., c = getchar () ;), or they may be referenced as separate

statements (e.g., scanf (. . .) ;). Some functions do not return any data

items. Such functions are referenced as though they were separate

statements (e.g., putchar (. . .) ;).

5.1 INTRODUCTION

EXAMPLE - Here is an outline of a typical C program that makes use of

several input output routines from the standard C library.

/* sample setup illustrating the use of input/output library functions */

73

#include <stdio.h>

main ()

{

char c,d; /* declarations *I

float x,y;

int i , j ,0 k ;

c = getchar(); /* character input */

scanf ("%f", &x) ; /* floating-point input */

scanf ("%d %d" , &i,&j) ; /* integer input */

... /* action statements */

putchar(d); /* character output */

printf("%3d %7.4f", k, y); /* numerical output */

Input means to provide the program with some data to be used in

the program and Output means to display data on screen or write the data

to a printer or a file.

C programming language provides many built-in functions to read

any given input and to display data on screen when there is a need to

output the result.

In this tutorial, we will learn about such functions, which can be

used in our program to take input from user and to output the result on

screen.

All these built-in functions are present in C header files, we will

also specify the name of header files in which a particular function is

defined while discussing about it.

scanf() and printf() functions:

The standard input-output header file, named stdio.h contains the

definition of the functions printf() and scanf(), which are used to display

output on screen and to take input from user respectively.

#include<stdio.h>

void main()

{

74

 // defining a variable

 int i;

 /*

 displaying message on the screen

 asking the user to input a value

 */

 printf("Please enter a value..."); /*

 */

 reading the value entered by the user

 */

 scanf("%d", &i);

 /*

 displaying the number as output

 */

 printf("\nYou entered: %d", i);

}

When you will compile the above code, it will ask you to enter a

value. When you will enter the value, it will display the value you have

entered on screen.

You must be wondering what is the purpose of %d inside the

scanf() or printf() functions. It is known as format string and this informs

the scanf() function, what type of input to expect and in printf() it is used

to give a heads up to the compiler, what type of output to expect.

Format String Meaning

%d Scan or print an integer as signed decimal number

%f Scan or print a floating point number

%c To scan or print a character

%s To scan or print a character string. The scanning ends

at whitespace.

We can also limit the number of digits or characters that can be

input or output, by adding a number with the format string specifier, like

"%1d" or "%3s", the first one means a single numeric digit and the second

one means 3 characters, hence if you try to input 42, while scanf() has

"%1d", it will take only 4 as input. Same is the case for output.

In C Language, computer monitor, printer etc output devices are

treated as files and the same process is followed to write output to these

devices as would have been followed to write the output to a file.

NOTE : printf() function returns the number of characters printed by it,

and scanf() returns the number of characters read by it.

75

int i = printf("studytonight");

In this program printf("study tonight"); will return 12 as result, which will

be stored in the variable i, because studytonight has 12 characters.

getchar() & putchar() functions:

The getchar() function reads a character from the terminal and

returns it as an integer. This function reads only single character at a time.

You can use this method in a loop in case you want to read more than one

character. The putchar() function displays the character passed to it on the

screen and returns the same character. This function too displays only a

single character at a time. In case you want to display more than one

characters, use putchar() method in a loop.

#include <stdio.h>

void main()

{

 int c;

 printf("Enter a character");

 /*

 Take a character as input and

 store it in variable c

 */

 c = getchar();

 /*

 display the character stored

 in variable c

 */

 putchar(c);

}

When you will compile the above code, it will ask you to enter a value.

When you will enter the value, it will display the value you have entered.

THE gets AND puts FUNCTIONS:

C contains a number of other library functions that permit some

form of data transfer into or out of the computer. the gets and puts

functions, which facilitate the transfer of strings between the computer and

the standard input output devices. Each of these functions accepts a single

argument. The argument must be a data item that represents a string. (e.g.,

a character array). The string may include whitespace characters. In the

case of gets, the string will be entered from the keyboard, and will

76

terminate with a newline character (i.e., the string will end when the user

presses the Enter key).

The gets and puts functions offer simple alternatives to the use of

scanf and printf for reading and displaying strings, as illustrated in the

following example.

EXAMPLE - Reading and Writing a Line of Text

#include <stdio.h>

main() /* read and write a line of text */

{

char line[80];

gets(1ine);

puts(1ine);

}

This program utilizes gets and puts, rather than scanf and printf, to

transfer the line of text into and out of the computer.

gets() & puts() functions:

The gets() function reads a line from stdin(standard input) into the

buffer pointed to by str pointer, until either a terminating newline or EOF

(end of file) occurs. The puts() function writes the string str and a trailing

newline to stdout.

str → This is the pointer to an array of chars where the C string is stored.

(Ignore if you are not able to understand this now.)

#include<stdio.h>

void main()

{

 /* character array of length 100 */

 char str[100];

 printf("Enter a string");

 gets(str);

 puts(str);

 getch();

}

When you will compile the above code, it will ask you to enter a

string. When you will enter the string, it will display the value you have

entered.

Difference between scanf() and gets():

The main difference between these two functions is that scanf()

stops reading characters when it encounters a space, but gets() reads space

as character too.

77

If you enter name as Study Tonight using scanf() it will only read

and store Study and will leave the part after space. But gets() function will

read it completely

Single Character Input: the getchar Function:

The getchar function is a part of the standard C input/output

library. It returns a single character from a standard input device (typically

a keyboard). The function does not require any arguments, though a pair

of empty parentheses must follow the word getchar.

In general, a function reference would be written as:

character variable = getchar();

where character variable refers to some previously declared

character variable.

If an end-of-file condition is encountered when reading a character

with the getchar function, the value of the symbolic constant EOF will

automatically be returned. (This value will be assigned within the stdio.h

file. Typically, the EOF will be assigned the value -1). The detection of

EOF in this manner offers a convenient way to detect an end of file,

whenever and wherever it may occur. Appropriate corrective action may

then be taken.

The getchar function can also be used to read multi-character

strings by reading one character at a time within a multi-pass loop.

Single Character Output: the putchar Function:

Single characters can be displayed using the C library function

putchar. This function is complementary to the character input function

getchar.

The putchar function like getchar is a part of the standard C

input/output library. It transmits a single character to the standard output

device (the computer screen). The character being transmitted will be

represented as a character-type variable. It must be expressed as an

argument to the function, enclosed in parentheses, following the word

putchar.

In general, a function reference would be written as:

putchar(character variable)

where character variable refers to some previously declared character

variable.

A simple example demonstrating the use of getchar and putchar is given

below:

78

#include<stdio.h>

int main()

{

char c;

printf("n Please enter a character:");

c=getchar();

printf("n The character entered is: ");

putchar(c);

return 0;

}

In the above program, the statement c=getchar(); accepts a

character entered by the user and stores it in the variable c. The character

entered by the user can be anything from the C character set. The

statement putchar(c); prints the character stored in the variable c.

The putchar function can be used to output a string constant by

storing the string within a one-dimensional character-type array. Each

character can then be written separately within a loop. The most

convenient way to do this is to utilize the for statement, which we will

discuss in future.

Entering Input Data: the scanf Function:

Input data can be entered from a standard input device by means of

the C library function scanf. This function can be used to enter any

combination of numeric values, single characters and strings. The function

returns the number of data items that have been entered successfully.

In general terms, the scanf function is written as:

scanf(control string, arg1, arg2,.........,argN)

where control string refers to a string containing certain required

formatting information, and arg1,arg2,….,argN are arguments that

represent the individual data items. (Actually the arguments represent

pointers that indicate the addresses of the data items within the

computer’s memory. We will discuss pointers in greater detail in a future

article, but until then it would be helpful to remember the fact that the

79

arguments in the scanf function actually represent the addresses of the data

items being entered.)

The control string consists of the individual group of characters

called format specifiers, with one character group for each input data

item. Each character group must begin with a per cent sign (%) and be

followed by a conversion character which indicates the type of the data

item. Within the control string, multiple character groups can be

contiguous, or they can be separated by whitespace characters (ie, white

spaces, tabs or newline characters).

The most commonly used conversion characters are listed below:

Conversion Character Data type of input data

c character

d decimal integer

e floating point value

f floating point value

g floating point value

h short integer

i decimal, hexadecimal or octal

integer

o hexadecimal

x integer octal integer

s string

u unsigned decimal integer

[. . .] string which may include

whitespace characters

The arguments to a scanf function are written as variables or arrays

whose types match the corresponding character groups in the control

string. Each variable name must be preceded by an ampersand (&).

However, character array names do not begin with an ampersand. The

actual values of the arguments must correspond to the arguments in the

scanf function in number, type and order.

If two or more data items are entered, they must be separated by

whitespace characters. The data items may continue onto two or more

lines, since the newline character is considered to be a whitespace

character and can therefore separate consecutive data items.

80

Example 1:

#include<stdio.h>

int main()

{

char a[20];

int i;

float b;

printf(" n Enter the value of a, i and b");

scanf("%s %d %f", a, &i, &b);

return 0;

}

In the above program, within the scanf function, the control string

is "%s %d %f". It denotes three-character groups or format specifiers. The

first format specifier %s denotes that the first argument a represents a

string (character array), the second format specifier %d denotes that the

second argument i is an integer and the third format specifier %f denotes

that the third argument b is a floating point number.

Also note that the only argument not preceded by an ampersand

(&) is a since a denotes a character array.

The s-type conversion character applies to a string that is

terminated by a whitespace character. Therefore a string that includes

whitespace characters cannot be entered in this manner. To do so, there

are two ways:

1. The s-type conversion character is replaced by a sequence of characters

enclosed in square brackets, designated as [. . .]. Whitespace characters are

also included in the string so that a string that contains whitespaces may

be read.

`When the program is executed, successive characters will

continue to be read as long as each input character matches one of the

characters enclosed in the square brackets. The order of the characters in

the square brackets need not correspond to the order of the characters

being entered. As soon as an input character is encountered that does not

match one of the characters within the brackets, the scanf function will

81

stop reading any more characters and will terminate the string. A null

character will then automatically be added to the end of the string.

Example:

#include<stdio.h>

int main()

{

char line[80];

scanf(" %[ABCDEFGHIJKLMNOPQRSTUVWXYZ]", line);

printf("%s", line);

return 0;

}

If the input data is:

READING A STRING WITH WHITE SPACES

then the entire data will be assigned to the array line. However, if the input

is:

Reading A String With white Spaces

then only the letters in uppercase (R, A, S, W, S) will be assigned to line,

as all the characters in the control string are in uppercase.

2. To enter a string that includes whitespaces as well as uppercase and

lowercase characters we can use the circumflex, ie (^), followed by a

newline character within the brackets.

Example:

scanf("[^n]", line);

The circumflex causes the subsequent characters within the square

brackets to be interpreted in the opposite manner. Thus, when the program

is executed, characters will be read as long as a newline character is not

encountered.

Reading Numbers: Specifying Field Width:

The consecutive non-whitespace characters that define a data item

collectively define a field. To limit the number of such characters for a

data item, an unsigned integer indicating the field width precedes the

82

conversion character. The input data may contain fewer characters than

the specified field width. Extra characters will be ignored.

Example: If a and b are two integer variables and the following statement

is being used to read their values:

scanf("%3d %3d", &a, &b);

and if the input data is: 1 4

then a will be assigned 1 and b 4.

If the input data is 123 456 then a=123 and b=456.

If the input is 1234567, then a=123 and b=456. 7 is ignored.

If the input is 123 4 56 (space inserted by a typing mistake), then a=123

and b=4. This is because the space acts as a data item separator.

Example 1: C Output:

#include <stdio.h>

int main()

{

 // Displays the string inside quotations

 printf("C Programming");

 return 0;

}

Output:

C Programming

Example 2: Integer Output

#include <stdio.h>

int main()

{

 int testInteger = 5;

 printf("Number = %d", testInteger);

 return 0;

}

Example 2: Integer Output:

#include <stdio.h>

int main()

{

 int testInteger = 5;

83

 printf("Number = %d", testInteger);

 return 0;

}

Output

Number = 5

Example 3: float and double Output

#include <stdio.h>

int main()

{

 float number1 = 13.5;

 double number2 = 12.4;

 printf("number1 = %f\n", number1);

 printf("number2 = %lf", number2);

 return 0;

}

Output

number1 = 13.500000

number2 = 12.400000

Example 4: Print Characters:

#include <stdio.h>

int main()

{

 char chr = 'a';

 printf("character = %c.", chr);

 return 0;

}

Output

character = a

Example 5: Integer Input/Output:

#include <stdio.h>

int main()

{

 int testInteger;

 printf("Enter an integer: ");

 scanf("%d", &testInteger);

 printf("Number = %d",testInteger);

 return 0;

}

84

 Output

Enter an integer: 4

Number = 4

Example 6: Float and Double Input/Output:

#include <stdio.h>

int main()

{

 float num1;

 double num2;

 printf("Enter a number: ");

 scanf("%f", &num1);

 printf("Enter another number: ");

 scanf("%lf", &num2);

 printf("num1 = %f\n", num1);

 printf("num2 = %lf", num2);

 return 0;

}

Output

Enter a number: 12.523

Enter another number: 10.2

num1 = 12.523000

num2 = 10.200000

Example 7: C Character I/O:

#include <stdio.h>

int main()

{

 char chr;

 printf("Enter a character: ");

 scanf("%c",&chr);

 printf("You entered %c.", chr);

 return 0;

}

Output

Enter a character: g

You entered g.

85

Example 8: ASCII Value:

#include <stdio.h>

int main()

{

 char chr;

 printf("Enter a character: ");

 scanf("%c", &chr);

 // When %c is used, a character is displayed

 printf("You entered %c.\n",chr);

 // When %d is used, ASCII value is displayed

 printf("ASCII value is % d.", chr);

 return 0;

}

Output

Enter a character: g

You entered g.

ASCII value is 103.

Example 9 : I/O Multiple Values:

#include <stdio.h>

int main()

{

 int a;

 float b;

 printf("Enter integer and then a float: ");

 // Taking multiple inputs

 scanf("%d%f", &a, &b);

 printf("You entered %d and %f", a, b);

 return 0;

}

Output

Enter integer and then a float: -3

3.4

You entered -3 and 3.400000

Here's a list of commonly used C data types and their format specifiers.

Data Type Format Specifier

int %d

char %c

float %f

86

double %lf

short int %hd

unsigned int %u

long int %li

long long int %lli

unsigned long int %lu

unsigned long long int %llu

signed char %c

unsigned char %c

long double %Lf

Interactive (Conversational) Programming:

Many modern computer programs are designed to create an

interactive dialog between the computer and the person using the program

(the "user"). These dialogs usually involve some form of question-answer

interaction, where the computer asks the questions and the user provides

the answers, or vice versa. The computer and the user thus appear to be

carrying on some limited form of conversation.

In C, such dialogs can be created by alternate use of the scanf and

printf functions. The actual programming is straightforward, though

sometimes confusing to beginners, since the printf function is used both

when entering data (to create the computer's questions) and when

displaying results. On the other hand, scanf is used only for actual data

entry.

The basic ideas are illustrated in the following example.

EXAMPLE - Averaging Student Exam Scores This example presents a

simple, interactive C program that reads in a student's name and three

exam scores, and then calculates an average score. The data will be

entered interactively, with the computer asking the user for information

and the user supplying the information in a free format, as requested. Each

input data item will be entered on a separate line. Once all of the data have

been entered, the computer will compute the desired average and write out

all of the data (both the input data and the calculated average).

The actual program is shown below.

#include <stdio.h>

main() /* sample interactive program */

{

char name[20];

float score1 , score2, score3, avg;

printf("P1ease enter your name: "); /* enter name */

scanf(" %["\n]", name);

printf("P1ease enter the first score: "); /* enter 1st score */

scanf("%f", &score1);

87

printf("Please enter the second score: "); /* enter 2nd score */

scanf ("%f",&score2) ;

printf("P1ease enter the third score: "); /* enter 3rd score */

scanf("%f", &score3);

avg = (score1+score2+score3)/3; /* calculate avg */

printf ("\n\nName: %-s\n\n", name); /* write output */

printf("Score 1: %-5.1f\n", score1);

printf("Score 2: %-5.1f\n", score2);

printf("Score 3: %-5.1f\n\n", score3);

printf("Average: %-5.1f\n\n", avg);

}

Notice that two statements are associated with each input data

item. The first is a printf statement, which generates a request for the item.

The second statement, a scanf function, causes the data item to be entered

from the standard input device (i.e., the keyboard).

After the student's name and all three exam scores have been

entered, an average exam score is calculated. The input data and the

calculated average are then displayed, as a result of the group of printf

statements at the end of the program.

A typical interactive session is shown below. To illustrate the

nature of the dialog, the user's responses have been underlined.

Please enter your name : Robert Smith

Please enter the first score : 88

Please enter the second score : 62.3

Please enter the third score :

Name : Robert Smith

Score 1 : 88.0

Score 2 : 62.5

Score 3 : 90.0

Average : 80.2

5.2 UNIT END QUESTIONS

1. Explain scanf() and printf() functions in detail.

2. Explain getchar() & putchar() functions in detail.

3. Write a Difference between scanf() and gets()

4. Enlist most commonly used conversion characters in C

5. What is Format specifiers ? Explain with Example.

6. What is INTERACTIVE (CONVERSATIONAL) PROGRAMMING?

Explain

88

UNIT II

6

CONDITIONAL STATEMENTS

Unit Structure

6.0 Objectives

6.1 Introduction

6.2 Unit End Questions

6.0 OBJECTIVES

In most of the C programs we have encountered so far, the

instructions were executed in the same order in which they appeared

within the program. Each instruction was executed once and only once.

Programs of this type are unrealistically simple, since they do not

include any logical control structures.

Thus, these programs did not include tests to determine if certain

conditions are true or false, they did not require the repeated execution of

groups of statements, and they did not involve the execution of individual

groups of statements on a selective basis.

Most C programs that are of practical interest make extensive use

of features such as these.

For example, a realistic C program may require that a logical test

be carried out at some particular point within the program. One of several

possible actions will then be carried out, depending on the outcome of the

logical test. This is known as branching. There is also a special kind of

branching, called selection, in which one group of statements is selected

from several available groups. In addition, the program may require that a

group of instructions be executed repeatedly, until some logical condition

has been satisfied. This is known as looping. Sometimes the required

number of repetitions is known in advance; and sometimes the

computation continues indefinitely until the logical condition becomes

true.

All of these operations can be carried out using the various control

statements included in C. We will see how this is accomplished in this

chapter. The use of these statements will open the door to programming

problems that are much broader and more interesting than those

considered earlier.

89

6.1 INTRODUCTION

Decision Making:

Decision making structures require that the programmer specifies

one or more conditions to be evaluated or tested by the program, along

with a statement or statements to be executed if the condition is

determined to be true, and optionally, other statements to be executed if

the condition is determined to be false.

Show below is the general form of a typical decision making

structure found in most of the programming languages –

C programming language assumes any non-zero and non-null

values as true, and if it is either zero or null, then it is assumed as false

value.

90

C programming language provides the following types of decision

making statements.

Sr.No. Statement & Description

1 if statement

An if statement consists of a boolean expression

followed by one or more statements.

2 if...else statement

An if statement can be followed by an optional else

statement, which executes when the Boolean expression

is false.

4 switch statement

A switch statement allows a variable to be tested for

equality against a list of values.

5 nested switch statements

You can use one switch statement inside another switch

statement(s).

The ? : Operator

We have covered conditional operator ? : in the previous chapter

which can be used to replace if...else statements. It has the following

general form –

Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and

placement of the colon.

The value of a ? expression is determined like this −

● Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the

value of the entire ? expression.

● If Exp1 is false, then Exp3 is evaluated and its value becomes the

value of the expression.

Decision making in C:

Decision making is about deciding the order of execution of

statements based on certain conditions or repeat a group of statements

until certain specified conditions are met. C language handles decision-

making by supporting the following statements,

 if statement

 switch statement

 conditional operator statement (? : operator)

 goto statement

Decision making with if statement:

91

The if statement may be implemented in different forms depending

on the complexity of conditions to be tested. The different forms are,

1. Simple if statement

2. if....else statement

3. Nested if....else statement

4. Using else if statement

The following table shows all the relational operators supported by C.

Assume variable A holds 20 and variable B holds 30 then –

Relational Operators:

Operator Description Example

== Checks if the values of two

operands are equal or not. If yes,

then the condition becomes true.

(A == B) is not true.

> Checks if the value of left

operand is greater than the value

of right operand. If yes, then the

condition becomes true.

(A > B) is not true.

< Checks if the value of left

operand is less than the value of

right operand. If yes, then the

condition becomes true.

(A < B) is true.

>= Checks if the value of left

operand is greater than or equal to

the value of right operand. If yes,

then the condition becomes true.

(A >= B) is not true.

<= Checks if the value of left

operand is less than or equal to

the value of right operand. If yes,

then the condition becomes true.

(A <= B) is true.

Example

#include <stdio.h>

main() {

 int a = 19;

 int b = 9;

 int c ;

 if(a == b) {

 printf("a is equal to b \n");

 } else {

 printf("a is not equal to b \n");

 }

92

 if (a < b) {
 printf("a is less than b \n");

 } else {

 printf("a is not less than b \n");

 }

 if (a > b) {

 printf("a is greater than b \n");

 } else {

 printf("a is not greater than b \n");

 }

 /* Lets change value of a and b */

 a = 5;

 b = 20;

 if (a <= b) {

 printf("a is either less than or equal to b\n");

 }

 if (b >= a) {

 printf("b is either greater than or equal to b\n");

 }

}

Result:

a is not equal to b

a is not less than b

a is greater than b

a is either less than or equal to b

b is either greater than or equal to b

Logical Connectives:

C contains two logical connectives (also called logical operators),

&& (AND) and I I (OR), and the unary negation operator ! . The logical

connectives are used to combine logical expressions, thus forming more

complex expressions. The negation operator is used to reverse the

meaning of a logical expression (e.g., from true to false).

EXAMPLE 6.2:

Here are some logical expressions that illustrate the use of the logical

connectives and the negation

operator.

(count <= 100) && (ch1 != ' * ')

(balance < 1000.0) || (status == 'R')

(answer < 0) || ((answer > 5.0) && (answer <= 10.0))

! ((pay >= 1000.0) && (status == 's'))

93

Note that ch1 and status are assumed to be char-type variables in

these examples. The remaining variables are assumed to be numeric

(either integer or floating-point). Since the relational and equality

operators have a higher precedence than the logical operators, some of the

parentheses are not needed in the above expressions. Thus, we could have

written these expressions as

count <= 100 && ch1 != '*'

balance < 1000.0 || status == 'R'

answer < 0 || answer > 5.0 && answer <= 10.0

! (pay >= 1000.0 && status == 's')

It is a good idea, however, to include pairs of parentheses if there

is any doubt about the operator precedences. This is particularly true of

expressions that are relatively complicated, such as the third expression

above.

Following table shows all the logical operators supported by C language.

Assume variable A holds 1 and variable B holds 0, then

Operator Description Example

&& Called Logical AND operator. If

both the operands are non-zero, then

the condition becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any

of the two operands is non-zero,

then the condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. It is

used to reverse the logical state of its

operand. If a condition is true, then

Logical NOT operator will make it

false.

!(A && B) is true.

Example:

#include <stdio.h>

main() {

 int a = 5;

 int b = 20;

 int c ;

 if (a && b) {

 printf(“Condition is true\n");

 }

 if (a || b) {

 printf("Condition is true\n");

 }

 /* lets change the value of a and b */

 a = 0;

94

 b = 10;

 if (a && b) {

 printf("Condition is true\n");

 } else {

 printf("Condition is not true\n");

 }

 if (!(a && b)) {

 printf("Condition is true\n");

 }

}

Result:

Condition is true

Condition is true

Condition is not true

Condition is true

Simple if statement:

if statement is used for branching when a single condition is to be

checked. The condition enclosed in if statement decides the sequence of

execution of instruction. If the condition is true, the statements inside if

statement are executed, otherwise they are skipped. In C programming

language, any non zero value is considered as true and zero or null is

considered false.

Syntax of if statement

if (condition)

{

statements;

...

}

Example 1 :

#include <stdio.h>

void main()

 {

 int x, y;

 x = 15;

 y = 13;

 if (x > y)

 {

 printf("x is greater than y");

 }

}

95

OUTPUT:

x is greater than y

Flowchart:

Example 2 :- C program to print the square of a number if it is less

than 10.

#include<stdio.h>

 int main()

 {

 int n;

 printf("Enter a number:");

 scanf("%d",&n);

 if(n<10)

 {

 printf("%d is less than 10\n",n);

 printf("Square = %d\n",n*n);

 }

 return 0;

}

This program is an example of using if statement. A number is asked

from user and stored in variable n. If the value of n is less than 10, then its

square is printed on the screen. If the condition is false the program,

execution is terminated.

Output

Enter a number:6

6 is less than 10

Square = 36

if ... else statement :

if ... else statement is a two way branching statement. It consists of

two blocks of statements each enclosed inside if block and else block

respectively. If the condition inside if statement is true, statements inside

96

if block are executed, otherwise statements inside else block are executed.

Else block is optional and it may be absent in a program.

Syntax of if...else statement

if (condition)

{

 statements;

}

else

{

 statements;

}

Flowchart of if ... else statement

Example of if ... else statement

Example 2: C program to find if a number is odd or even.

#include<stdio.h>

 int main()

 {

 int n;

 printf("Enter a number:");

 scanf("%d",&n);

 if(n%2 == 0)

 printf("%d is even",n);

 else

 printf("%d is odd",n);

 return 0;

}

97

Here, a number is entered by user which is stored in n. The if

statement checks if the remainder of that number when divided by 2 is

zero or not. If the remainder is zero, the number is even which is printed

on the screen. If the remainder is 1, the number is odd.

Note: If there is only one statement inside if block, we don't need to

enclose it with curly brackets { }.

Output :

Enter a number:18

18 is even

Enter a number:33

33 is odd

if ... else if ... else statement:

It is used when more than one condition is to be checked. A block

of statement is enclosed inside if, else if and else part. Conditions are

checked in each if and else if part. If the condition is true, the statements

inside that block are executed. If none of the conditions are true, the

statements inside else block are executed. A if ... else if ... else statement

must have only one if block but can have as many else if block as

required. Else part is optional and may be present or absent.

Syntax of if...else if...else statement

if (condition 1)

{

 statements;

}

else if (condition 2)

{

 statements;

}

else if (condition n)

{

 statements;

}

else

98

{

 statements;

}

Flowchart of if ... else if ... else statement

Example of if ... else if ... else statement

Example 3: C program to find if a number is negative, positive or

zero.

#include<stdio.h>

 int main()

 {

 int n;

 printf("Enter a number:");

 scanf("%d",&n);

 if(n<0)

 printf("Number is negative");

 else if(n>0)

 printf("Number is positive");

 else

 printf("Number is equal to zero");

 return 0;

}

99

 In this program, a number is entered by user stored in variable n.

The if ... else if ... else statement tests two conditions:

1. n<0: If it is true, "Number is negative" is printed on the screen.

2. n>0: If it is true, "Number is positive" is printed on the screen.

If both of these conditions are false then the number is zero. So the

program will print "Number is zero".

Output

Enter a number:109

Number is positive

Enter a number:-56

Number is negative

Enter a number:0

Number is equal to zero

6.2 UNIT END QUESTIONS

1. Explain switch case with Example.

2. What is the difference Between Switch case and If-else Condition ?

3. Draw Flowchart for if ... else if ... else statement.

4. Write a C program to find if a number is negative, positive or zero.

100

7

LOOPS

Unit Structure

7.0 Objectives

7.1 Introduction

7.2 Unit End Questions

7.0 OBJECTIVES

A loop is used for executing a block of statements repeatedly until

a given condition returns false. In the previous tutorial we learned for

loop. In this guide we will learn while loop in C.

C – while loop:

Syntax of while loop:

while (condition test)

{

//Statements to be executed repeatedly

// Increment (++) or Decrement (--) Operation

}

Flow Diagram of while loop

C while loop

Example of while loo:

#include <stdio.h>

int main()

{

int count=1;

while (count <= 4)

{

printf("%d ", count);

count++;

}

return 0;

}

Output: 1 2 3 4

Step1: The variable count is initialized with value 1 and then it has been

tested for the condition.

step2: If the condition returns true then the statements inside the body of

while loop are executed else control comes out of the loop.

101

step3: The value of count is incremented using ++ operator then it has

been tested again for the loop condition.

Guess the output of this while loop ?

#include <stdio.h>

int main()

{

int var=1;

while (var <=2)

{

printf("%d ", var);

}

}

The program is an example of infinite while loop. Since the value

of the variable var is same (there is no ++ or – operator used on this

variable, inside the body of loop) the condition var<=2 will be true forever

and the loop would never terminate.

Examples of infinite while loop:

Example :

#include <stdio.h>

int main()

{

int var = 6;

while (var >=5)

{

printf("%d", var);

var++;

}

return 0;

}

Infinite loop: var will always have value >=5 so the loop would never

end.

do while loop in C:

The do while loop is a post tested loop. Using the do-while loop,

we can repeat the execution of several parts of the statements. The do-

while loop is mainly used in the case where we need to execute the loop at

least once. The do-while loop is mostly used in menu-driven programs

where the termination condition depends upon the end user.

do while loop syntax:

The syntax of the C language do-while loop is given below:

102

do{

//code to be executed

}while(condition);

Example:

#include<stdio.h>

#include<stdlib.h>

void main ()

{

 char c;

 int choice,dummy;

 do{

 printf("\n1. Print Hello\n2. Print demo program \n3. Exit\n");

 scanf("%d",&choice);

 switch(choice)

{

 case 1 :

 printf("Hello");

 break;

 case 2:

 printf("demo program");

 break;

 case 3:

 exit(0);

 break;

 default:

 printf("please enter valid choice");

 }

 printf("do you want to enter more?");

 scanf("%d",&dummy);

 scanf("%c",&c);

 }while(c=='y');

}

Output

Print Hello

Print Demo program

Exit

1

Hello

do you want to enter more?

y

Print Hello

Print demo program

Exit

2

Demo program

103

do you want to enter more?

N

Flowchart of do while loop

Program :-

#include<stdio.h>

int main(){

int i=1,number=0;

printf("Enter a number: ");

scanf("%d",&number);

do{

104

printf("%d \n",(number*i));

i++;

}while(i<=10);

return 0;

}

Output

Enter a number: 5

5

10

15

20

25

30

35

40

45

50

Enter a number: 10

10

20

30

40

50

60

70

80

90

100

for loop in C:

A for loop is a repetition control structure that allows you to

efficiently write a loop that needs to execute a specific number of times.

Syntax:

The syntax of a for loop in C programming language is −

for (init; condition; increment)

{

statement(s);

}

105

Here is the flow of control in a 'for' loop −

 The init step is executed first, and only once. This step allows you to

declare and initialize any loop control variables. You are not required

to put a statement here, as long as a semicolon appears.

 Next, the condition is evaluated. If it is true, the body of the loop is

executed. If it is false, the body of the loop does not execute and the

flow of control jumps to the next statement just after the 'for' loop.

 After the body of the 'for' loop executes, the flow of control jumps

back up to the increment statement. This statement allows you to

update any loop control variables. This statement can be left blank, as

long as a semicolon appears after the condition.

 The condition is now evaluated again. If it is true, the loop executes

and the process repeats itself (body of loop, then increment step, and

then again condition). After the condition becomes false, the 'for' loop

terminates.

Flowchart :

Example

106

#include <stdio.h>

int main () {

int a;

/* for loop execution */

for(a = 10; a < 20; a = a + 1){

printf("value of a: %d\n", a);

}

return 0;

}

When the above code is compiled and executed, it produces the

following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

The Infinite Loop:

A loop becomes an infinite loop if a condition never becomes

false. The for loop is traditionally used for this purpose. Since none of the

three expressions that form the 'for' loop are required, you can make an

endless loop by leaving the conditional expression empty.

#include <stdio.h>

int main () {

for(; ;) {

printf("This loop will run forever.\n");

}

return 0;

}

When the conditional expression is absent, it is assumed to be true.

You may have an initialization and increment expression, but C

programmers more commonly use the for(;;) construct to signify an

infinite loop.

NOTE − You can terminate an infinite loop by pressing Ctrl + C

keys.

107

nested loops in C:

C programming allows to use one loop inside another loop. The following

section shows a few examples to illustrate the concept.

Syntax

The syntax for a nested for loop statement in C is as follows –

for (init; condition; increment) {

 for (init; condition; increment) {

 statement(s);

}

statement(s);

}

Example:

The following program uses a nested for loop to find the prime numbers

from 2 to 100 –

#include <stdio.h>

int main () {

 /* local variable definition */

 int i, j;

 for(i = 2; i<100; i++) {

 for(j = 2; j <= (i/j); j++)

 if(!(i%j)) break; // if factor found, not prime

 if(j > (i/j)) printf("%d is prime\n", i);

}

 return 0;

}

Result :

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

108

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

C switch Statement: The switch statement allows us to execute one code

block among many alternatives.

 You can do the same thing with the if...else..if ladder. However,

the syntax of the switch statement is much easier to read and write.

Syntax of switch...case

switch (expression)

{

case constant1:

// statements

break;

case constant2:

// statements

break;

.

.

.

default:

// default statements

}

How does the switch statement work?:

The expression is evaluated once and compared with the values of

each case label.

If there is a match, the corresponding statements after the matching

label are executed. For example, if the value of the expression is equal to

constant2, statements after case constant2: are executed until break is

encountered.

109

If there is no match, the default statements are executed.

If we do not use break, all statements after the matching label are

executed. the default clause inside the switch statement is optional.

switch Statement Flowchart

Example:

#include <stdio.h>

int main()

{

 int i=2;

 switch (i)

{

 case 1:

 printf("Case1 ");

equal to

case constant 3?

110

 break;

 case 2:

 printf("Case2 ");

 break;

 case 3:

 printf("Case3 ");

 break;

 case 4:

 printf("Case4 ");

 break;

 default:

 printf("Default ");

 }

 return 0;

}

Output:

Case 2

7.3 UNIT END QUESTIONS

1. Explain While Loop with Example.

2. How to create infinite while loop ? Give any example

3. Give and Explain Syntax for Do-While Loop

4. Draw FlowChart for For loop. Also discuss syntax for same.

5. How does the switch statement work? Explain with Flowchart.

6. Write a C program to print prime numbers between 1 to 100 using

nested for loop.

111

8
FUNCTIONS

Unit Structure

8.0 Objectives

8.1 Introduction

8.2 Unit End Questions

8.0 OBJECTIVES

Function is a group of statements that together perform a task.

Every C program has at least one function, which is main(), and all the

most trivial programs can define additional functions.

You can divide up your code into separate functions. How you

divide up your code among different functions is up to you, but logically

the division usually is so each function performs a specific task.

A function declaration tells the compiler about a function's name,

return type, and parameters. A function definition provides the actual body

of the function.

The C standard library provides numerous built-in functions that

your program can call. For example, function strcat() to concatenate two

strings, function memcpy() to copy one memory location to another

location and many more functions.

A function is known with various names like a method or a sub-

routine or a procedure, etc.

Defining a Function:

The general form of a function definition in C programming language is as

follows:

return_type function_name(parameter list)

{

body of the function

}

A function definition in C programming language consists of a

function header and a function body. Here are all the parts of a function:

● Return Type: A function may return a value. The return_type is the

data type of the value the function returns. Some functions perform the

desired operations without returning a value. In this case, the

return_type is the keyword void.

112

● Function Name: This is the actual name of the function. The function

name and the parameter list together constitute the function signature.

● Parameters: A parameter is like a placeholder. When a function is

invoked, you pass a value to the parameter. This value is referred to as

actual parameter or argument. The parameter list refers to the type,

order, and number of the parameters of a function. Parameters are

optional; that is, a function may contain no parameters.

● Function Body: The function body contains a collection of statements

that define what the function does.

Example:

Following is the source code for a function called max(). This function

takes two parameters num1 and num2 and returns the maximum between

the two:

/* function returning the max between two numbers */

int max(int num1, int num2)

{

/* local variable declaration */

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

Function Declarations:

A function declaration tells the compiler about a function name

and how to call the function. The actual body of the function can be

defined separately.

A function declaration has the following parts:

return_type function_name(parameter list);

For the above defined function max(), following is the function

declaration:

int max(int num1, int num2);

Parameter names are not important in function declaration only

their type is required, so following is also valid declaration:

int max(int, int);

Function declaration is required when you define a function in one

source file and you call that function in another file. In such case you

should declare the function at the top of the file calling the function.

113

Calling a Function:

While creating a C function, you give a definition of what the

function has to do. To use a function, you will have to call that function to

perform the defined task.

When a program calls a function, program control is transferred to

the called function. A called function performs defined task, and when its

return statement is executed or when its function-ending closing brace is

reached, it returns program control back to the main program.

To call a function, you simply need to pass the required parameters

along with function name, and if function returns a value, then you can

store returned value. For example:

#include <stdio.h>

/* function declaration */

int max(int num1, int num2);

int main ()

{

/* local variable definition */

int a = 100;

int b = 200;

int ret;

/* calling a function to get max value */

ret = max(a, b);

printf(“Max value is : %d\n”, ret);

return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2)

{

/* local variable declaration */

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

Here max() function along with main() function and compiled the

source code. While running final executable, it would produce the

following result:

Max value is : 200

Function Arguments:

 If a function is to use arguments, it must declare variables that

accept the values of the arguments. These variables are called the formal

114

parameters of the function. The formal parameters behave like other local

variables inside the function and are created upon entry into the function

and destroyed upon exit.

While calling a function, there are two ways that arguments can be

passed to a function:

Function call by value:

The call by value method of passing arguments to a function

copies the actual value of an argument into the formal parameter of the

function. In this case, changes made to the parameter inside the function

have no effect on the argument. By default, C programming language uses

call by value method to pass arguments.

In general, this means that code within a function cannot alter the

arguments used to call the function. Consider the function swap()

definition as follows.

/* function definition to swap the values */

void swap(int x, int y)

{

int temp;

temp = x; /* save the value of x */

x = y; /* put y into x */

y = temp; /* put x into y */

return;

}

Now, let us call the function swap() by passing actual values as in

the following example:

#include <stdio.h>

/* function declaration */

void swap(int x, int y);

int main ()

{

/* local variable definition */

int a = 100;

int b = 200;

printf(“Before swap, value of a : %d\n”, a);

printf(“Before swap, value of b : %d\n”, b);

/* calling a function to swap the values */

swap(a, b);

printf(“After swap, value of a : %d\n”, a);

printf(“After swap, value of b : %d\n”, b);

115

return 0;

}

Let us put above code in a single C file, compile and execute it, it

will produce the following

Result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

Which shows that there is no change in the values though they had

been changed inside the function.

Function call by reference:

The call by reference method of passing arguments to a function

copies the address of an argument into the formal parameter. Inside the

function, the address is used to access the actual argument used in the call.

This means that changes made to the parameter affect the passed

argument.

To pass the value by reference, argument pointers are passed to the

functions just like any other value. So accordingly you need to declare the

function parameters as pointer types as in the following function swap(),

which exchanges the values of the two integer variables pointed to by its

arguments.

 /* function definition to swap the values */

void swap(int *x, int *y)

{

int temp;

temp = *x; /* save the value at address x */

*x = *y; /* put y into x */

y = temp; / put x into y */

return;

}

Let us call the function swap() by passing values by reference as in

the following example:

#include <stdio.h>

/* function declaration */

void swap(int *x, int *y);

int main ()

116

{

/* local variable definition */

int a = 100;

int b = 200;

 printf(“Before swap, value of a : %d\n”, a);

 printf(“Before swap, value of b : %d\n”, b);

/* calling a function to swap the values.

* &a indicates pointer to a ie. address of variable a and

* &b indicates pointer to b ie. address of variable b.

*/

swap(&a, &b);

printf(“After swap, value of a : %d\n”, a);

printf(“After swap, value of b : %d\n”, b);

return 0;

}

Let us put above code in a single C file, compile and execute it, it

will produce the following

Result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :100

After swap, value of b :200

Which shows that there is no change in the values though they had

been changed inside the function.

Passing Arguments to the main Function:

The function called at program startup is named main . The main

function can be defined with no parameters or with two parameters (for

passing command-line arguments to a program when it begins executing).

The two parameters are referred to here as argc and argv, though any

names can be used because they are local to the function in which they are

declared. A main function has the following syntax:

int main(void) { . . . }

int main(int argc, char *argv[]) { . . . })

argc

 The number of arguments in the command line that invoked the program.

The value of argc is nonnegative.

argv

Pointer to an array of character strings that contain the arguments, one per

string. The value argv[argc] is a null pointer.

117

If the value of argc is greater than zero, the array members argv[0]

through argv[argc - 1] inclusive contain pointers to strings, which are

given implementation-defined values by the host environment before

program startup. The intent is to supply the program with information

determined before program startup from elsewhere in the host

environment. If the host environment cannot supply strings with letters in

both uppercase and lowercase, the host environment ensures that the

strings are received in lowercase.

If the value of argc is greater than zero, the string pointed to by

argv[0] represents the program name; argv[0][0] is the null character if the

program name is not available from the host environment. If the value of

argc is greater than one, the strings pointed to by argv[1] through

argv[argc - 1] represent the program parameters.

The parameters argc and argv, and the strings pointed to by the

argv array, can be modified by the program and keep their last-stored

values between program startup and program termination.

In the main function definition, parameters are optional. However,

only the parameters that are defined can be accessed.

Function Prototype:

A function prototype is a function declaration that specifies the

data types of its arguments in the parameter list. The compiler uses the

information in a function prototype to ensure that the corresponding

function definition and all corresponding function declarations and calls

within the scope of the prototype contain the correct number of arguments

or parameters, and that each argument or parameter is of the correct data

type.

Prototypes are syntactically distinguished from the old style of

function declaration. The two styles can be mixed for any single function,

but this is not recommended. The following is a comparison of the old and

the prototype styles of declaration:

Old style:

 Functions can be declared implicitly by their appearance in a call.

 Arguments to functions undergo the default conversions before the

call.

 The number and type of arguments are not checked.

Prototype style:

 Functions are declared explicitly with a prototype before they are

called. Multiple declarations must be compatible; parameter types

must agree exactly.

118

 Arguments to functions are converted to the declared types of the

parameters.

 The number and type of arguments are checked against the prototype

and must agree with or be convertible to the declared types. Empty

parameter lists are designated using the void keyword.

 Ellipses are used in the parameter list of a prototype to indicate that a

variable number of parameters are expected.

Prototype Syntax:

A function prototype has the following syntax:

function-prototype-declaration:

declaration-specifiers(opt) declarator;

The declarator includes a parameter type list, which can consist of a

single parameter of type void . In its simplest form, a function prototype

declaration might have the following format:

storage_class(opt) return_type(opt) function_name (

type(1) parameter(1), ..., type(n) parameter(n));

Consider the following function definition:

char function_name(int lower, int *upper, char (*func)(), double y)

{ }

The corresponding prototype declaration for this function is:

char function_name(int lower, int *upper, char (*func)(), double y);

A prototype is identical to the header of its corresponding function

definition specified in the prototype style, with the addition of a

terminating semicolon (;) or comma (,), as appropriate (depending on

whether the prototype is declared alone or in a multiple declaration).

Function prototypes need not use the same parameter identifiers as

in the corresponding function definition because identifiers in a prototype

have scope only within the identifier list. Moreover, the identifiers

themselves need not be specified in the prototype declaration; only the

types are required.

For example, the following prototype declarations are equivalent:

char function_name(int lower, int *upper, char (*func)(), double y);

char function_name(int a, int *b, char (*c)(), double d);

char function_name(int, int *, char (*)(), double);

Though not required, identifiers should be included in prototypes

to improve program clarity and increase the type-checking capability of

the compiler.

119

Variable-length argument lists are specified in function prototypes

with ellipses. At least one parameter must precede the ellipses. For

example:

char function_name(int lower, ...);

Data-type specifications cannot be omitted from a function prototype.

Explanation:

It is now considered good form to use function prototypes for all

functions in your program. A prototype declares the function name, its

parameters, and its return type to the rest of the program prior to the

function’s actual declaration. To understand why function prototypes are

useful, enter the following code and run it:

#include <stdio.h>

void main()

{

printf(“%d\n”,add(3));

}

int add(int i, int j)

{

return i+j;

}

This code compiles on many compilers without giving you a

warning, even though add expects two parameters but receives only one.

It works because many C compilers do not check for parameter matching

either in type or count. You can waste an enormous amount of time

debugging code in which you are simply passing one too many or too few

parameters by mistake. The above code compiles properly, but it produces

the wrong answer.

To solve this problem, C lets you place function prototypes at the

beginning of (actually, anywhere in) a program. If you do so, C checks the

types and counts of all parameter lists. Try compiling the following:

#include <stdio.h>

 int add (int,int); /* function prototype for add */

 void main()

{

 printf(“%d\n”,add(3));

}

 int add(int i, int j)

{

 return i+j;

}

120

The prototype causes the compiler to flag an error on the printf

statement. Place one prototype for each function at the beginning of your

program. They can save you a great deal of debugging time, and they also

solve the problem you get when you compile with functions that you use

before they are declared. For example, the following code will not

compile:

#include <stdio.h>

void main()

{

 printf(“%d\n”,add(3));

}

float add(int i, int j)

{

 return i+j;

}

Why, you might ask, will it compile when add returns an int but

not when it returns a float? Because older C compilers default to an int

return value. Using a prototype will solve this problem. “Old style” (non-

ANSI) compilers allow prototypes, but the parameter list for the prototype

must be empty. Old style compilers do no error checking on parameter

lists.

C –Recursion:

Recursion is the process of repeating items in a self-similar way. In

programming languages, if a program allows you to call a function inside

the same function, then it is called a recursive call of the function.

void

recursion()function calls itself

}

 int main() {

recursion();

}

The C programming language supports recursion, i.e., a function to

call itself. But while using recursion, programmers need to be careful to

define an exit condition from the function, otherwise it will go into an

infinite loop.

Recursive functions are very useful to solve many mathematical

problems, such as calculating the factorial of a number, generating

Fibonacci series, etc.

Number Factorial:

#include <stdio.h>

unsigned long long int factorial(unsigned int i) {

121

 if(i <= 1)

 }

 return 1;

}

return i * factorial(i - 1);

}

int main() {

 int i = 12;

 printf(“Factorial of %d is %d\n”, i, factorial(i));

 return 0;

Result

Factorial of 12 is 479001600

Fibonacci Series:

#include <stdio.h>

int fibonacci(int i) {

 if(i == 0) {

 return 0;

 }

 if(i == 1) {

 return 1;

 }

 return fibonacci(i-1) + fibonacci(i-2);

}

int main() {

 int i;

 for (i = 0; i < 10; i++) {

 printf("%d\t\n", fibonacci(i));

 }

 return 0;

}

 When the above code is compiled and executed, it produces the

following result −

0

1

1

2

3

5

122

8

13

21

34

C Standard Library Functions:

C Standard library functions or simply C Library functions are

inbuilt functions in C programming.

The prototype and data definitions of these functions are present in

their respective header files. To use these functions we need to include the

header file in our program.

For example,

If you want to use the printf() function, the header file <stdio.h> should be

included.

#include <stdio.h>

int main()

{

 printf("Catch me if you can.");

}

If you try to use printf() without including the stdio.h header file, you will

get an error.

Advantages of Using C library functions:

1. They work:

One of the most important reasons you should use library functions

is simply because they work. These functions have gone through multiple

rigorous testing and are easy to use.

2. The functions are optimized for performance:

Since, the functions are "standard library" functions, a dedicated

group of developers constantly make them better. In the process, they are

able to create the most efficient code optimized for maximum

performance.

3. It saves considerable development time:

Since the general functions like printing to a screen, calculating the

square root, and many more are already written. You shouldn't worry

about creating them once again.

123

4. The functions are portable:

With ever-changing real-world needs, your application is expected

to work every time, everywhere. And, these library functions help you in

that they do the same thing on every computer.

Example: Square root using sqrt() function

Suppose, you want to find the square root of a number.

To can compute the square root of a number, you can use the sqrt() library

function. The function is defined in the math.h header file.

#include <stdio.h>

#include <math.h>

int main()

{

 float num, root;

 printf("Enter a number: ");

 scanf("%f", &num);

 // Computes the square root of num and stores in root.

 root = sqrt(num);

 printf("Square root of %.2f = %.2f", num, root);

 return 0;

}

When you run the program, the output will be:

Enter a number: 12

Square root of 12.00 = 3.46

Library Functions in Different Header Files C Header Files

<assert.h> Program assertion functions

<ctype.h> Character type functions

<locale.h> Localization functions

<math.h> Mathematics functions

<setjmp.h> Jump functions

<signal.h> Signal handling functions

<stdarg.h> Variable arguments handling functions

<stdio.h> Standard Input/Output functions

<stdlib.h> Standard Utility functions

<string.h> String handling functions

<time.h> Date time functions

124

Return Type of a C function:

Every C function must specify the type of data that is being

generated. For example, the max function above returns a value of type

"double". Inside the function, the line "return X;" must be found, where X

is a value or variable containing a value of the given type.

The return statement

When a line of code in a function that says: "return X;" is

executed, the function "ends" and no more code in the function is

executed. The value of X (or the value in the variable represented by X)

becomes the result of the function.

8.2 UNIT END QUESTIONS

1. What is Function ? Explain with Example.

2. What is Function ? What is Function call ?

3. What is the Difference between Call by Value & Call by refrence.

4. What is function Prototype ?

5. What is Recursion ? Explain with Example.

6. Write a C Program to Print Factorial Of User Entered Number.

7. What are the Advantages of C library functions?

125

Unit III

9

PROGRAM STRUCTURE

Unit Structure

9.1 Storage classes, automatic variables, external variables, static variable

9.2 Multi-File Programs

9.3 More Library Functions

9.4 Unit End Questions

9.1 STORAGE CLASSES

9.1.1 Introduction:

Storage Classes are used to describe the various features of a

variable or function. These features include the scope, visibility and life-

time which help to trace the existence of a variable during the runtime of a

program.

9.1.2 C language uses four storage classes, namely:

1. Auto: This is the default storage class for all variables declared inside a

function or a block. Hense, the keyword auto is rarely used while writing

programs in C language. Auto variables can be only accessed within the

block or function they have been declared and not outside them. These can

be accessed within nested blocks within the parent block or function in

which the auto variable was declared. They can be accessed outside their

scope as well using the concept of pointers given here by pointing to the

exact memory location where the variables resides. They are assigned a

garbage value by default whenever they are declared.

2. Extern: Extern storage class simply shows that the variable is defined

elsewhere and not within the same block where it is used. The value is

assigned to it in a different block and this can be overwritten or changed in

a different block as well. So an extern variable is a global variable

initialized with a legal value where it is declared in order to be used

elsewhere. It can be accessed within any function/block. A normal global

variable can be made extern as well by placing the ‗extern‘ keyword

before its declaration or definition in any function or block. This basically

signifies that we are not initializing a new variable but instead we are

using the global variable only. Then purpose of using extern variables is

that they can be accessed between two different files which are part of a

large program.

126

3. Static: This storage class is used to declare static variables which are

used while writing programs in C language. Static variables have a

property of preserving their value even after they are out of their scope.

Hense, static variables preserve their previous value in their previous

scope and are not initialized again in the new scope. we can say that they

are initialized only once and exist till the end of the program. Hence, no

new memory is allocated because they are not re-declared. Their scope is

local to the function to which they were defined. Global static variables

can be accessed anywhere in the program. By default, 0 value assigned to

them by the compiler.

4. Register: This storage class declares register variables which have the

same functionality as auto variables. Here, the only difference is that the

compiler tries to store these variables in the register of the microprocessor

if a free register is available. This makes the use of register variables to be

much faster than that of the variables stored in the memory during the

program runtime. If a free register is unavailable, these are then stored in

the memory only. Normally few variables which are to be accessed very

frequently in a program are declared with the register keyword which

improves the running time of the program. An important point to be noted

here is that we cannot obtain the address of a register variable using

pointers.

To specify the storage class for a variable, the following syntax is to be

followed:

Syntax:

storage_class var_data_type var_name;

// A C program to demonstrate different storage

// classes

#include <stdio.h>

// declaring the variable which is to be made extern

// an intial value can also be initialized to a

int a;

void autoStorageClass()

{

 printf("\nDemonstrating auto class\n\n");

 // declaring an auto variable (simply

 // writing "int x=32;" works as well)

 auto int x = 32;

 // printing the auto variable 'x'

127

 printf("Value of the variable 'x'"

 " declared as auto: %d\n",

x);

 printf("--------------------------------");

}

void registerStorageClass()

{

 printf("\nDemonstrating register class\n\n");

 // declaring a register variable
 register char c = 'G';

 // declaring a register variable
 register char c = 'G';

 // printing the register variable 'c'

 printf("Value of the variable 'c'"

 " declared as register: %d\n",

 c);

 printf("--------------------------------");

}

void externStorageClass()

{

 printf("\nDemonstrating extern class\n\n");

 // telling the compiler that the variable

 // z is an extern variable and has been

 // defined elsewhere (above the main

 // function)

 extern int a;

 // printing the extern variables 'a'

 printf("Value of the variable 'a'"

 " declared as extern: %d\n",

 a);

 // value of extern variable a modified

 a = 2;

 // printing the modified values of

 // extern variables 'a'

 printf("Modified value of the variable 'x'"
 " declared as extern: %d\n",

 a);

128

 printf("--------------------------------");

}

void staticStorageClass()

{

 int i = 0;

 printf("\nDemonstrating static class\n\n");

 // using a static variable 'y'

 printf("Declaring 'y' as static inside the loop.\n"

 "But this declaration will occur only"

 " once as 'y' is static.\n"
 "If not, then every time the value of 'y' "

 "will be the declared value 5"
 " as in the case of variable 'p'\n");

 printf("\nLoop started:\n");

 for (i = 1; i < 5; i++) {

 // Declaring the static variable 'y'

 static int y = 5;

 // Declare a non-static variable 'p'

 int p = 10;

 // Incrementing the value of y and p by 1

 y++;

 p++;

 // printing value of y at each iteration
 printf("\nThe value of 'y', "

 "declared as static, in %d "

 "iteration is %d\n",

 i, y);

 // printing value of p at each iteration
 printf("The value of non-static variable 'p', "

 "in %d iteration is %d\n",

 i, p);

}
 printf("\nLoop ended:\n");

 printf("--------------------------------");

}

int main()

{

129

 printf("A program to demonstrate"

 " Storage Classes in C\n\n");

 // To demonstrate auto Storage Class

 autoStorageClass();

 // To demonstrate register Storage Class

 registerStorageClass();

 // To demonstrate extern Storage Class

externStorageClass();

 // To demonstrate static Storage Class

 staticStorageClass();

 // exiting
 printf("\n\nStorage Classes demonstrated");

 return 0;

}

Output:

A program to demonstrate Storage Classes in C

Demonstrating

auto class

Value of the variable

‘x’ declared

‘as auto: 32

Demonstrating

register class

Value of the variable

‘c’ declared

 ‘as register: 71

Demonstrating

extern class

Value of the variable

‘x’ declared

as extern:

Demonstrating

extern class

Value of the variable

‘x’ declared

as extern x‘ 0

Modified value of the

variable

declared as

extern::

2

Demonstrating static class

Declaring ‘y’ as static inside the loop. But this declaration will occur only

once as ‘y’ is static.If not, then every time the value of ‘y’ will be the

declared value 5 as in the case of variable ‘p’
Loop started:
The value of ‘y’, declared as static, in 1 iteration is 6 The value of non
static variable ‘p’, in 1 iteration is 11
The value of ‘y’, declared as static, in 1 iteration is 6 The value of non
static variable ‘p’, in 1 iteration is 11

Loop ended:

130

9.2 MULTI-FILE PROGRAMS

In a program consisting of many different functions, it is

convenient to place each function in a separate file, and then use the make

utility to compile each file separately and link them together to produce an

executable.

There are a some rules associated with multi-file programs. As a

given file is initially compiled separately, all symbolic constants which

appear in that file must be defined at its start. All referenced library

functions must be accompanied by the appropriate references to header

files. Any referenced user-defined functions must have their prototypes at

the start of the file. all global variables used in the file must be declared at

its start. This usually means that definitions for common symbolic

constants, header files for common library functions, prototypes for

common user-defined functions, and declarations for common global

variables will appear in multiple files. Note that a given global variable

can only be initialized in one of its declaration statements, which is

regarded as the true declaration of that variable . Indeed, the other

declarations, which we shall term definitions, must be preceded by the

keyword extern to distinguish them from the true declaration.

As an example, the program printfact.c, break it up into multiple

files, each containing a single function. The files in question are called

main.c and fact.c. The listings of the two files which make up the program

are as follows:

/* main.c */

/*

 Program to print factorials of all integers

 between 0 and 20

*/

#include <stdio.h>

/* Prototype for fucntion factorial() */

void factorial();

/* Global variable declarations */

int j;

double fact;

int main()

{

 /* Print factorials of all integers between 0 and 10 */

 for (j = 0; j <= 20; ++j)

 {

 factorial();

131

 printf("j = %3d factorial(j) = %12.3e\n", j, fact);

}

 return 0;

}

 and

/* fact.c */

/*

 Function to evaluate factorial (in floating point form)

 of non-negative integer j. Result stored in variable fact.

*/

#include <stdio.h>

#include <stdlib.h>

/* Global variable definitions */

extern int j;

extern double fact;

void factorial()

{

 int count;

/* Abort if j is negative integer */

if (j < 0)

{

 printf("\nError: factorial of negative integer not defined\n");

 exit(1);

}

/* Calculate factorial */

for (count = j, fact = 1.; count > 0; --count) fact *= (double) count;

return;

}

9.3 MORE LIBRARY FUNCTIONS

We can make use of these library functions to get the pre-defined

output instead of writing our own code to get those outputs.

 These library functions are created by the persons who designed and

created C compilers.

 All C standard library functions are declared in many header files

which are saved as file_name.h.

 Actually, function declaration, definition for macros are given in all

header files.

132

 We are including these header files in our C program using

‘‘#include<file_name.h>’’ command to make use of the functions

those are declared in the header files.

 When we include header files in our C program using

‘‘#include<filename.h>’’ command, all C code of the header files are

included in C program. Then, this C program is compiled by compiler

and executed.

List of most used header files in C programming language:

Check the below table to know all the C library functions and

header files in which they are declared.

Header file Description
stdio.h

This is standard input/output header

file in which Input/Output functions

are declared
conio.h

This is console input/output header

file

string.h

All string related functions are

defined in this header file

stdlib.h

This header file contains general

functions used in C programs

math.h

All maths related functions are

defined in this header file

time.h

This header file contains time and

clock related functions

ctype.h All character handling functions are

defined in this header file
stdarg.h

Variable argument functions are

declared in this header file

signal.h

Signal handling functions are

declared in this file

setjmp.h

This file contains all jump functions

locale.h This file contains locale functions

errno.h

Error handling functions are given in

this file

assert.h This contains diagnostics functions

9.4 UNIT END QUESTIONS

1. Explain Automatic storage class specifier.

2. Explain static storage class

3. Explain Register storage class

4. Explain extern storage class

133

10

PREPROCESSOR

Unit structure

10.1 Preprocessor

10.1.1 Introduction

10.2 Features

10.3 #define and #include

10.3.1#define

10.3.2 #include

10.4 Directives and Macros

10.5 Unit End Questions

10.1 PREPROCESSOR

10.1.1 Introduction:

Preprocessor was introduced to C around 1973 at the urging of

Alan Snyder and also in recognition of the usefulness of the file-inclusion

mechanisms available in BCPL and PL/I. Its original version allowed only

to include files and perform simple string replacements: #include and

#define of parameterless macros. Soon after that, it was extended, mostly

by Mike Lesk and then by John Reiser, to incorporate macros with

arguments and conditional compilation.[2]

The C Preprocessor is not a part of the compiler, but is a separate

step in the compilation process. In simple terms, a C Preprocessor is just a

text substitution tool and it instructs the compiler to do required pre-

processing before the actual compilation.

10.2 FEATURES

All preprocessor commands begin with a hash symbol (#). It must

be the first nonblank character, and for readability, a preprocessor

directive should begin in the first column.

The C preprocessor provides four separate facilities:

 Inclusion of header files. These are files of declarations that can be

substituted into your program.

 Macro expansion. You can define macros, which are abbreviations for

arbitrary fragments of C code, and then the C preprocessor will replace

the macros with their definitions throughout the program.

134

 Conditional compilation. Using special preprocessing directives, you

can include or exclude parts of the program according to various

conditions.

 Line control. If you use a program to combine or rearrange source files

into an intermediate file which is then compiled, you can use line

control to inform the compiler of where each source line originally

came from.

10.3 #DEFINE AND #INCLUDE

10.3.1#define Directive (macro definition):

Description:

In the C Programming Language, the #define directive allows the

definition of macros within your source code. These macro definitions

allow constant values to be declared for use throughout your code.

Macro definitions are not variables and cannot be changed by your

program code like variables. You generally use this syntax when creating

constants that represent numbers, strings or expressions.

Syntax:

The syntax for creating a constant using #define in the C language is:

#define CNAME value

OR

#define CNAME (expression)

CNAME

The name of the constant. Most C programmers define their constant

names in uppercase, but it is not a requirement of the C Language.

value

The value of the constant.

expression

Expression whose value is assigned to the constant. The expression must

be enclosed in parentheses if it contains operators.

Note:

 Do NOT put a semicolon character at the end of #define statements.

This is a common mistake.

Example

Let's look at how to use #define directives with numbers, strings, and

expressions.

135

Number

The following is an example of how you use the #define directive to

define a numeric constant:

#define AGE 10

In this example, the constant named AGE would contain the value of 10.

String:

You can use the #define directive to define a string constant.

For example:

#define NAME "TechOnTheNet.com"

In this example, the constant called NAME would contain the value of

"TechOnTheNet.com".

Below is an example C program where we define these two constants:

#include <stdio.h>

#define NAME "TechOnTheNet.com"

#define AGE 10

int main()

{

 printf("%s is over %d years old.\n", NAME, AGE);

 return 0;

}

This C program would print the following:

TechOnTheNet.com

10.3.2 The `#include' Directive:

Both user and system header files are included using the

preprocessing directive `#include'. It has three variants:

#include <file>

This variant is used for system header files. It searches for a file

named file in a list of directories specified by you, then in a standard list of

system directories. You specify directories to search for header files with

the command option `-I' (see section 1.9 Invoking the C Preprocessor).

The option `-nostdinc' inhibits searching the standard system directories;

in this case only the directories you specify are searched.

136

The parsing of this form of `#include' is slightly special because

comments are not recognized within the `<...>'. Thus, in `#include <x/*y>'

the `/*' does not start a comment and the directive specifies inclusion of a

system header file named `x/*y'.

Of course, a header file with such a name is unlikely to exist on

Unix, where shell wildcard features would make it hard to manipulate.

The argument file may not contain a `>' character. It may,

however, contain a `<' character.

#include "file"

This variant is used for header files of your own program. It

searches for a file named file first in the current directory, then in the same

directories used for system header files. The current directory is the

directory of the current input file. It is tried first because it is presumed to

be the location of the files that the current input file refers to. (If the `-I-'

option is used, the special treatment of the current directory is inhibited.)

The argument file may not contain `"' characters. If backslashes

occur within file, they are considered ordinary text characters, not escape

characters. None of the character escape sequences appropriate to string

constants in C are processed. Thus, `#include "x\n\\y"' specifies a filename

containing three backslashes. It is not clear why this behavior is ever

useful, but the ANSI standard specifies it.

#include anything else

This variant is called a computed #include. Any `#include'

directive whose argument does not fit the above two forms is a computed

include. The text anything else is checked for macro calls, which are

expanded (see section 1.4 Macros). When this is done, the result must fit

one of the above two variants--in particular, the expanded text must in the

end be surrounded by either quotes or angle braces.

This feature allows you to define a macro which controls the file

name to be used at a later point in the program. One application of this is

to allow a site-specific configuration file for your program to specify the

names of the system include files to be used. This can help in porting the

program to various operating systems in which the necessary system

header files are found in different places.

[

[

10.4 DIRECTIVES AND MACROS

The following section lists down all the important preprocessor directives

137

Sr.No. Directive & Description

1 #define Substitutes a preprocessor macro.

2. #include

Inserts a particular header from

another

file.

3. #undef Undefines a preprocessor macro.

4. #ifdef

Returns true if this macro is

defined.

5. #ifndef

Returns true if this macro is not

defined.

6. #if

Tests if a compile time condition is

true.

7. #else The alternative for #if.

8. #elif #else and #if in one statement.

9. #endif Ends preprocessor conditional.

10. #error Prints error message on stderr.

11. #pragma

Issues special commands to the

compiler, using a standardized

method.

Preprocessors Examples:

To understand various directives refer this examples

#define MAX_ARRAY_LENGTH 20

This directive tells to replace instances of MAX_ARRAY_LENGTH with

20. Use #define for constants to increase readability.

#include <stdio.h>

#include "myheader.h"

These directives tell to get stdio.h from System Libraries and add

the text to the current source file. The next line tells to get myheader.h

from the local directory and add the content to the current source file.

#undef FILE_SIZE

#define FILE_SIZE 45

It tells to undefine existing FILE_SIZE and define it as 45.

#ifndef MESSAGE

 #define MESSAGE "You wish!"

#endif

It tells to define MESSAGE only if MESSAGE isn't already defined.

#ifdef DEBUG

 /* Your debugging statements here */

138

#endif

It tells to process the statements enclosed if DEBUG is defined.

This is useful if you pass the -DDEBUG flag to the gcc compiler at the

time of compilation. This will define DEBUG, so you can turn debugging

on and off on the fly during compilation.

Predefined Macros:

ANSI C defines a number of macros. Although each one is

available for use in programming, the predefined macros should not be

directly modified.

Sr.No.

Macro & Description

1 __DATE__

The current date as a character literal in "MMM DD YYYY" format.

2 __TIME__

The current time as a character literal in "HH:MM:SS" format.

3 __FILE__

This contains the current filename as a string literal.

4 __LINE__

This contains the current line number as a decimal constant.

5 __STDC__

Defined as 1 when the compiler complies with the ANSI standard.

Let's try the following example −

Live Demo:

#include <stdio.h>

int main() {

printf("File :%s\n", __FILE__);

printf("Date :%s\n", __DATE__);

printf("Time :%s\n", __TIME__);

printf("Line :%d\n", __LINE__);

printf("ANSI :%d\n", __STDC__);

}

139

When the above code in a file test.c is compiled and executed, it

produces the following result −

File :test.c

Date :July 5 2018

Time :03:45:25

Line :8

ANSI :1

Preprocessor Operators:

The C preprocessor offers the following operators to help create

macros −

The Macro Continuation (\) Operator:

A macro is normally confined to a single line. The macro

continuation operator (\) is used to continue a macro that is too long for a

single line.

For example:

#define message_for(a, b) \

printf(#a " and " #b ": We love you!\n")

The Stringize (#) Operator:

The stringize or number-sign operator ('#'), when used within a

macro definition, converts a macro parameter into a string constant.

This operator may be used only in a macro having a specified

argument or parameter list. For example −

Live Demo

#include <stdio.h>

#define message_for(a, b) \

printf(#a " and " #b ": We love you!\n")

int main(void) {

message_for(C, D);

return 0;

}

When the above code is compiled and executed, it produces the

following result −

140

C and D: We love you!

The Token Pasting (##) Operator:

The token-pasting operator (##) within a macro definition combines

two arguments. It permits two separate tokens in the macro

definition to be joined into a single token. For example −

Live Demo:

#include <stdio.h>

#define tokenpaster(n) printf ("token" #n " = %d", token##n)

int main(void) {

 int token35 = 50;

 tokenpaster(35);

 return 0;

}

When the above code is compiled and executed, it produces the following

result

Token35 = 50

It happened so because this example results in the following actual

output from the preprocessor −

printf ("token35 = %d", token35);

This example shows the concatenation of token##n into token34

and here we have used both stringize and token-pasting.

The Defined() Operator:

The preprocessor defined operator is used in constant expressions

to determine if an identifier is defined using #define. If the specified

identifier is defined, the value is true (non-zero). If the symbol is not

defined, the value is false (zero). The defined operator is specified as

follows –

Live Demo|:

#include <stdio.h>

141

#if !defined (MESSAGE)

 #define MESSAGE "You are amazing!"

#endif

 int main(void) {

 printf("Here is the message: %s\n", MESSAGE);

 return 0;

}

When the above code is compiled and executed, it produces the

following result −

Here is the message: You are amazing!

Parameterized Macros:

One of the powerful functions is the ability to simulate functions

using parameterized macros. For example, we might have some code to

square a number as follows

int square(int y) {

return y * y;

}

We can rewrite above the code using a macro as follows −

#define square(y) ((y) * (y))

Macros with arguments must be defined using the #define directive

before they can use. The argument list is enclosed in parentheses

and must immediately follow the macro name. Spaces are not

allowed between the macro name and open parenthesis. For

example −

Demo:

#include <stdio.h>

#define MAX(x,y) ((x) > (y) ? (x) : (y))

int main(void) {

printf("Max between 30 and 20 is %d\n", MAX(20, 30));

return 0;

}

142

When the above code is compiled and executed, it produces the following

result –

Max between 30 and 20 is 2

10.5 UNIT END QUESTIONS

1. What is macro? Summarize the similarities and diffrences between

macros and functions

2. What is preprocessor in C Language? Explain #if#else#endif

preprocessor directive with suitable example.

3. Write a small program to show the use of macro. rite a small program

to show the use of macro.

4. List various preprocessor and explain any two of them

143

144

11

ARRAY

Unit Structure

11.1 Arrays

11.1 Introduction

11.2 Definition, processing,

11.3 Passing arrays to functions,

11.4 Multidimensional arrays

11.5 Arrays and strings

11.6 Unit End Questions

11.1 ARRAYS

11.1.1 Introduction:

Arrays a type of data structure that can store a fixed-size sequential

collection of elements of the same type. An array is used to store a

collection of data, but it is more useful to think of an array as a collection

of variables of the same type.

Instead of declaring individual variables, such as num0, num1, ...,

and num99, you declare one array variable such as numbers and use

num[0], num[1], and ..., num[99] to represent individual variables. A

specific element in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest

address corresponds to the first element and the highest address to the last

element.

11.2 DECLARING ARRAYS

To declare an array in C, a programmer specifies the type of the

elements and the number of elements required by an array as

follows −

type aName [aSize];

145

This is called a single-dimensional array. The arraySize must be an

integer constant greater than zero and type can be any valid C data

type. For example, to declare a 10-element array called balance of

type double, use this statement −

double balance[20];

Here balance is a variable array which is sufficient to hold up to 10 double

numbers.

Initializing Arrays:

You can initialize an array in C either one by one or using a single

statement as follows −

double balance[4] = {1000.0, 2.0, 3.4, 7.0};

The number of values between braces { } cannot be larger than the

number of elements that we declare for the array between square brackets

[].

If you omit the size of the array, an array just big enough to hold the

initialization is created. Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 7.0};

You will create exactly the same array as you did in the previous

example. Following is an example to assign a single element of the

array −

balance[3] = 7.0;

The above statement assigns the 4th element in the array with a

value of 7.0. All arrays have 0 as the index of their first element which is

also called the base index and the last index of an array will be total size of

the array minus 1. Shown below is the pictorial representation of the array

we discussed above –

146

Accessing Array Elements:

An element is accessed by indexing the array name. This is done

by placing the index of the element within square brackets after the

name of the array. For example −

double salary = balance[9];

The above statement will take the 10th element from the array and

assign the value to salary variable. The following example Shows

how to use all the three above mentioned concepts viz. declaration,

assignment, and accessing arrays −

Demo

#include <stdio.h>

int main () {

int n[10]; /* n is an array of 10 integers */

int i,j;

/* initialize elements of array n to 0 */

for (i = 0; i < 10; i++) {

n[i] = i + 100; /* set element at location i to i + 100 */

}

/* output each array element's value */

for (j = 0; j < 10; j++) {

printf("number[%d] = %d\n", j, n[j]);

}

return 0;

}

When the above code is compiled and executed, it produces the

following result −

t[0] = 100

t[1] = 101

t[2] = 102

t[3] = 103

t[4] = 104

t[5] = 105

147

t[6] = 106

t[7] = 107

t[8] = 108

t[9] = 109

11.3 HOW TO PASS ARRAY TO A FUNCTION IN C

Whenever we need to pass a list of elements as argument to any

function in C language, it is prefered to do so using an array. But how can

we pass an array as argument to a function?

Declaring Function with array as a parameter

There are two possible ways to do so, one by using call by value and other by

using call by reference.

1. We can either have an array as a parameter.

int add (int a[]);

2. Or, we can have a pointer in the parameter list, to hold the base address of

our array.

int add (int* ptr);

Returning an Array from a function:

We don't return an array from functions, rather we return a pointer

holding the base address of the array to be returned. But we must, make

sure that the array exists after the function ends i.e. the array is not local to

the function.

int* add (int x[])

{

// statements

return x ;

}

Passing arrays as parameter to function:

We will pass a single array element as argument to a function, a

one dimensional array to a function and a multidimensional array to a

function.

Passing a single array element to a function

We will declare and define an array of integers in main() function and

pass one of the array element to a function, which will just print the value of

the element.

#include<stdio.h>

void MyArray(int a);

int main()

{

148

int mArray[] = { 2, 3, 4 };

MyArray(mArray[2]); //Passing array element myArray[2] only.

return 0;

}

void MyArray(int a)

{

printf("%d", a);

}
Output

4

Passing a complete One-dimensional array to a function

let's write a function to find out average of all the elements of the

array and print it.

We will only send in the name of the array as argument, which is

nothing but the address of the starting element of the array, or we can say

the starting memory address.

#include<stdio.h>

float findAverage(int marks[]);

int main()

{

 float avg;

 int marks[] = {99, 90, 96, 93, 95};

 avg = findAverage(marks); // name of the array is passed as

 argument.

 printf("Average marks = %.1f", avg);

 return 0;

}

float findAverage(int marks[])

{

 int i, sum = 0;

 float avg;

 for (i = 0; i <= 4; i++) {

 sum += marks[i];

}

 avg = (sum / 5);

 return avg;

}

11.4 MULTIDIMENSIONAL ARRAYS

 Multi-dimensional arrays are declared by providing more than one set

of square [] brackets after the variable name in the declaration

statement.

149

 One dimensional arrays do not require the dimension to be given if

the array is to be completely initialized. By analogy, multi-

dimensional arrays do not require the first dimension to be given if

the array is to be completely initialized. All dimensions after the first

must be given in any case.

 For two dimensional arrays, the first dimension is commonly

considered to be the number of rows, and the second dimension the

number of columns. We will use this convention when discussing

two dimensional arrays.

 Two dimensional arrays are considered by C/C++ to be an array of (

single dimensional arrays). For example, "int numbers[5][6]"

would refer to a single dimensional array of 5 elements, wherein each

element is a single dimensional array of 6 integers. By extension, "int

numbers[12][5][6]" would refer to an array of twelve elements,

each of which is a two dimensional array, and so on.

 Another way of looking at this is that C stores two dimensional arrays

by rows, with all elements of a row being stored together as a single

unit. Knowing this can sometimes lead to more efficient programs.

 Multidimensional arrays may be completely initialized by listing all

data elements within a single pair of curly {} braces, as with single

dimensional arrays.

 It is better programming practice to enclose each row within a

separate subset of curly {} braces, to make the program more

readable. This is required if any row other than the last is to be

partially initialized. When subsets of braces are used, the last item

within braces is not followed by a comma, but the subsets are

themselves separated by commas.

 Multidimensional arrays may be partially initialized by not providing

complete initialization data. Individual rows of a multidimensional

array may be partially initialized, provided that subset braces are

used.

 Individual data items in a multidimensional array are accessed by

fully qualifying an array element. Alternatively, a smaller

dimensional array may be accessed by partially qualifying the array

name. For example, if "data" has been declared as a three

dimensional array of floats, then data[1][2][5] would refer to a

float, data[1][2] would refer to a one-dimensional array of floats,

and data[1] would refer to a two-dimensional array of floats. The

reasons for this and the incentive to do this relate to memory-

management issues that are beyond the scope of these notes.

Sample Program Using 2-D Arrays

/* Sample program Using 2-D Arrays */

#include <stdlib.h>

#include <stdio.h>

150

int main(void) {

 /* Program to add two multidimensional arrays */

 /* Written May 1995 by George P. Burdell */

 int a[2][3] = { { 5, 6, 7 }, { 10, 20, 30 } };

 int b[2][3] = { { 1, 2, 3 }, { 3, 2, 1 } };

 int sum[2][3], row, column;

 /* First the addition */

 for(row = 0; row < 2; row++)

 for(column = 0; column < 3; column++)

 sum[row][column] =

 a[row][column] + b[row][column];

 /* Then print the results */

 printf("The sum is: \n\n");

 for(row = 0; row < 2; row++) {

 for(column = 0; column < 3; column++)

 printf("\t%d", sum[row][column]);

 printf('\n'); /* at end of each row */

}

 return 0;

}

Passing a Multi-dimensional array to a function

We will pass the name of the array as argument.

#include<stdio.h>

void displayArray(int arr[3][3]);

int main()

{

 int arr[3][3], i, j;

 printf("Please enter 9 numbers for the array: \n");

 for (i = 0; i < 3; ++i)

 {

 for (j = 0; j < 3; ++j)

 {

 scanf("%d", &arr[i][j]);

151

 }

 }

 // passing the array as argument

 displayArray(arr);

 return 0;

}

void displayArray(int arr[3][3])

{

int i, j;

printf("The complete array is: \n");

for (i = 0; i < 3; ++i)

{

 // getting cursor to new line

 printf("\n");

 for (j = 0; j < 3; ++j)

 {

 // \t is used to provide tab space

 printf("%d\t", arr[i][j]);

 }

 }

}

Please enter 9 numbers for the array: 1 2 3 4 5 6 7 8 9 The complete array

is: 1 2 3 4 5 6 7 8 9

11.5 ARRAYS AND STRINGS

In C programming, a string is a sequence of characters terminated

with a null character \0. For example:

char c[] = "c string";

When the compiler encounters a sequence of characters enclosed in the

double quotation marks, it appends a null character \0 at the end by default.

How to declare a string?

• char s[5];

• Strings can also be declared using pointer.

char *p;

152

How to initialize strings?

We can initialize strings in a number of ways.

• char c[] = "abcd"; or

• char c[5] = "abcd"; or

• char c[] = {'a', 'b', 'c', 'd', '\0'}; or

• char c[5] = {'a', 'b', 'c', 'd', '\0'};

Let's take another example:

• char c[5] = "abcde";

• Here, we are trying to assign 6 characters (the last character is '\0') to a char

array having 5 characters. This is bad and you should never do this.

Read String from the user

• We can use the scanf() function to read a string.

• The scanf() function reads the sequence of characters until it encounters

whitespace (space, newline, tab etc.).

Example 1: scanf() to read a string

#include <stdio.h>

int main()

{

char name[20];

printf("Enter name: ");

scanf("%s", name);

printf("Your name is %s.", name);

return 0;

}

• Output

Enter name: Anita Jaykar

153

Your name is Anita.

Even though Anita Jaykar was entered in the above program, only ―Anita"

was stored in the name string. It's because there was a space after Anita.

How to read a line of text?

You can use the gets() function to read a line of string. And, you can use

puts() to display the string.

Example 2: gets() and puts()

#include <stdio.h>

int main()

{

char name[30]

;

printf("Enter name: ");

gets(name); // read string

printf("Name: ");

puts(name); // display string

return 0;

}

Output:

Enter name: Anita Jain

Name: Anita Jain

Passing Strings to Functions

• Strings can be passed to a function in a similar way as arrays.

Example 3: Passing string to a Function:

#include <stdio.h>

void displayString(char str[]);

int main()

{

char str[50];

154

printf("Enter string: ");

gets(str);

displayString(str); // Passing string to a function.

return 0;

}

void displayString(char str[])

{

printf("String Output: ");

puts(str);

}

Commonly Used String Functions:

• strlen() - calculates the length of a string

• strcpy() - copies a string to another

• strcmp() - compares two strings

• strcat() - concatenates two strings

String Manipulation:

string.h

• C supports a large number of string handling functions in the standard

library "string.h".

• Note: Though, gets() and puts() function handle strings, both these

functions are defined in "stdio.h" header file.

Few commonly used string handling functions

Function Work of Function

Strlen () Calculates the length of string

Strcpy() Copies the string to another string

Strcat(0 Concatanates (joins) two strings

Strcmp() Compares two string

Strlwr() Converts string to lower case

Strupr () Converts string to upper case

Strlen ():

• In C, strlen() function calculates the length of string. It takes only one

argument, i.e, string name.

155

• Defined in Header File <string.h>

• Syntax of strlen() :

temp_variable = strlen(string_name);

Function strlen() returns the value of type integer.

Program to Find the Length of a String:

#include <stdio.h>

 #include <string.h>

int main()

{

 char a[20]="Program";

 char b[20]={'P','r','o','g','r','a','m','\0'};

 char c[20];

 printf("Enter string: ");

 gets(c);

 printf("Length of string a=%d \n",strlen(a));

 //calculates the length of string before null charcter.

 printf("Length of string b=%d \n",strlen(b));

 printf("Length of string c=%d \n",strlen(c));

return 0;

}

Enter string: String

Length of string a=7

Length of string b=7

Length of string c=6

Strcpy()

• Function strcpy() copies the content of one string to the content of another

string.

• It takes two arguments.

• Defined in Header File <string.h>

• Syntax of strcpy() :

strcpy(destination,source);

156

• Here, source and destination are both the name of the string. This

statement, copies the content of string source to the content of string

destination.

Example of strcpy():

#include <stdio.h>

#include <string.h>

int main()

{

 char a[10],b[10];

 printf("Enter string: ");

 gets(a);

 strcpy(b,a); //Content of string a is copied to string b. printf("Copied string:

");

puts(b);

return 0;

}

 • Enter string: Anita

 • Copied string: Anita

strcat():

• In C programming, strcat() concatenates(joins) two strings.

• It takes two arguments, i.e, two strings and resultant string is stored in the

first string specified in the argument.

Syntax of strcat()

• strcat(first_string,second_string);

#include <stdio.h>

#include <string.h>

int main()

{

char str1[]="my name is ", str2[]=―Anita";

157

strcat(str1,str2); //concatenates str1 and str2 and resultant string is stored in

str1.

puts(str1);

puts(str2);

return 0;

}

Output :

My name is Anita.

Anita

Strcmp():

• In C programming, strcmp() compares two string and returns value 0,

if the two strings are equal.

• Function strcmp() takes two arguments, i.e, name of two string to

compare.

• strcmp(string1,string2);

• #include <stdio.h>

• #include <string.h>

• int main()

• {

• char str1[30],str2[30];

• printf("Enter first string: ");

• gets(str1);

• printf("Enter second string: ");

• gets(str2);

• if(strcmp(str1,str2)==0)

• printf("Both strings are equal");

• else printf("Strings are unequal");

• return 0;

• }

Output:

Enter first string: Apple

Enter second string: Apple

Both strings are equal.

11.6 UNIT END QUESTIONS

1. List the characteristics of Arrays

2. What are the main elements of array declaration.

3. Explain two dimensional array with example.

4. What is string? Explain about a)strcmp() b)strlen() function.

158

5. Write a program that performs multiplication of two matrices

6. What is multidimensional array

7. Write a program to find the largest value that is stored in the array

8. Write a program that performs addition and subtraction of matrices.

9. Write a program to arrange n numbers stored in the array in ascending

order.-

UNIT V

12

POINTERS

Unit Structure

12.0 Objectives

12.1 Fundamentals Of Pointers

12.2 Address Operations

12.4 Pointer Assignment

12.5 Pointer Arithmetic

12.0 OBJECTIVES

● To understand the meaning and need of pointers

● To learn the syntax to declare, initialize and use pointers

● To understand the addressing operations using & and *

● To learn pointer arithmetic

12.1 FUNDAMENTALS OF POINTERS

Pointers are variables that hold a memory location. One can access

the value of the variable pointed to using the dereferencing operator *. A

pointer is a value that designates the address (i.e., the location in memory),

of some value.

159

Fig 1. Pointer *ptr stores the address of a character value ‘A’

Pointers can reference any data type, even functions.

Advantages of pointers:

1) Pointer reduces the code and improves the performance, it is used to

retrieving strings, trees, etc. and used with arrays, structures, and

functions.

2) We can return multiple values from a function using the pointer.

3) It makes you able to access any memory location in the computer's

memory.

12.2 ADDRESS OPERATIONS

Every variable is a memory location and every memory location

has its address defined which can be accessed using ampersand (&)

operator, which denotes an address in memory. Consider the following

example, which prints the address of the variables defined

#include <stdio.h>

int main () {

 int va1;

 char var2[10];

 printf("Address of var1 variable: %d\n", &var1);

 printf("Address of var2 variable: %d\n", &var2);

 return 0;

}

Output:

160

Address of var1 variable: 3400

Address of var2 variable: 9656

Address operators:

There are two important operators which are highly required, if

you are working with the pointers. Without these operators, we cannot

work with the pointers.

The operators are:

 The * Operator (Dereference Operator or Value at Operator)

 The & Operator (Address Of Operator)

1) The * Operator (Dereference Operator or Value at Operator)

"Dereference Operator" or “Value at” Operator denoted by asterisk

character (*), * is a unary operator which performs two operations with

the pointer (which is used for two purposes with the pointers).

 To declare a pointer

 To access the stored value of the memory (location) pointed by the

pointer

2) The & Operator (Address of Operator):

The "Address Of" Operator denoted by the ampersand character

(&), & is a unary operator, which returns the address of a variable.

After declaration of a pointer variable, we need to initialize the pointer

with the valid memory address; to get the memory address of a variable

Address Of" (&) Operator is used.

12.3 POINTER TYPE DECLARATION

int *p1; /*Pointer to an integer variable*/

double *p2; /*Pointer to a variable of data type double*/

char *p3; /*Pointer to a character variable*/

float *p4; /*pointer to a float variable*/

In the above snippet we have declared p1 as an pointer which

would point to an integer variable. Correspondingly p2 , p3 and p4 would

point to double, char and float variables respectively.

161

The actual data type of the value of all pointers, whether integer,

float, character, or otherwise, is the same, a long hexadecimal number that

represents a memory address. The only difference between pointers of

different data types is the data type of the variable or constant that the

pointer points to.

12.4 POINTER ASSIGNMENT

Every pointer stores the address of a variable which it points to.

The value is a number that represents the memory address of the variable

which it points to.

Pointers (that is, pointer values) are generated with the ``address-

of'' operator &, which we can also think of as the ``pointer-to'' operator.

We demonstrate this by declaring (and initializing) an int variable i, and

then setting ip to point to it:

int *ptr;

int i = 5;

ptr = &i;

The assignment expression ip = &i; contains both parts of the

``two-step process'': &i generates a pointer to i, and the assignment

operator assigns the new pointer to (that is, places it ``in'') the variable ip.

Now ip ``points to'' i, which we can illustrate with this picture:

i is a variable of type int, so the value in its box is a number, 5. ip is a

variable of type pointer-to-int, so the ``value'' in its box is an arrow

pointing at another box. Referring once again back to the ``two-step

process'' for setting a pointer variable: the & operator draws us the

arrowhead pointing at i's box, and the assignment operator =, with the

pointer variable ip on its left, anchors the other end of the arrow in ip's

box.

Another Example:

#include<stdio.h>

int main(){

int number=50;

int *p;

p=&number;//stores the address of number variable

printf("Address of p variable is %x \n",p);

printf("Value of p variable is %d \n",*p);

162

return 0;

}

Output:

Address of number variable is fff4

Address of p variable is fff4

Value of p variable is 50

Explanation:

p contains the address of the number therefore printing p gives the

address of number. As we know that * is used to dereference a pointer

therefore if we print *p, we will get the value stored at the address

contained by p.

12.5 POINTER ARITHMETIC

C allows you to perform some arithmetic operations on pointers.

(Not every operation is allowed.)

Unary Pointer Arithmetic Operators

Operator ++: Adds sizeof(datatype) number of bytes to pointer, so that it

points to the next entry of the datatype.

Operator −−: Subtracts sizeof(datatype) number of bytes to pointer, so

that it points to the next entry of the datatype.

#include <stdio.h>

int main()

{

int *ptrn;

long *ptrlng;

ptrn++; //increments by sizeof(int) (4 bytes)

ptrlng++; //increments by sizeof(long) (8 bytes)

return 0;

}

Similarly, use of -- operator decrements the value of the pointer by

‘n’ bytes, where n is the size in bytes of the variable datatype.

We can also use the binary + and – operators. It is important to

note that we cannot add to pointers to each other because that would mean

adding 2 addresses. However, if we use the following:

ptr2 = ptr1 + 8;

163

That would mean ptr2 would point to the memory location 8 bytes

ahead of ptr1.

Incrementing a Pointer:

We prefer using a pointer in our program instead of an array

because the variable pointer can be incremented, unlike the array name

which cannot be incremented because it is a constant pointer. The

following program increments the variable pointer to access each

succeeding element of the array

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have array address in pointer */

 ptr = var;

 for (i = 0; i < MAX; i++) {

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 /* move to the next location */

 ptr++;

}

 return 0;

}

Output:

Address of var[0] = bf882b30

Value of var[0] = 10

Address of var[1] = bf882b34

Value of var[1] = 100

Address of var[2] = bf882b38

Value of var[2] = 200

Decrementing a Pointer:

The same considerations apply to decrementing a pointer, which

decreases its value by the number of bytes of its data type as shown below

#include <stdio.h>

const int MAX = 3;

int main () {

164

 int var[] = {10, 100, 200};

 int i, *ptr;

 /* let us have array address in pointer */

 ptr = &var[MAX-1];

 for (i = MAX; i > 0; i--) {

 printf("Address of var[%d] = %x\n", i-1, ptr);

 printf("Value of var[%d] = %d\n", i-1, *ptr);

 /* move to the previous location */

 ptr--;

 }

 return 0;

}

Output:

Address of var[2] = bfedbcd8

Value of var[2] = 200

Address of var[1] = bfedbcd4

Value of var[1] = 100

Address of var[0] = bfedbcd0

Value of var[0] = 10

Pointer Comparisons:

Pointers may be compared by using relational operators, such as

==, <, and >. If p1 and p2 point to variables that are related to each other,

such as elements of the same array, then p1 and p2 can be meaningfully

compared.

The following program modifies the previous example − one by

incrementing the variable pointer so long as the address to which it

points is either less than or equal to the address of the last element

of the array, which is &var[MAX - 1]

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i, *ptr;

165

 /* let us have address of the first element in pointer */

 ptr = var;

 i = 0;

 while (ptr <= &var[MAX - 1]) {

 printf("Address of var[%d] = %x\n", i, ptr);

 printf("Value of var[%d] = %d\n", i, *ptr);

 /* point to the next location */

 ptr++;

 i++;

 }

 return 0;

}

Output:

Address of var[0] = bfdbcb20

Value of var[0] = 10

Address of var[1] = bfdbcb24

Value of var[1] = 100

Address of var[2] = bfdbcb28

Value of var[2] = 200

12.6 UNIT END QUESTIONS

1. What if a pointer and the advantage of declaring void pointers?

2. Difference between pass by reference and pass by value?

3. When should we use pointers in a C program?

4. What happens when we use ++ and -- operator on an integer pointer?

166

 13

ADVANCED POINTERS

Unit Structure

13.0 Objectives

13.1 Functions & pointers

13.2 Arrays & pointers

13.3 Pointer arrays

13.4 Passing functions to other functions

13.5 Questions

13.0 OBJECTIVES

 To build on the fundamentals of pointers learnt in the previous chapter

 To understand the use of pointers as parameters to functions

 To use of pointers with reference to an array

 To study the use of pointer arrays

 To learn how to pass function pointers as parameters

13.1 FUNCTIONS & POINTERS

C programming allows passing a pointer to a function. To do so,

simply declare the function parameter as a pointer type. Since pointers are

also variables, they can be passed

 As input parameters to functions

 As return values from functions

The call by reference method of passing arguments to a function

copies the address of an argument into the formal parameter. Inside the

function, the address is used to access the actual argument used in the call.

It means the changes made to the parameter affect the passed argument.

Following is a simple example where we pass an unsigned long

pointer to a function and change the value inside the function which

reflects back in the calling function

#include <stdio.h>

#include <time.h>

void getSeconds(unsigned long *par);

int main () {

167

 unsigned long sec;

 getSeconds(&sec);

 /* print the actual value */

 printf("Number of seconds: %ld\n", sec);

 return 0;

}

void getSeconds(unsigned long *par) {

 /* get the current number of seconds */

 *par = time(NULL);

 return;

}

Output:

Number of seconds :1394450468

Pass by Value vs Pass by Reference:

To pass a value by reference, argument pointers are passed to the

functions just like any other value. So accordingly you need to declare the

function parameters as pointer types as in the following function swap(),

which exchanges the values of the two integer variables pointed to, by

their arguments.

/* function definition to swap the values */

void swap(int *x, int *y) {

 int temp;

 temp = *x; /* save the value at address x */

 *x = *y; /* put y into x */

 y = temp; / put temp into y */

 return;

}

Let Let us now call the function swap() by passing values by reference

as in the following example:

Output:

Before swap, value of a : 100

Before swap, value of b : 200

After swap, value of a : 200

After swap, value of b : 100

168

It shows that the change has reflected outside the function as well, unlike

call by value where the changes do not reflect outside the function.

13.2 ARRAYS & POINTERS

An array is a block of sequential data. Let's write a program to

print addresses of array elements.

#include <stdio.h>

int main() {

 int x[4];

 int i;

 for(i = 0; i < 4; ++i) {

 printf("&x[%d] = %p\n", i, &x[i]);

 }

 printf("Address of array x: %p", x);

 return 0;

}

Output:

&x[0] = 1450734448

&x[1] = 1450734452

&x[2] = 1450734456

&x[3] = 1450734460

Address of array x: 1450734448

There is a difference of 4 bytes between two consecutive elements of

array x. It is because the size of int is 4 bytes (on our compiler).

Notice that, the address of &x[0] and x is the same. It's because the

variable name x points to the first element of the array.

Relation between arrays and pointers:

From the above example, it is clear that &x[0] is equivalent to x. And,

x[0] is equivalent to *x.

Similarly,

&x[1] is equivalent to x+1 and x[1] is equivalent to *(x+1).

169

&x[2] is equivalent to x+2 and x[2] is equivalent to *(x+2).

...

Basically, &x[i] is equivalent to x+i and x[i] is equivalent to *(x+i).

Example 1: Pointers and Arrays

#include <stdio.h>

int main() {

 int i, x[6], sum = 0;

 printf("Enter 6 numbers: ");

 for(i = 0; i < 6; ++i) {

 // Equivalent to scanf("%d", &x[i]);

 scanf("%d", x+i);

 // Equivalent to sum += x[i]

 sum += *(x+i);

}

 printf("Sum = %d", sum);

 return 0;

}

Output:

Enter 6 numbers:

 2

 3

 4

 4

 13

 4

Sum = 29

Here, we have declared an array x of 6 elements. To access

elements of the array, we have used pointers.

In most contexts, array names decay to pointers. In simple words,

array names are converted to pointers. That's the reason why you can use

pointers to access elements of arrays. However, you should remember that

pointers and arrays are not the same.

Example 2: Arrays and Pointers

#include <stdio.h>

int main() {

int x[5] = {1, 2, 3, 4, 5};

 int* ptr;

 // ptr is assigned the address of the third element

 ptr = &x[2];

170

 printf("*ptr = %d \n", *ptr); // 3

 printf("*(ptr+1) = %d \n", *(ptr+1)); // 4

 printf("*(ptr-1) = %d", *(ptr-1)); // 2

 return 0;

}

Output:

*ptr = 3

*(ptr+1) = 4

*(ptr-1) = 2

In this example, &x[2], the address of the third element, is

assigned to the ptr pointer. Hence, 3 was displayed when we printed *ptr.

And, printing *(ptr+1) gives us the fourth element. Similarly,

printing *(ptr-1) gives us the second element.

13.3 POINTER ARRAYS

Before we understand the concept of arrays of pointers, let us

consider the following example, which uses an array of 3 integers

#include <stdio.h>

const int MAX = 3;

int main () {

 int var[] = {10, 100, 200};

 int i;

 for (i = 0; i < MAX; i++) {

 printf("Value of var[%d] = %d\n", i, var[i]);

 }

 return 0;

}

Output:

Value of var [0] = 10

Value of var [1] = 100

Value of var [2] = 200

There may be a situation when we want to maintain an array,

which can store pointers to an int or char or any other data type available.

Following is the declaration of an array of pointers to an integer

171

int *ptr[MAX];

It declares ptr as an array of MAX integer pointers. Thus, each

element in ptr, holds a pointer to an int value. The following example uses

three integers, which are stored in an array of pointers, as follows

#include <stdio.h>

const int MAX = 3;

int main () {

int var[] = {10, 100, 200};

int i, *ptr[MAX];

for (i = 0; i < MAX; i++) {

 ptr[i] = &var[i]; /* assign the address of integer. */

}

for (i = 0; i < MAX; i++) {

 printf("Value of var[%d] = %d\n", i, *ptr[i]);

}

return 0;

}

Output:

Value of var[0] = 10

Value of var[1] = 100

Value of var[2] = 200

You can also use an array of pointers to character to store a list of

strings as follows

#include <stdio.h>

const int MAX = 4;

int main () {

 char *names[] = {

 "RAMESH",

 "REENA",

 "SHYAM",

 "ALI"

 };

172

 int i = 0;

 for (i = 0; i < MAX; i++) {

 printf("Value of names[%d] = %s\n", i, names[i]);

 }

 return 0;

}

 Output:

Value of names[0] = RAMESH

Value of names[1] = REENA

Value of names[2] = SHYAM

Value of names[3] = ALI

13.4 PASSING FUNCTIONS TO OTHER FUNCTIONS

A simple prototype for a function which takes a function parameter

(sometimes called a formal parameter), is something like this:

void myfunction(void (*f)(int));

This states that a parameter f will be a pointer (*f) to the function

myFunction, which has a void return type and which takes just a single int

parameter.

In lay man's terms, my Function takes an argument of a function

type void, that returns a type void, and takes an int as an argument;

(void (*f)(int)).

A simple example:

#include <stdio.h>

void print()

{

 printf("Hello World!");

}

void helloworld(void (*f)())

{

 f();

}

int main(void)

{

173

 helloworld(print);

 return (0);

}

 Here, we see that the function named “print “ is being passed as a

parameter to the function helloworld in main.

Function Pointers:

To understand this better we need to understand function pointers.

In C programming language, we can have a concept of Pointer to a

function known as function pointer in C. In this tutorial, we will learn how

to declare a function pointer and how to call a function using this pointer.

To understand this concept, you should have the basic knowledge of

Functions and Pointers in C.

Function pointer declaration:

function_return_type(*Pointer_name)(function argument list)

For example:

double (*p2f)(double, char)

Here double is a return type of function, p2f is name of the

function pointer and (double, char) is an argument list of this function.

Which means the first argument of this function is of double type and the

second argument is char type.

Lets understand this with the help of an example: Here we have a

function sum that calculates the sum of two numbers and returns the sum.

We have created a pointer f2p that points to this function, we are invoking

the function using this function pointer f2p.

int sum (int num1, int num2)

{

return num1+num2;

}

int main()

{

 /* The following two lines can also be written in a single

 * statement like this: void (*fun_ptr)(int) = &fun;

 */

 int (*f2p) (int, int);

 f2p = sum;

 //Calling function using function pointer

 int op1 = f2p(10, 13);

 //Calling function in normal way using function name

 int op2 = sum(10, 13);

174

 printf("Output1: Call using function pointer: %d",op1);

 printf("\nOutput2: Call using function name: %d", op2);

 return 0;

}

Output
Output1: Call using function pointer: 23

Output2: Call using function name: 23

Some points regarding function pointer:

1. As mentioned in the comments, you can declare a function pointer and

assign a function to it in a single statement like this:

void void (*fun_ptr)(int) = &fun;

2. You can even remove the ampersand from this statement because a function

name alone represents the function address. This means the above statement

can also be written like this:

void (*fun_ptr)(int) = fun;

13.5 QUESTIONS

1. Difference between pass by reference and pass by value?

2. What is the difference between array of pointers and pointer arrays?

give examples.

3. Write a program to print an array of 10 numbers using a pointer to that

array. (Do not use array indexes)

4. Write a program to store an array of 10 strings and display them using

pointers only.

5. What are function pointers? when are they used?

175

 14

STRUCTURES AND UNIONS

Unit Structure

14.0 Objectives

14.1 Introduction

14.2 Initialization

14.3 Assignment

14.4 Nested Structures

14.5 Structures And Functions

14.6 Structures And Arrays

14.2 Unit End Questions

 14.0 OBJECTIVES

 To understand on the concept and need of structures in C

 To understand and implement user defined structures in a C program

 To understand the use of structures with arrays and functions

 To learn pointers to structures

 To learn the usage of unions in C

14.1 INTRODUCTION

When there is a need to store data elements of different types

together, arrays are no longer useful. In C, the concept of structures allow

developers to group elements of different types together in a structured

manner.

Consider a case where a developer needs to store employee details

such as name, id, age, address, and salary. The developer could declare 5

separate variables with different data types for each. This would be tedious

is we have more than 1 employee because then the developer would have

to create 5 variables for each employee and could get too confusing too

fast. So, the developer could create a C structure using struct Keyword and

assign the name as an employee.

14.2 INITIALIZATION

 Let us now look at how to declare and initialize structures in C. The

syntax for declaring a structure is as follows

176

struct structureName

{

 dataType member1;

 dataType member2;

 ...

};

Example:

struct Employee

{

 int id;

 char name[50];

 int age;

 char address[100];

 float salary;

};

Note: Members inside the structures will not store any memory location

until they are associated with structure variables.

So, we have to create the structure variable before using it. We can

declare the C structure variables in multiple ways

Method #1

Create a struct variable after the declaration of structure.

Example:

struct Employee

 {

 int id;

 char name[50];

 int age;

 char address[100];

 float salary;

} emp1 , emp2;

177

14.2 ASSIGNMENT

Once we declare the struct variables we need to assign values and

use them. This is done using the member access operator . (dot).

Example:

emp1.id = 191;

emp1.age = 35;

emp1.salary = 25000;

Lets now look at a complete example which brings the different

pieces together. We will consider a structure called distance which store

distance in feet and inches. The program will demonstrate how to create a

struct called distance and add two variable of the structure type distance.

SAMPLE PROGRAM:

// Program to add two distances (feet-inch)

#include <stdio.h>

struct Distance

{

 int feet;

 float inch;

 } dist1, dist2, sum;

 int main()

 {

 printf("1st distance\n");

 printf("Enter feet: ");

 scanf("%d", &dist1.feet);

 printf("Enter inch: ");

 scanf("%f", &dist1.inch);

 printf("2nd distance\n");

 printf("Enter feet: ");

 scanf("%d", &dist2.feet);

 printf("Enter inch: ");

 scanf("%f", &dist2.inch);

 // adding feet

 sum.feet = dist1.feet + dist2.feet;

 // adding inches

 sum.inch = dist1.inch + dist2.inch;

 // changing to feet if inch is greater than 12

178

 while (sum.inch >= 12)

 {

 ++sum.feet;

 sum.inch = sum.inch - 12;

 }

 printf("Sum of distances = %d\'-%.1f\"", sum.feet, sum.inch);

 return 0;

}

14.3 NESTED STRUCTURES

When a structure contains another structure, it is called nested

structure. For example, we have two structures named Address and

Employee. To make Address nested to Employee, we have to define

Address structure before and outside Employee structure and create an

object of Address structure inside Employee structure.

Syntax for structure within structure or nested structure

struct name_of_structure1

{

 - - - - - - - - - -

 - - - - - - - - - -

};

struct name_of_structure2

{

 - - - - - - - - - -

 - - - - - - - - - -

 struct name_of_structure1 var_name;

};

Example for structure within structure or nested structure

#include<stdio.h>

struct Address

{

 char area[20];

 char town[25];

 char pin[6];

};

struct Employee

{

 int Id;

 char Name[25];

179

 float salary;

 struct Address addr;

};

void main()

{

 int i;

 struct Employee emp1;

 printf("\n\tEnter Employee Id : ");

 scanf("%d",&emp1.Id);

 printf("\n\tEnter Employee Name : ");

 scanf("%s",&emp1.Name);

 printf("\n\tEnter Employee salary : ");

 scanf("%f",&emp1.salary);

 printf("\n\tEnter area of residence : ");

 scanf("%s",&emp1.addr.area);

 printf("\n\tEnter Employee town : ");

 scanf("%s",&emp1.addr.town);

 printf("\n\tEnter Employee area : ");

 scanf("%s",&emp1.addr.pin);

 printf("\nDetails of Employees");

 printf("\n\tEmployee Id : %d",emp1.Id);

 printf("\n\tEmployee Name : %s",emp1.Name);

 printf("\n\tEmployee salary : %f",emp1.salary);

 printf("\n\tEmployee House area : %s",emp1.addr.area);

 printf("\n\tEmployee town : %s",emp1.addr.town);

 printf("\n\tEmployee pin Code : %s",emp1.addr.pin);

}

Output :

Enter Employee Id : 101

Enter Employee Name : Ajit Sharma

Enter Employee salary : 45000

Enter Employee area : Andheri

Enter Employee town : Mumbai

Enter Employee pin Code : 400033

Details of Employees

Employee Id : 101

Employee Name : Ajit Sharma

Employee salary : 45000

180

Employee area : Andheri

Employee town : Mumbai

Employee pin Code : 400033

 14.5 STRUCTURES AND FUNCTIONS

 We can pass a structure as a function argument in the same way as

you pass any other variable or pointer. Let us revisit the sum of distances

program and use a function in the program to add the 2 structure variables

dist1 and dist 2

// Program to add two distances (feet-inch) using functions

#include <stdio.h>

struct Distance

{

 int feet;

 float inch;

} dist1, dist2, sum;

void printSum(Struct Distance d1, Struct Distance d2)

{

 sum.feet = d1.feet + dist2.feet;

 sum.inch = d1.inch + dist2.inch;

 // changing to feet if inch is greater than 12

 while (sum.inch >= 12)

 {

++sum.feet;

sum.inch = sum.inch - 12;

 }

 printf("Sum of distances = %d\'-%.1f\"", sum.feet, sum.inch);

}

int main()

{

 printf("1st distance\n");

 printf("Enter feet: ");

 scanf("%d", &dist1.feet);

 printf("Enter inch: ");

 scanf("%f", &dist1.inch);

 printf("2nd distance\n");

 printf("Enter feet: ");

 scanf("%d", &dist2.feet);

181

 printf("Enter inch: ");

 scanf("%f", &dist2.inch);

 printSum(dist1 , dist2);

 printSum(dist1 , dist1);

 printSum(dist2 , dist2);

 return 0;

}

We print the sum of dist1 and dist2 , dist1 with itself and dist2 with

itself in the above code, by calling the function printSum(dist1 , dist2) ,

printSum(dist1 , dist1) and printSum(dist2 , dist2) respectively.

14.6 STRUCTURES AND ARRAYS

When we talk about structures and arrays let us look at the 2 ways they

can be used

1. Arrays of structures

2. Structures containing arrays

We shall now consider each case briefly.

Arrays of Structures:

An array of structres in C can be defined as the collection of

multiple structures variables where each variable contains information

about different entities. The array of structures in C are used to store

information about multiple entities of different data types. The array of

structures is also known as the collection of structures.

182

Below is the demonstration of a program that uses the concept of the array

within a structure.

#include <stdio.h>

#include <string.h>

struct student

{

 int seatno;

 float percentage;

};

int main()

{

 int i;

 struct student record[2];

 // 1st student's record

 record[0].seatno=1;

 record[0].percentage = 86.5;

 // 2nd student's record

 record[1].seatno=2;

 record[1].percentage = 90.5;

 // 3rd student's record

 record[2].seatno=3;

 record[2].percentage = 81.5;

 for(i=0; i<3; i++)

 {

 printf(" \n Records of STUDENT : %d \n", i+1);

 printf(" Seat No is: %d \n", record[i].seatno);

 printf(" Percentage is: %f\n\n",record[i].percentage);

 }

 return 0;

}

Output:

Records of STUDENT : 1

Seat No is: 1

Percentage is: 86.500000

Records of STUDENT : 2

Seat No is: 2

Percentage is: 90.500000

Records of STUDENT : 3

Seat No is: 3

Percentage is: 81.50000

183

Structures containing arrays:

 Let us know discuss the use of arrays in a structure. For this we will

see the example below which demonstrates the use of a structure called

Books which contains 2 character arrays for storing the title and author of

the book in addition to a integer variable for bookid.

#include <stdio.h>

#include <string.h>

struct Book {

 int bk_id;

 char title[50];

 char author[50];

};

int main() {

 struct Book bk1; /* Declare bk1 of type Book */

 struct Book bk2; /* Declare bk2 of type Book */

 /* book 1 specification */

 bk1.bk_id = 650;

 strcpy(bk1.title, "Let Us C");

 strcpy(bk1.author, "Yashvant K");

 /* book 2 specification */

 bk1.bk_id = 651;

 strcpy(bk2.title, "The Secret of Nagas");

 strcpy(bk2.author, "Amish T");

x

 /* print bk1 info */

 printf("Book 1 bk_id : %d\n", bk1.bk_id);

 printf("Book 1 title : %s\n", bk1.title);

 printf("Book 1 author : %s\n", bk1.author);

 /* print bk2 info */

 printf("Book 2 bk_id : %d\n", bk2.bk_id);

 printf("Book 2 title : %s\n", bk2.title);

 printf("Book 2 author : %s\n", bk2.author);

 return 0;

}

When the above code is compiled and executed, it produces the following

result –

184

Book 1 bk_id : 650

Book 1 title : Let Us C

Book 1 author : Yashvant K

Book 2 bk_id : 651

Book 2 title : The Secret of Nagas
Book 2 author : Amish T

14.8 STRUCTURES AND POINTERS

You can define pointers to structures in the same way as you

define pointer to any other variable −

struct Book *struct_pointer;

Now, you can store the address of a structure variable in the above

defined pointer variable. To find the address of a structure variable,

place the '&'; operator before the structure's name as follows −

struct_pointer = &Book1;

To access the members of a structure using a pointer to that structure, you

must use the → operator as follows −

struct_pointer->title;

Let us re-write the above example using structure pointer.

Example:

#include <stdio.h>

#include <string.h>

struct Book {

 char title[50];

 int bk_id;

};

/* function declaration */

void printBook(struct Book *book);

int main() {

 struct Book bk1, bk2

 strcpy(bk1.title, "Let Us C");

 bk1.bk_id = 750;

 strcpy(bk2.title, "The Secret of Nagas");

185

 bk2.bk_id = 751;

/*

/* print Book1 info by passing address of Book1 */

 printBook(&bk1);

 /* print Book2 info by passing address of Book2 */

 printBook(&bk2);

return 0;

}

void printBook(struct Book *book) {

 printf("Book title : %s\n", book->title);

 printf("Book bk_id : %d\n", book->bk_id);
}

When the above code is compiled and executed, it produces the following result

Book title : Let Us C

Book bk_id : 750

Book title : The Secret of Nagas

Book bk_id : 751

14.9 UNION

C Union is also like structure, i.e. collection of different data types

which are grouped together. Each element in a union is called member.

Union and structure in C are same in concepts, except allocating

memory for their members. Structure allocates storage space for all its

members separately. Whereas, Union allocates one common storage space

for all its members.

 We can access only one member of union at a time. We can’t access

all member values at the same time in union. But, structure can access all

member values at the same time. This is because, Union allocates one

common storage space for all its members. Where as Structure allocates

storage space for all its members separately.

 Many union variables can be created in a program and memory will be

allocated for each union variable separately.

Example:

#include <stdio.h>

#include <string.h>

union student

186

{

 char name[20];

 char subject[20];

 float percentage;

};

int main()

{

 union student record1;

 union student record2;

// assigning values to record1 union variable

 strcpy(record1.name, "Mayur");

 strcpy(record1.subject, "Maths");

 record1.percentage = 86.50;

 printf("Union record1 values example\n");

 printf(" Name : %s \n", record1.name);

 printf(" Subject : %s \n", record1.subject);

 printf(" Percentage : %f \n\n", record1.percentage);

// assigning values to record2 union variable

 printf("Union record2 values example\n");

 strcpy(record2.name, "Kiran");

 printf(" Name : %s \n", record2.name);

 strcpy(record2.subject, "Physics");

 printf(" Subject : %s \n", record2.subject);

 record2.percentage = 14.50;

 printf(" Percentage : %f \n", record2.percentage);

 return 0;

}

Output:

Union record1 values example

Name : Mayur

Subject : Maths

Percentage : 86.500000;

Union record2 values example

Name : Kiran

Subject : Physics

Percentage : 14.500000

187

14.10 UNIT END QUESTIONS

1. How do you declare a structure in C?

2. Create a data structure to store data about a music album. Create 3

instances of the album and display their values.

3. How do we declare a structure containing arrays? Give example.

4. Declare an array of structure called students. Initialize 5 students using

inputs from user.

5. What are unions? when are they used in C ?
