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In the present scenario of ever-changing syllabus and the test 
pattern of  JEE Main & Advanced.
The NEW EDITION of this book is an effort to cater all the 
difficulties being faced by the students during their preparation 
of JEE Main & Advanced. Almost all types and levels  of questions 
are included in this book. My aim is to present the students a fully 
comprehensive textbook which will help and guide them for all 
types of examinations. An attempt has been made to remove all 
the printing errors that had crept in the previous editions. 

The overwhelming response to the previous editions of this book 
gives me an immense feeling of satisfaction and I take this an 
opportunity to thank all the teachers and the whole student 
community who have found this book really beneficial.

Comments and criticism from readers will be highly appreciated 
and incorporated in the subsequent editions.

I am very thankful to (Dr.) Mrs. Sarita Pandey, Mr. Anoop 
Dhyani and Mr. Nisar Ahmad

DC Pandey

PREFACE

Understanding Physics 

JEE Main & Advanced 



11.1
11.2
11.3
11.4
11.5
11.6

1-89CENTRE OF MASS, LINEAR MOMENTUM AND COLLISION
Centre of Mass
Motion of the Centre of Mass
Law of Conservation of Linear Momentum
Variable Mass
Linear Impulse
Collision

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9

12.10
12.11
12.12
12.13

91-208ROTATIONAL MECHANICS
Introduction
Moment of Inertia
Angular Velocity
Torque
Rotation of a Rigid Body about a Fixed Axis
Angular Momentum
Conservation of Angular Momentum
Combined Translational and Rotational Motion of a Rigid Body
Uniform Pure Rolling
Instantaneous Axis of Rotation
Accelerated Pure Rolling
Angular Impulse
Toppling

12.

Introduction
Newton’s Law of Gravitation
Acceleration Due to Gravity
Gravitational Field and Field Strength
Gravitational Potential
Relation between Gravitational Field and Potential

13.1
13.2
13.3
13.4
13.5
13.6

209-283GRAVITATION13.

11.

CONTENTS

Understanding Physics 

JEE Main & Advanced 



Gravitational Potential Energy 
Binding Energy
Motion of Satellites
Kepler's Laws of Planetary Motion

13.7
13.8
13.9

13.10

SIMPLE HARMONIC MOTION
Introduction
Displacement Equation of SHM
Time Equation of SHM 
Relation between SHM and Uniform Circular Motion
Methods of Finding Time Period of a SHM
Vector Method of Combining Two or More SHM 

14.1
14.2
14.3
14.4
14.5
14.6

285-37114.

ELASTICITY
Introduction
Elasticity
Stress and Strain
Hooke’s Law and Modulus of Elasticity
The Stress-Strain Curve
Potential Energy Stored in a Stretched Wire
Thermal Stresses or Strain

15.1
15.2
15.3
15.4
15.5
15.6
15.7

373-40215.

FLUID MECHANICS
Definition of a Fluid
Density of a Liquid
Pressure in a Fluid
Pressure Difference in Accelerating Fluids
Archimedes' Principle
Flow of Fluids
Application based on Bernoulli's Equation
Viscosity
Surface Tension
Capillary Rise or Fall

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

16.10

403-51716.

519-648Hints & Solutions 

JEE Main & Advanced 
Previous Years' Questions (2018-13) 1-28

Understanding Physics 

JEE Main & Advanced 



Basic concepts of rotational motion; Moment of a force, Torque, Angular 
momentum, conservation of angular momentum and its applications; Moment of 
inertia, Radius of gyration. Values of moments of inertia for simple geometrical 
objects, Parallel and perpendicular axes theorems and their applications. Rigid body 
rotation, Equations of rotational motion.

Centre of Mass

Rotational Motion

Centre of mass of a two particle system, Centre of mass of a rigid body.

The universal law of gravitation. Acceleration due to gravity and its variation with 
altitude and depth. Kepler’s laws of planetary motion. Gravitational potential 
energy; Gravitational potential, Escape velocity. Orbital, velocity of a satellite, Geo-
stationary satellites.

Properties of Solids and Liquids

Gravitation

Elastic behaviour, Stress-strain relationship, Hooke’s Law, Young’s modulus, Bulk 
modulus, modulus of rigidity. Pressure due to a fluid column; Pascal’s law and its 
applications. Viscosity, Stokes’ law, Terminal velocity, Streamline and turbulent flow, 
Reynolds number. Bernoulli’s principle and its applications. Surface energy and 
surface tension, Angle of contact, Application of surface tension – drops, bubbles 
and capillary rise.

Oscillations
Periodic motion – period, frequency, displacement as a function of time. Periodic 
functions. Simple harmonic motion (SHM) and its equation; Phase; Oscillations of a 
spring -restoring force and force constant; energy in SHM – Kinetic and potential 
energies; Simple pendulum – derivation of expression for its time period; Free, 
forced and damped oscillations, resonance.

SYLLABUS 
JEE  Main

Understanding Physics 

JEE Main & Advanced 



Determination of g using simple pendulum. Young’s modulus by Searle’s 
method.  

General 

Centre of Mass and Collision 
System of particles, Centre of mass and its motion, Impulse, Elastic and 
inelastic collisions.

Gravitation

Rotational Motion
Rigid body, moment of inertia, Parallel and perpendicular axes theorems, 
Moment of inertia of uniform bodies with simple geometrical shapes, 
Angular momentum, Torque, Conservation of angular momentum, 
Dynamics of rigid bodies with fixed axis of rotation, Rolling without 
slipping of rings, cylinders and spheres, Equilibrium of rigid bodies, 
Collision of point masses with rigid bodies.

Oscillations
Linear and angular simple harmonic motions.

Law of gravitation, Gravitational potential and field, Acceleration due to 
gravity, Motion of planets and satellites in circular orbits, Escape velocity.

Properties of Solids and Liquids 
Hooke’s law, Young’s modulus. Pressure in a fluid, Pascal’s law, Buoyancy, 
Surface energy and surface tension, capillary rise, Viscosity (Poiseuille’s 
equation excluded), Stoke’s law, Terminal velocity, Streamline flow, 
Equation of continuity, Bernoulli’s theorem and its applications.

JEE  Advanced

Understanding Physics 

JEE Main & Advanced 



This book is dedicated to my honourable grandfather 

(Late) Sh. Pitamber Pandey
a Kumaoni poet and a resident of Village 
Dhaura (Almora), Uttarakhand 

Understanding Physics 

JEE Main & Advanced 



11

11.1 Centre of Mass

11.2 Motion of the Centre of Mass

11.3 Law of Conservation of Linear Momentum

11.4 Variable Mass

11.5 Linear Impulse

11.6 Collision

Chapter Contents

Centre of Mass

Linear Momentum

and Collision



11.1 Centre of Mass
When we consider the motion of a system of particles, there is one point in it which behaves as though

the entire mass of the system (i.e. the sum of the masses of all the individual particles) is concentrated

there and its motion is the same as would ensue if the resultant of all the forces acting on all the

particles were applied directly to it. This point is called the centre of mass (COM) of the system. The

concept of COM is very useful in solving many problems, in particular, those concerned with

collision of particles.

Position of Centre of Mass

First of all we find the position of COM of a system of particles. Just to make the subject easy we

classify a system of particles in three groups:

1. System of two particles.

2. System of a large number of particles and

3. Continuous bodies.

Now, let us take them separately.

Position of COM of Two Particles
Centre of mass of two particles of mass m1 and m2 separated by a distance of d lies in between the two

particles. The distance of centre of mass from any of the particle ( )r is inversely proportional to the

mass of the particle ( )m .

i.e. r
m

∝
1

or
r

r

m

m

1

2

2

1

=

or m r m r1 1 2 2=

or r
m

m m
d1

2

2 1

=
+







 and r

m

m m
d2

1

1 2

=
+









Here, r m1 1=distance of COM from

and r m2 2=distance of COM from

From the above discussion, we see that

r r
d

1 2
2

= = if m m1 2= , i.e. COM lies midway between the two particles of equal masses.

Similarly, r r1 2> if m m1 2< and r r1 2< if m m1 2> , i.e. COM is nearer to the particle having larger

mass.
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V Example 11.1 Two particles of masses 1 kg and 2 kg are located at x = 0 and
x m= 3 . Find the position of their centre of mass.

Solution Since, both the particles lie on x-axis, the COM

will also lie on x-axis. Let the COM is located at x x= , then

r1 = distance of COM from the particle of mass 1kg = x

and r2 = distance of COM from the particle of mass 2 kg

= −( )3 x

Using
r

r

m

m

1

2

2

1

=

or
x

x3

2

1−
= or x = 2 m

Thus, the COM of the two particles is located at x = 2 m.

Position of COM of a Large Number of Particles
If we have a system consisting of n particles, of mass m m mn1 2, , ,K with r r r1 2, , ..., n as their

position vectors at a given instant of time. The position vector rCOM of the COM of the system at that

instant is given by:

r
r r r

COM =
+ + +
+ + +

m m m

m m m

n n

n

1 1 2 2

1 2

K

K

= =

=

Σ

Σ

i

n

i i

i

n

i

m

m

1

1

r

or r

r

COM = =
Σ

i

n

i im

M

1

Here, M m m mn= + + +1 2 K and Σ mi ir is called the first moment of the mass.

Further, r i j ki i i ix y z= + +$ $ $

and r i j kCOM COM COM COM= + +x y z$ $ $

So, the cartesian co-ordinates of the COM will be

x
m x m x m x

m m m

n n

n
COM =

+ + +
+ + +

1 1 2 2

1 2

K

K

= =
Σ

Σ
i

n

i i

i

m x

m

1
or x

m x

M

i

n

i i

COM = =
Σ

1

Similarly, y

m y

M

i

n

i i

COM = =
Σ

1

and z

m z

M

i

n

i i

COM = =
Σ

1
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V Example 11.2 The position vector of three particles of masses m kg1 1= ,
m kg2 2= and m kg3 3= are r i j k1 4= + +( $ $ $ ) ,m r i j k2 = + +( $ $ $ )m and
r i j k3 2 2= − −( $ $ $ ) m respectively. Find the position vector of their centre of mass.

Solution The position vector of COM of the three particles is given by

r
r r r

COM =
+ +
+ +

m m m

m m m

1 1 2 2 3 3

1 2 3

Substituting the values, we get

r
i j k i j k i j k

COM = + + + + + + − −
+

( )($ $ $ ) ( )($ $ $ ) ( $ $ $ )1 4 2 3 2 2

1 2 + 3

= + −9 3 3

6

$ $ $i j k

r i j kCOM m= + −1

2
3( $ $ $ )

V Example 11.3 Four particles of masses 1 kg, 2 kg, 3 kg and 4 kg are placed at
the four vertices A, B, C and D of a square of side 1 m. Find the position of
centre of mass of the particles.

Solution Assuming D as the origin, DC as x-axis and DA as y-axis, we

have

m1 1= kg, ( , ) ( ,x y1 1 0 1= m)

m2 2= kg, ( , ) ( )x y2 2 1= m, 1m

m3 3= kg, ( , ) ( , )x y3 3 1 0= m

and m4 4= kg, ( , ) ( , )x y4 4 0 0=
Coordinates of their COM are

x
m x m x m x m x

m m m m
COM =

+ + +
+ + +

1 1 2 2 3 3 4 4

1 2 3 4

= + + +
+ + +

( )( ) ( ) ( ) ( )1 0 2 1 3 1 4 0

1 2 3 4

= 5

10
= 1

2
m= 0.5 m

Similarly, y
m y m y m y m y

m m m m
COM =

+ + +
+ + +

1 1 2 2 3 3 4 4

1 2 3 4

= + + +
+ + +

( )( ) ( ) ( ) ( )1 1 2 1 3 0 4 0

1 2 3 4

= 3

10
m = 0.3 m

∴ ( , )x yCOM COM (0.5 m, 0.3 m)=

Thus, position of COM of the four particles is as shown in Fig. 11.4.
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Position of COM of Continuous Bodies
If we consider the body to have continuous distribution of matter the summation in the formula of

COM is replaced by integration. Suppose x, y and z are the co-ordinates of a small element of mass

dm, we write the co-ordinates of COM as

x
x dm

dm

x dm

M
COM = =∫

∫
∫

y
y dm

dm

y dm

M
COM = =∫

∫
∫

and z
z dm

dm

z dm

M
COM = =∫

∫
∫

Here, dm is the mass of small element and ( , , )x y z co-ordinates of COM of this element.

Note In most of the cases element is a particle. In this case, COM of this particle lies over the particle itself.

Let us take an example.

Centre of Mass of a Uniform Rod
Suppose a rod of mass M and length L is lying along the x-axis with its one end at x =0and the other at

x L= .

Mass per unit length of the rod =
M

L

Hence, the mass of the element PQ of length dx situated at x x= is dm
M

L
dx=

The coordinates of the element PQ are ( , , )x 0 0 . Therefore, x-coordinate of COM of the rod will be

x
x dm

dm

L

COM =
∫
∫
0 =





∫0

L
x

M

L
dx

M

( )

= ∫
1

0L
x dx

L
=

L

2

The y-coordinate of COM is

y
y dm

dm
COM = =∫

∫
0 (as y =0)

Similarly, zCOM =0

i.e. the coordinates of COM of the rod are
L

2
0 0, , .







Or it lies at the centre of the rod.
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Proceeding in the similar manner, we can find the COM of certain rigid bodies. Centre of mass of

some well known rigid bodies are given below :

1. Centre of mass of a uniform rectangular, square or circular plate  lies at its centre.

2. Centre of mass of a uniform semicircular ring lies at a distance of h
R

=
2

π
from its centre, on the

axis of symmetry where R is the radius of the ring.

3. Centre of mass of a uniform semicircular disc of radius R lies at a distance of h
R

=
4

3π
from the

centre on the axis of symmetry as shown in Fig. 11.8.

4. Centre of mass of a hemispherical shell of radius R lies at a distance of h
R

=
2

from its centre on

the axis of symmetry as shown in figure 11.9.

5. Centre of mass of a solid hemisphere of radius R lies at a distance of h
R

=
3

8
from its centre on the

axis of symmetry.

V Example 11.4 A rod of length L is placed along the x-axis between x = 0 and
x L= . The linear mass density (mass/length) ρ of the rod varies with the
distance x from the origin as ρ = +a bx. Here, a and b are constants. Find the
position of centre of mass of this rod.
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Solution Mass of element PQ of length dx situated at

x x= is

dm dx a bx dx= = +ρ ( )

The COM of the element has co-ordinates ( , , )x 0 0 . Therefore, x-coordinate of COM of the rod

will be

x
x dm

dm

L

LCOM = ∫
∫
0

0

=
+

+

∫
∫

0

0

L

L

x a bx dx

a bx dx

( )( )

( )

=

+










+










ax bx

ax
bx

L

L

2 3

0

2

0

2 3

2

or x
aL bL

a bL
COM = +

+
3 2

6 3

2

The y-coordinate of COM of the rod is

y
y dm

dm
COM = =∫

∫
0 (as y = 0)

Similarly, zCOM = 0

Hence, the centre of mass of the rod lies at
3 2

6 3
0 0

2aL bL

a bL

+
+













, , Ans.

� For a laminar type (2-dimensional) body the formulae for finding the position of centre of mass are as

under:

(i) r
r r r

COM = + + +
+ + +

A A A

A A A

n n

n

1 1 2 2

1 2

K

..

(ii) x
A x A x A x

A A A

n n

n

COM = + + +
+ + +

1 1 2 2

1 2

K

K

y
A y A y A y

A A A

n n

n

COM = + + +
+ + +

1 1 2 2

1 2

K

K

and z
A z A z A z

A A A

n n

n

COM = + + +
+ + +

1 1 2 2

1 2

K

K

Here, A stands for the area.

� If some mass or area is removed from a rigid body, then the position of centre of mass of the remaining

portion is obtained from the following formulae:

(i) r
r r

COM = −
−

m m

m m

1 1 2 2

1 2

or r
r r

COM = −
−

A A

A A

1 1 2 2

1 2

Chapter 11 Centre of Mass, Linear Momentum and Collision � 7
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(ii) x
m x m x

m m
COM = −

−
1 1 2 2

1 2

or x
A x A x

A A
COM = −

−
1 1 2 2

1 2

y
m y m y

m m
COM = −

−
1 1 2 2

1 2

or y
A y A y

A A
COM = −

−
1 1 2 2

1 2

and z
m z m z

m m
COM = −

−
1 1 2 2

1 2

or z
A z A z

A A
COM = −

−
1 1 2 2

1 2

Here, m A1 1 1, ,r x y1 1, and z1 are the values for the whole mass while m2, A x y2 2 2 2, , ,r and z2 are the values for

the mass which has been removed.

V Example 11.5 Find the position of centre of mass of the uniform lamina
shown in figure.

Solution Here, A a1
2= area of complete circle = π

A2 = area of small circle

= 





=π πa a

2 4

2 2

( , )x y1 1 = coordinates of centre of mass of large circle = ( , )0 0

( , )x y2 2 = coordinates of centre of mass of small circle = 





a

2
0,

Using x
A x A x

A A
COM =

−
−

1 1 2 2

1 2

we get x

a
a a

a
a

COM =
−









 





−

( )( )π π

π π

2
2

2
2

0
4 2

4

=
− 











1

8

3

4

a = − a

6

and yCOM = 0 as y1 and y2 both are zero.

Therefore, coordinates of COM of the lamina shown in figure are −





a

6
0, .
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1. What is the difference between centre of mass and centre of gravity?

2. The centre of mass of a rigid body always lies inside the body. Is this statement true or false ?

3. The centre of mass always lies on the axis of symmetry if it exists. Is this statement true or false?

4. If all the particles of a system lie in y-z plane, the x-coordinate of the centre of mass will be zero.

Is this statement true or false?

5. What can be said about the centre of mass of a solid hemisphere of radius r without making any

calculation. Will its distance from the centre be more than r /2 or less than r /2?

6. All the particles of a body are situated at a distance R from the origin. The distance of the centre

of mass of the body from the origin is also R. Is this statement true or false?

7. Three particles of masses 1 kg, 2 kg and 3 kg are placed at the corners A, B and C respectively

of an equilateral triangle ABC of edge 1 m. Find the distance of their centre of mass from A.

8. Find the distance of centre of mass of a uniform plate having

semicircular inner and outer boundaries of radii a and b from the

centre O.

Hint : Distance of COM of semicircular plate from centre  is
4

3

r

π
.

9. Find the position of centre of mass of the section shown in

figure 11.14.

Note Solve the problem by using both the formulae:

(i) x
A x A x

A A
COM = +

+
1 1 2 2

1 2

and (ii) x
A x A x

A A
COM = −

−
1 1 2 2

1 2

10. Four particles of masses 1 kg, 2 kg, 3 kg and 4 kg are placed at the four vertices A, B, C and D of

a square of side 1 m. Find square of distance of their centre of mass from A.

11. A square lamina of side a and a circular lamina of diameter a are placed

touching each other as shown in Fig. 11.15. Find distance of their

centre of mass from point O, the centre of square.

12. The density of a thin rod of length l varies with the distance x from one

end as ρ ρ= 0

2

2

x

l
. Find the position of centre of mass of rod.

13. A straight rod of length L has one of its end at the origin and the other at x L= . If the mass per

unit length of the rod is given by Ax where A is a constant, where is its centre of mass?

Chapter 11 Centre of Mass, Linear Momentum and Collision � 9
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11.2 Motion of the Centre of Mass
Let us consider the motion of a system of n particles of individual masses m m mn1 2, , ..., and total

mass M. It is assumed that no mass enters or leaves the system during its motion, so that M remains

constant. Then, as we have seen in the above article, we have the relation

r
r r r

COM =
+ + +
+ + +

m m m

m m m

n n

n

1 1 2 2

1 2

K

K

=
+ + +m m m

M

n n1 1 2 2r r rK

or M m m mn nr r r rCOM = + + +1 1 2 2 K

Differentiating this expression with respect to time t, we have

M
d

dt
m

d

dt
m

d

dt
m

d

dt
n

nr r r rCOM = + + +1
1

2
2

K

Since,
d

dt

r
= velocity

Therefore, M m m mn nv v v vCOM = + + +1 1 2 2 K …(i)

or velocity of the COM is

v
v v v

COM =
+ + +m m m

M

n n1 1 2 2 ...

or v

v

COM = =
Σ

i

n

i im

M

1

Further, mv = momentum of a particle p. Therefore, Eq. (i) can be written as

p p p pCOM = + + +1 1 ... n

or p pCOM =
=
Σ

i

n

i
1

Differentiating Eq. (i) with respect to time t, we get

M
d

dt
m

d

dt
m

d

dt
m

d

dt
n

nv v v vCOM = + + +1
1

2
2

K

or M m m mn na a a aCOM = + + +1 1 2 2 K …(ii)

or a
a a a

COM =
+ + +m m m

M

n n1 1 2 2 K

or a

a

COM = =
Σ

i

n

i im

M

1
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Further, in accordance with Newton’s second law of motion F a= m . Hence, Eq. (ii) can be

written as

F F F FCOM = + + +1 2 ... n

or F FCOM =
=
Σ

i

n

i
1

Thus, as pointed out earlier also, the centre of mass of a system of particles moves as though it were a

particle of mass equal to that of the whole system with all the external forces acting directly on it.

� Students are often confused over the problems of centre of mass. They cannot answer even the basic

problems of COM. For example, let us take a simple problem: two particles one of mass 1 kg and the other

of 2 kg are projected simultaneously with the same speed from the roof of a tower, the one of mass 1 kg

vertically upwards and the other vertically downwards. What is the acceleration of centre of mass of these

two particles? When I ask this question in my first class of centre of mass, three answers normally come

from the students g
g

,
3

and zero. The correct answer is g. Because

a
a a

COM = +
+

m m

m m

1 1 2 2

1 2

Here, a a1 2= =g (downwards)

∴ aCOM = +
+

=( )( ) ( )( )1 2

1 2

g g
g (downwards)

The idea behind this is that apply the basic equations when asked anything about centre of mass. Just as

a revision I am writing below all the basic equations of COM at one place.

r
r r r

COM = + + +
+ + +

m m m

m m m

n n

n

1 1 2 2

1 2

K

K

x
m x m x m x

m m m

n n

n

COM = + + +
+ + +

1 1 2 2

1 2

K

K

y
m y m y m y

m m m

n n

n

COM = + + +
+ + +

1 1 2 2

1 2

K

K

z
m z m z m z

m m m

n n

n

COM = + + +
+ + +

1 1 2 2

1 2

K

K

v
v v v

COM = + + +
+ + +

m m m

m m m

n n

n

1 1 2 2

1 2

K

...

P P P PCOM = + + +1 2 ... n

a
a a a

COM = + + +
+ + +

m m m

m m m

n n

n

1 1 2 2

1 2

K

K

and F F F FCOM = + + +1 2 ... n
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V Example 11.6 Two particles A and B of masses 1 kg and 2 kg
respectively are projected in the directions shown in figure with
speeds u A = 200 m/s and u B = 50 m/s. Initially they were 90 m
apart. They collide in mid air and stick with each other. Find
the maximum height attained by the centre of mass of the
particles. Assume acceleration due to gravity to be constant.

( =g m s10 2/ )

Solution Using m r m rA A B B=
or ( )( ) ( )( )1 2r rA B=
or r rA B= 2 …(i)

and r rA B+ = 90 m …(ii)

Solving these two equations, we get

rA = 60 m and rB = 30m

i.e. COM is at height 60 m from the ground at time t = 0.

Further, a
a a

COM =
+
+

m m

m m

A A B B

A B

= =g 10 m/s 2 (downwards)

as a aA g g= = (downwards)

u
u u

COM =
+
+

m m

m m

A A B B

A B

= −
+

( )( ) ( )( )1 200 2 50

1 2
= 100

3
m/s (upwards)

Let, h be the height attained by COM beyond 60 m. Using,

v u a hCOM COM COM
2 2 2= +

or 0
100

3
2 10

2

= 





− ( ) ( )h

or h = =( )100

180

2

55.55 m

Therefore, maximum height attained by the centre of mass is

H = +60 55.55= 115.55 m Ans.

V Example 11.7 In the arrangement shown in figure, m kgA = 2 and m kgB = 1 .
String is light and inextensible. Find the acceleration of centre of mass of both
the blocks. Neglect friction everywhere.
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Solution Net pulling force on the system is ( )m m gA B−

or ( )2 1− =g g

Total mass being pulled is m mA B+ or 3 kg

∴ a = Net pulling force

Total mass
= g

3

Now, a
a a

COM =
+
+

m m

m m

A A B B

A B

= −
+

( )( ) ( )( )2 1

1 2

a a = a

3
= g

9
(downwards)

Alternate Method

Free body diagram of block A is shown in Fig. 11.19.

2g T m aA− = ( )

or T g m aA= −2

= − 





2 2
3

g
g

( ) = 4

3

g

Free body diagrams of A and B both are as shown in Fig. 11.20.

aCOM

Net force on both the blocks=
+m mA B

=
+ −

+
( )m m g TA B 2

2 1

=
−3

8

3

3

g
g

= g

9
(downwards)

V Example 11.8 Two blocks A and B of equal masses are released on two sides
of a fixed wedge C as shown in figure. Find the acceleration of centre of mass of
blocks A and B. Neglect friction.
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Solution Acceleration of both the blocks will be g sin 45° or
g

2
at right angles to each other. Now,

a
a a

COM =
+
+

m m

m m

A A B B

A B

Here, m mA B=

∴ a a aCOM = + =1

2

1

2
( )A B g (downwards)

1. A block of mass 1 kg is at x = 10 m and moving towards negative x-axis with velocity 6 m/s.

Another block of mass 2 kg is at x = 12 m and moving towards positive x-axis with velocity 4 m/s

at the same instant. Find position of their centre of mass after 2 s.

2. Two particles of masses 1 kg and 2 kg respectively are initially 10 m apart. At time t = 0, they

start moving towards each other with uniform speeds 2 m/s and 1 m/s respectively. Find the

displacement of their centre of mass at t = 1s.

3. There are two masses m1 and m2 placed at a distance l apart. Let the centre of mass of this

system is at a point named C. If m1 is displaced by l1 towards C and m2 is displaced by l2 away

from C. Find the distance, from C where new centre of mass will be located.

4. At one instant, the centre of mass of a system of two particles is located on the x-axis at x = 3.0

m and has a velocity of (6.0 m/s)$j . One of the particles is at the origin, the other particle has a

mass of 0.10 kg and is at rest on the x-axis at x = 12.0 m.

(a) What is the mass of the particle at the origin ?

(b) Calculate the total momentum of this system.

(c) What is the velocity of the particle at the origin ?

5. A stone is dropped at t = 0. A second stone, with twice the mass of the first, is dropped from the

same point at t = 100 ms.

(a) How far below the release point is the centre of mass of the two stones at t = 300 ms ?

(Neither stone has yet reached the ground).

(b) How fast is the centre of mass of the two-stone system moving at that time ?

6. Two blocks A and B of equal masses are attached to a string passing over a smooth pulley fixed

to a wedge as shown in figure. Find the magnitude of acceleration of centre of mass of the two

blocks when they are released from rest. Neglect friction.
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11.3 Law of Conservation of Linear Momentum
The product of mass and the velocity of a particle is defined as its linear momentum ( )p . So,

p v=m

The magnitude of linear momentum may be written as

p mv= or p m v m mv mK2 2 2 22
1

2
2= = 





=

Thus, p Km= 2 or K
p

m
=

2

2

Here, K is the kinetic energy of the particle. In accordance with Newton’s second law,

F a
v v p

= = = =m m
d

dt

d m

dt

d

dt

( )

Thus, F
p

=
d

dt

In case the external force applied to a particle (or a body) be zero, we have

F
p

= =
d

dt
0 or p = constant

showing that in the absence of an external force, the linear momentum of a particle (or the body)

remains constant. This is called the law of conservation of linear momentum. The law may be

extended to a system of particles or to the centre of mass of a system of particles. For example, for a

system of particles it takes the form :

If net force (or the vector sum of all the forces) on a system of particles is zero, the vector sum of linear

momentum of all the particles remain conserved, or

If F F F F F= + + + + =1 2 3 0... n

Then, p p p p1 2 3+ + + + =... n constant

The same is the case for the centre of mass of a system of particles, i.e. if

FCOM =0, pCOM constant.=
Thus, the law of conservation of linear momentum can be applied to a single particle, to a system of

particles or even to the centre of mass of the particles.

The law of conservation of linear momentum enables us to solve a number of problems which can not

be solved by a straight application of the relation F a=m .

For example, suppose a particle of mass m initially at rest, suddenly explodes into two fragments of

masses m1 and m2 which fly apart with velocities v1 and v 2 respectively. Obviously, the forces

resulting in the explosion of the particle must be internal forces, since no external force has been

applied. In the absence of the external forces, therefore, the momentum must remain conserved and

we should have

m m miv v v= +1 1 2 2
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Extra Points to Remember

Since, the particle was initially at rest, v i =0 and therefore,

m m1 1 2 2 0v v+ =

v v1
2

1
2= −

m

m
or

| |

| |

v

v

1

2

2

1

=
m

m

Showing at once that the velocities of the two fragments must be inversely proportional to their

masses and in opposite directions along the same line. This result could not possibly be arrived at

from the relation F a=m , since we know nothing about the forces that were acting during the

explosion. Nor, could we derive it from the law of conservation of energy.

� If law of conservation of linear momentum is applied to a single particle, then we can explain it like this.

If net force or net external force (as there is no internal force on a single particle) acting on the particle is zero

then its linear momentum remains constant. If mass of the particle is constant, then velocity of the particle is

also constant. If the particle is at rest then it will remain at rest for ever. If it is moving then it will continue to be

moving with constant velocity.

� If law of conservation of momentum is applied to a system of particles (may be a rigid body also) then the

law is like this :

It net force or net external force (as summation of net internal forces acting on a system of particles is

already zero) on a system of particles (or on the centre of mass of the system of particles) is zero, then total

momentum of the system of particles (or momentum of centre of mass of the system of particles) remains

constant. If total mass of the system of particles is constant then velocity of centre of mass will also remain

constant.

� If a projectile explodes in air in different parts, the path of the centre of mass remains unchanged. This is

because during explosion no external force (except gravity) acts on the centre of mass. The situation is as

shown in figure.

Path of COM is parabola, even though the different parts travel in different directions after explosion.

This situation continues till the first particle strikes the ground. Because, after that force behaviour of system

of particles will change.

V Example 11.9 Linear momentum of particle is increased by

(a) 100 % (b) 1 %

without changing its mass. Find percentage increase in its kinetic energy in both

cases.

Solution (a) Relation between kinetic energy K and momentum p is given by:

K
p

m
=

2

2
……(i)

Now, momentum is increased by 100%.

So, new momentum, p p′ = 2
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∴ K
p

m

p

m
′ = ′ =( ) ( )2 2

2

2

2
=













4
2

2p

m
= 4 K [From Eq. (i)]

Now percentage change in kinetic energy,

= −





×Final value Initial value

Initial value
100

= ′ −





×K K

K
100 = −





×4
100

K K

K

= +300% Ans.

Plus sign indicates that, with increase in linear momentum, kinetic energy will also increase.

(b) K
p

m
=

2

2
or K p∝ 2 (as m= constant)

Here, power of K is 1 and power of p is 2. For small changes, we can  write it like this

(1) (% change in K) = ( )2 (% change in p)

or % change in K = ( ) ( %)2 1 = +2% Ans.

V Example 11.10 Kinetic energy of a particle is increased by

(a) 50 % (b) 1 %

Find percentage change in linear momentum.

Solution (a) p Km= 2 …(i)

Kinetic energy is increased by 50 %. So, the new value of kinetic energy is

K K′ = 15.

∴ P K m′ = ′2

= 2 15( . )K m = 1.5 ( )2Km

= 1.22 2 Km = 1.22 p [From Eq. (i)]

So, the percentage change in momentum is

= ′ −





 ×p p

p
100 = −






 ×1.22 p p

p
100 = +22% Ans.

(b) p Km= 2 or p K∝ or p K∝
1

2 ( )as constantm =

Here, power of p is 1 and the power of K is
1

2
.

For small percentage changes we can write as

(1) (% change in P) = 1

2







(% change in K)

or % change in p = 1

2
(1%) = +0.5% Ans.
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V Example 11.11 Two blocks A and B of masses 1 kg and 2 kg are connected
together by means of a spring and are resting on a horizontal frictionless table.
The blocks are then pulled apart so as to stretch the spring and then released.
Find the ratio of their,

(a) speed

(b) magnitude of momentum and

(c) kinetic energy at any instant.

Solution (a) Net force on the system of two blocks is zero. Therefore, linear momentum of the

system will remain constant. Initially, they are at rest. So, at any instant the net momentum will

be zero.

∴ p p1 2 0+ =
⇒ p p1 2= − …(i)

or m m1 1 2 2v v= −
or ( )1 21 2v v= −

or
v

v

1

2

2= Ans.

(b) From Eq. (i),
p

p

1

2

1=

(c) K
p

m
=

2

2
or K

p

m
∝

2

∴
K

K

p

p

m

m

1

2

1

2

2

2

1

=














 = 





( )1
2

1

2 = 2 Ans.

V Example 11.12 A gun (mass = M) fires a bullet (mass = m ) with speed vr

relative to barrel of the gun which is inclined at an angle of 60° with horizontal.
The gun is placed over a smooth horizontal surface. Find the recoil speed of
gun.

Solution Let the recoil speed of gun is v. Taking gun + bullet as the system. Net external force

on the system in horizontal direction is zero. Initially the system was at rest. Therefore, applying

the principle of conservation of linear momentum in horizontal direction, we get

Mv m v vr− ° − =( cos )60 0

∴ v
mv

M m

r=
°

+
cos 60

or v
mv

M m

r=
+2( )

Ans.
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V Example 11.13 A projectile of mass 3 m is projected from ground with velocity
20 2 m/s at 45° . At highest point it explodes into two pieces. One of mass 2 m

and the other of mass m. Both the pieces fly off horizontally in opposite
directions. Mass 2 m falls at a distance of 100 m from point of projection. Find
the distance of second mass from point of projection where it strikes the ground.

( / )g m s= 10 2

Solution Range of the projectile in the absence of explosion

R
u

g
=

2 2sin θ = °( ) sin20 2 90

10

2

= 80 m

The path of centre of mass of projectile will not change, i.e. xCOM is

still 80 m. Now, from the definition of centre of mass

x
m x m x

m m
COM =

+
+

1 1 2 2

1 2

or 80
2 100

2

1=
+
+

( )( ) ( )( )m x m

m m

Solving this equation, we  get x1 40= m

Therefore, the mass m will fall at a distance x1 40= cm from point of projection. Ans.

1. Three particles of masses 20 g, 30 g and 40 g are initially moving along the positive direction of the

three coordinate axes respectively with the same velocity of 20 cm/s. When due to their mutual

interaction, the first particle comes to rest, the second acquires a velocity( $ $ )10 20i k+ cm/s. What is

then the velocity of the third particle?

2. A boy of mass 25 kg stands on a board of mass 10 kg which in turn is kept on a frictionless

horizontal ice surface. The boy makes a jump with a velocity component 5 m/s in a horizontal

direction with respect to the ice. With what velocity does the board recoil? With what rate are the

boy and board separating from each other?

3. Find the ratio of the linear momenta of two particles of masses 1.0 kg and 4.0 kg if their kinetic

energies are equal.

4. A uranium-238 nucleus, initially at rest, emits an alpha particle with a speed of 1.4 m/s×107 .

Calculate the recoil speed of the residual nucleus thorium-234. Assume that the mass of a

nucleus is proportional to the mass number.

5. A man of mass 50 kg starts moving on the earth and acquires a speed of 1.8 m/s. With what

speed does the earth recoil? Mass of earth = ×6 1024 kg.

6. A man of mass 60 kg jumps from a trolley of mass 20 kg standing on smooth surface with

absolute velocity 3 m/s. Find velocity of trolley and total energy produced by man.

7. A projectile is fired from a gun at an angle of 45° with the horizontal and with a speed of 20 m/s

relative to ground. At the highest point in its flight the projectile explodes into two fragments of

equal masses. One fragment, whose initial speed is zero falls vertically. How far from the gun

does the other fragment land, assuming a level terrain? Take g = 10 2m/s ?
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11.4 Variable Mass
In our discussion of the conservation of linear momentum, we have so far dealt with systems whose

mass remains constant. We now consider those systems whose mass is variable, i.e. those in which

mass enters or leaves the system. A typical case is that of the rocket from which hot gases keep on

escaping, thereby continuously decreasing its mass.

In such problems you have nothing to do but apply a thrust force ( )Ft to the main mass in addition to

the all other forces acting on it. This thrust force is given by,

F vt

dm

dt
= ±



rel

Here, v rel is the velocity of the mass gained or mass ejected relative to the main mass. In case of

rocket this is sometimes called the exhaust velocity of the gases.
dm

dt
is the rate at which mass is

increasing or decreasing.

The expression for the thrust force can be derived from the conservation of linear momentum in the

absence of any external forces on a system as follows :

Suppose at some moment mass of a body is m and its velocity is v. After some time interval dt its mass

becomes ( )m dm− and velocity becomes v v+ d . The mass dm is ejected with relative velocity v r .

Absolute velocity of mass ‘ ’dm is therefore ( )v v vr d+ + . If no external forces are acting on the

system, the linear momentum of the system will remain conserved, or

p pi f=
or m m dm d dmv v v= − + +( ) ( ) ( )v v vr d+ +
or m m md dm dm dv v v v v= + − −( ) ( ) + + +dm dm dm drv v v( ) ( )

∴ md dmrv v= − or m
d

dt

dm

dt
r

v
v







= −





Here, m
d

dt

v
F







= thrust force ( )1

and − =
dm

dt
rate at which mass is ejecting
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Problems Related to Variable Mass can be Solved in Following Three Steps
1. Make a list of all the forces acting on the main mass and apply these forces on it.

2. Apply an additional thrust force Ft on the mass, the magnitude of which is v r

dm

dt
±







 


 and

direction is given by the direction of v r in case the mass is increasing and in the direction of −v r

if it is decreasing.

3. Find net force on the mass and apply

F
v

net = m
d

dt
(m = mass at that particular instant)

Rocket Propulsion
Let m0 be the mass of the rocket at time t =0.m its mass at any time t and v its velocity at that moment.

Initially let us assume that the velocity of the rocket is u.

Further, let
−





dm

dt
be the mass of the gas ejected per unit time and vr the exhaust velocity of the

gases. Usually
−





dm

dt
and vr are kept constant throughout the journey of the rocket. Now, let us write

few equations which can be used in the problems of rocket propulsion. At time t t= ,

1. Thrust force on the rocket

F = v –
dm

dt
t r







(upwards)

2. Weight of the rocket

w mg= (downwards)

3. Net force on the rocket

F F – Wtnet = (upwards)

or F v
dm

dt
mgrnet =

−





−

4. Net acceleration of the rocket a =
F

m

or
dv

dt

v

m

dm

dt
g

r=
−





−
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or dv v
dm

m
g dtr=

−





−

or dv v
dm

m
g dtru

v

m

m t
=

−
−∫ ∫ ∫

0 0

or v u v
m

m
gtr− = 





−ln
0

Thus, v u gt v
m

m
r= − + 





ln
0

…(i)

Note (i) F v
dm

dt
t r= −



 is upwards, as vr is downwards and

dm

dt
is negative.

(ii) If gravity is ignored and initial velocity of the rocket u = 0, Eq. (i) reduces to v v
m

m
r= 



ln 0 .

V Example 11.14 (a) A rocket set for vertical firing weighs 50 kg and contains

450 kg of fuel. It can have a maximum exhaust velocity of 2 km/s. What should

be its minimum rate of fuel consumption

(i)  to just lift it off the launching pad?

(ii) to give it an initial acceleration of 20 m/s2?

(b) What will be the speed of the rocket when the rate of consumption of fuel is

10 kg s/ after whole of the fuel is consumed? (Take g m s= 9.8 / 2)

Solution (a) (i) To just lift it off the launching pad

weight thrust force=

or mg v
dm

dt
r= −





or
−





=dm

dt

mg

vr

Substituting the values, we get

−





= +
×

dm

dt

( )(450 50

2 103

9.8)

= 2.45 kg/s Ans.

(ii) Net acceleration m/sa = 20 2

∴ ma F mgt= −

or a
F

m
gt= −

or a
v

m

dm

dt
gr= −





−

This gives −





= +dm

dt

m g a

vr

( )
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Substituting the values, we get

−





= + +
×

dm

dt

( )( )450 50 20

2 103

9.8

= 7.45 kg/s Ans.

(b) The rate of fuel consumption is 10 kg/s.

So, the time for the consumption of entire fuel is

t = =450

10
45s

Using Eq. (i), i.e. v u gt v
m

m
r= − + 





ln 0

Here, u = 0, vr = ×2 103 m/s, m0 500= kg and m = 50 kg

Substituting the values, we get

v = − + × 





0 45 2 10
500

50

3( ( ) ( ) ln9.8)

or v = − +441 4605.17

or v = 4164.17 m/s

or v = 4.164 km/s Ans.

1. A rocket of mass 20 kg has 180 kg fuel. The exhaust velocity of the fuel is 1.6 km/s. Calculate

the minimum rate of consumption of fuel so that the rocket may rise from the ground. Also,

calculate the ultimate vertical speed gained by the rocket when the rate of consumption of fuel is

( )g =9.8 m/s2

(i) 2 kg/s (ii) 20 kg/s

2. A rocket, with an initial mass of 1000 kg, is launched vertically upwards from rest under gravity.

The rocket burns fuel at the rate of 10 kg per second. The burnt matter is ejected vertically

downwards with a speed of 2000 1ms− relative to the rocket. If burning ceases after one minute,

find the maximum velocity of the rocket. (Take g as constant at 10 2ms− )

3. A rocket is moving vertically upward against gravity. Its mass at time t is m m t= −0 µ and it

expels burnt fuel at a speed u vertically downward relative to the rocket. Derive the equation of

motion of the rocket but do not solve it. Here, µ is constant.

4. A rocket of initial mass m0 has a mass m t0 1 3( / )− at time t. The rocket is launched from rest

vertically upwards under gravity and expels burnt fuel at a speed u relative to the rocket

vertically downward. Find the speed of rocket at t = 1.
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11.5 Linear Impulse
Consider a constant force F which acts for a time t on a body of mass m, thus, changing its velocity

from u to v. Because the force is constant, the body will travel with constant acceleration a where

F a= m

and a v ut = −

hence,
F

v u
m

t = −

or F v ut m m= −
The product of constant force F and the time t for which it acts is called the impulse ( )J of the force

and this is equal to the change in linear momentum which it produces.

Thus, Impulse =( )J F p p pt f i
= = −∆

Instantaneous Impulse There are many occasions when a force acts for such a short time that the

effect is instantaneous, e.g. a bat striking a ball. In such cases, although the magnitude of the force and

the time for which it acts may each be unknown but the value of their product (i.e., impulse) can be

known by measuring the initial and final momenta. Thus, we can write

J F p p p= = = −∫ dt f i∆

Regarding the impulse it is important to note that impulse applied to an object in a given time interval

can also be calculated from the area under force-time (F-t) graph in the same time interval.

In one dimensional motion, we can simply write as,

J F dt p p pf i= = = −∫ ∆

In this equation all vector quantities ( J, F and p) are taken with proper signs.

Further, if mass is constant, then we can write,

p pf i− as m v vf i( )−
Now depending on the nature of force there are following three cases :

Case 1 If force is constant, then linear impulse can be obtained by multiplying this constant force

with the given time interval. Now, this impulse is change in linear momentum.

Case 2 If force is a function of time, then linear impulse can be obtained by integrating this linear

function of time in the given time interval. Result of this integration (or linear impulse) is equal to the

change in linear momentum.

Case 3 If force versus time graph is given, then linear impulse can be obtained by the area under

F-t graph. This area (or the linear impulse) is equal to the change in linear momentum.

Note Normally, the word impulse is used when a large force acts for a short interval of time but the equations

discussed above can be used even if the time interval is large.
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V Example 11.15 A ball of mass 200 g is projected with a velocity of 30 m/s at
30° from horizontal. Using the concept of impulse, find change in velocity in 2 s.

Take g m s=10 2/ .

Solution In air, a constant force (= weight = mg) will act on the ball. Therefore, the linear

impulse can be obtained directly by multiplying this constant force with the given time interval.

Further, this linear impulse is equal to the change in linear momentum. Thus,

J F v= × = =t m∆ ∆p

⇒ ∆v F g= 





= 





t

m

t

m
m

= × =g t ( ) ( )10m/s downwards 2 s2

= 20m/s (downwards) Ans.

V Example 11.16 A time varying force, F t=2 is acting on a particle of mass
2 kg moving along x-axis. velocity of the particle is 4 m s/ along negative x-axis at
time t =0. Find the velocity of the particle at the end of 4 s.

Solution Given force is a function of time.

So, linear impulse can be obtained by integration.  Further, this impulse is equal to change in

linear momentum.

Thus, J F dt p p p m v vf i f i= = = − = −∫ ∆ ( )

or v
m

F dt vf i= +∫
1 = −∫

1

2
2 4

0

4
( )t dt (vi = −4 m/s)

= −1

2
42

0
4[ ]t = − −1

2
16 0 4[ ]

= +4 m/s Ans.

Therefore, the final velocity is 4 m/s along positive x-direction.

V Example 11.17 A particle of mass 2 kg is initially at rest. A force starts acting
on it in one direction whose magnitude changes with time. The force time graph
is shown in figure. Find the velocity of the particle at the end of 10 s.

Solution Using impulse = Change in linear momentum (or area under F-t graph)

We have, m v vf i( )− = Area
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or 2 0
1

2
2 10 2 10( )v f − = × × + × + × × + + × ×1

2
2 10 20

1

2
4 20( )

= + + +10 20 30 40 or 2 100v f =
∴ v f = 50 m/s Ans.

V Example 11.18 A bullet of mass 10 3− kg strikes an obstacle and moves at 60°
to its original direction. If its speed also changes from 20 m/s to 10 m/s. Find
the magnitude of impulse acting on the bullet.

Solution Mass of the bullet m = −10 3 kg

Consider components parallel to J1 .

J1
310 10 60 20= − ° − −− [ cos ( )] or J1

315 10= × − N-s

Similarly, parallel to J 2 , we have

J 2
310 10 60 0= ° −− [ sin ] = × −5 3 10 3 N-s

The magnitude of resultant impulse is given by

J J J= +1
2

2
2 = +−10 15 5 33 2 2( ) ( ) or J = × −3 10 2 N-s Ans.

1. A truck of mass 2 103× kg travelling at 4 m/s is brought to rest in 2 s when it strikes a wall. What

force (assume constant) is exerted by the wall ?

2. A ball of mass m, travelling with velocity2 3$ $i j+ receives an impulse −3m$.i What is the velocity of

the ball immediately afterwards ?

3. The net force versus time graph of a rocket is shown in figure. The mass of the rocket is 1200 kg.

Calculate velocity of rocket, 16 seconds after starting from rest. Neglect gravity.

4. A 5.0 g bullet moving at 100 m/s strikes a log. Assume that the bullet undergoes uniform

deceleration and stops in 6.0 cm. Find (a) the time taken for the bullet to stop, (b) the impulse on

the log and (c) the average force experienced by the log.
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11.6 Collision
Contrary to the meaning of the term ‘collision’ in our everyday life, in physics it does not necessarily

mean one particle ‘striking’ against other. Indeed two particles may not even touch each other and

may still be said to collide. All that is implied is that as the particles approach each other,

(i) an impulse (a large force for a relatively short time) acts on each colliding particles.

(ii) the total momentum of the particles remain conserved.

The collision is in fact a redistribution of total momentum of the particles. Thus, law of

conservation of linear momentum is indispensable in dealing with the phenomenon of collision

between particles. Consider a situation shown in figure.

Two blocks of masses m1 and m2 are moving with velocities v1 and v v2 1( )< along the same straight

line in a smooth horizontal surface. A spring is attached to the block of mass m2 . Now, let us see what

happens during the collision between two particles.

Figure (a) Block of mass m1 is behind m2 . Since, v v1 2> , the blocks will collide after some time.

Figure (b) The spring is compressed. The spring force F kx( )= acts on the two blocks in the

directions shown in figure. This force decreases the velocity of m1 and increases the velocity of m2 .

Figure (c) The spring will compress till velocity of both the blocks become equal. So, at maximum

compression (say xm) velocities of both the blocks are equal (say v).

Figure (d) Spring force is still in the directions shown in figure, i.e. velocity of block m1 is further

decreased and that of m2 is increased. The spring now starts relaxing.

Figure (e) The two blocks are separated from one another. Velocity of block m2 becomes more than

the velocity of block m1 , i.e. v v2 1′ > ′ .

Equations Which can be Used in the Above Situation
Assuming spring to be perfectly elastic following two equations can be applied in the above situation.

(i) In the absence of any external force on the system the linear momentum of the system will

remain conserved before, during and after collision, i.e.

m v m v m m v m v m v1 1 2 2 1 2 1 1 2 2+ = + = ′ + ′( ) …(i)
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(ii) In the absence of any dissipative forces, the mechanical energy of the system will also remain

conserved, i.e.

1

2

1

2

1

2

1

2
1 1

2
2 2

2
1 2

2 2m v m v m m v kxm+ = + +( )

= ′ + ′
1

2

1

2
1 1

2
2 2

2m v m v …(ii)

Note In the above situation we have assumed, spring to be perfectly elastic, i.e. it regains its original shape and

size after the two blocks are separated. In actual practice there is no such spring between the two blocks.

During collision, both the blocks (or bodies) are slightly deformed. This situation is similar to the

compression of the spring. Due to deformation, two equal and opposite forces act on both the blocks. These

two forces redistribute their linear momentum in such a manner that both the blocks are separated from

one another. The collision is said to be elastic if both the blocks regain their original shape and size

completely after they are separated. On the other hand if the blocks do not return to their original form the

collision is said to be inelastic. If the deformation is permanent and the blocks move together with same

velocity after the collision, the collision is said to be perfectly inelastic.

Types of Collision
Collision between two bodies may be classified in two ways:

1. Elastic collision and inelastic collision.

2. Head on collision or oblique collision.

As discussed earlier also collision between two bodies is said to be elastic if both the bodies come to

their original shape and size after the collision, i.e. no fraction of mechanical energy remains stored as

deformation potential energy in the bodies. Thus in addition to the linear momentum, kinetic energy

also remains conserved before and after collision. On the other hand, in an inelastic collision, the

colliding bodies do not return to their original shape and size completely after collision and some part

of the mechanical energy of the system goes to the deformation potential energy. Thus, only linear

momentum remains conserved in case of an inelastic collision.

Further, a collision is said to be head on (or direct) if the directions of the velocity of colliding

objects are along the line of action of the impulses, acting at the instant of collision. If just before

collision, at least one of the colliding objects was moving in a direction different from the line of

action of the impulses, the collision is called oblique or indirect.

Head on Elastic Collision

Let the two balls of masses m1and m2 collide each other elastically with velocities v1 and v2 in the

directions shown in Fig. 11.33(a). Their velocities become v1 ′ and v2 ′ after the collision along the

same line. Applying conservation of linear momentum,

we get

m v m v m v m v1 1 2 2 1 1 2 2+ = ′ + ′ …(iii)
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In an elastic collision kinetic energy before  and after collision is also conserved. Hence,

1

2

1

2

1

2

1

2
1 1

2
2 2

2
1 1

2
2 2

2m v m v m v m v+ = ′ + ′ …(iv)

Solving Eqs. (iii) and (iv) for v1 ′ and v2 ′, we get

v
m m

m m
v

m

m m
v1

1 2

1 2
1

2

1 2
2

2
′ =

−
+







 +

+






 …(v)

and v
m m

m m
v

m

m m
v2

2 1

1 2
2

1

1 2
1

2
′ =

−
+







 +

+






 …(vi)

Special Cases

1. If m m1 2= , then from Eqs. (v) and (vi), we can see that

v v1 2′ = and v v2 1′ =
i.e. when two particles of equal mass collide elastically and the collision is head on, they exchange

their velocities., e.g.

2. If m m1 2> > and v1 0= . Then
m

m

2

1

0≈ with these two substitutions v
m

m
1

2

1

0 0= =






and

we get the following two results

v1 0′ ≈ and v v2 2′ ≈ −
i.e. the particle of mass m1 remains at rest while the particle of mass m2 bounces back with same

speed v2 .

3. If m m2 1> > and v1 0= ,
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with the substitution
m

m

1

2

0≈ and v1 0= , we get the results

v v1 22′ ≈ and v v2 2′ ≈
i.e. the mass m1 moves with velocity 2 2v while the velocity of mass m2 remains unchanged.

Note It is important to note that Eqs. (v) and (vi) and their three special cases can be used only in case of a head

on elastic collision between two particles. I have found that many students apply these two equations even

if the collision is inelastic and do not apply these relations where clearly a head on elastic collision is given in

the problem.

Head on Inelastic Collision

As we have discussed earlier also, in an inelastic collision, the particles do not regain their shape and

size completely after collision. Some fraction of mechanical energy is retained by the colliding

particles in the form of deformation potential energy. Thus, the kinetic energy of the particles no

longer remains conserved. However, in the absence of external forces, law of conservation of linear

momentum still holds good.

Suppose the velocities of two particles of mass m1 and m2 before

collision be v1 and v2 in the directions shown in figure. Let v1 ′ and v2 ′
be their velocities after collision. The law of conservation of linear

momentum gives

m v m v m v m v1 1 2 2 1 1 2 2+ = ′ + ′ …(vii)

Collision is said to be perfectly inelastic if both the particles stick together after collision and move with

same velocity, say v ′ as shown in Fig. 11.38. In this case, Eq. (vii) can be written as

m v m v m m v1 1 2 2 1 2+ = + ′( )

or v
m v m v

m m
′ =

+
+

1 1 2 2

1 2

…(viii)

Newton's Law of Restitution
When two objects are in direct (head on) impact, the speed with which they separate after impact is

usually less than or equal to their speed of approach before impact.

Experimental evidence suggests that the ratio of these relative speeds is constant for two given set of

objects. This property formulated by Newton, is known as the law of restitution and can be written in

the form

separation speed

approach speed
= e …(ix)

The ratio e is called the coefficient of restitution and is constant for two particular objects.

In general 0 1≤ ≤e
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e =0, for completely inelastic collision, as both the objects stick together. So, their separation speed is

zero or e =0 from Eq. (ix).

e =1, for an elastic collision, as we can show from Eq. (v) and (vi), that

v v v v1 2 2 1′ − ′ = −
or separation speed approach speed=
or e =1

Let us now find the velocities of two particles after collision if they collide directly and the coefficient

of restitution between them is given as e.

Applying conservation of linear momentum

m v m v m v m v1 1 2 2 1 1 2 2+ = ′ + ′ …(x)

Further, separation speed (approach speed)= e

or v v e v v1 2 2 1′ − ′ = −( ) …(xi)

Solving Eqs. (x) and (xi), we get

v
m em

m m
v

m em

m m
1

1 2

1 2

1
2 2

1 2

′ =
−
+







 +

+
+







 v2 …(xii)

and v
m em

m m
v

m em

m m
2

2 1

1 2
2

1 1

1 2

′ =
−
+







 +

+
+







 v1 …(xiii)

Special Cases

1. If collision is elastic, i.e. e =1, then

v
m m

m m
v

m

m m
v1

1 2

1 2
1

2

1 2
2

2
′ =

−
+







 +

+








and v
m m

m m
v

m

m m
v2

2 1

1 2
2

1

1 2
1

2
′ =

−
+







 +

+








which are same as Eqs. (v) and (vi).

2. If collision is perfectly inelastic, i.e. e =0, then

v v
m v m v

m m
v1 2

1 1 2 2

1 2

′ = ′ =
+
+

= ′ ( )say

which is same as Eq. (viii).
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3. If m m1 2= and v1 0= , then

v
e

v1 2

1

2
′ =

+





and v
e

v2 2

1

2
′ =

−





…(xiv)

Note (i) If mass of one body is very-very greater than that of the other, then after collision

velocity of heavy body does not change appreciably. (Whether the collision is

elastic or inelastic).

(ii) In the situation shown in figure if e is the coefficient of restitution between the ball

and the ground, then after nth collision with the floor the speed of ball will remain

e vn
0 and it will go upto a height e hn2 or,

v e v e ghn
n n= =0 2

and h e hn
n= 2

EXERCISE Derive the above two relations.

Oblique Collision
During collision between two objects a pair of equal and opposite impulses act at

the moment of impact. If just before impact at least one of the objects was moving

in a direction different from the line of action of these impulses the collision is said

to be oblique.

In the figure, two balls collide obliquely. During collision impulses act in the

direction xx. Henceforth, we will call this direction as common normal direction

and a direction perpendicular to it (i.e. yy) as common tangent.

Following four points are important regarding an oblique collision :

1. A pair of equal and opposite impulses act along common normal direction. Hence, linear

momentum of individual bodies do change along common normal direction. If mass of the

colliding bodies remain constant during collision, then we can say that linear velocity of the

individual bodies change during collision in this direction.

2. No component of impulse act along common tangent direction. Hence, linear momentum or

linear velocity of individual bodies (if mass is constant) remain unchanged along this direction.

3. Net impulse on both the bodies is zero during collision. Hence, net momentum of both the bodies

remain conserved before and after collision in any direction.

4. Definition of coefficient of restitution can be applied along common normal direction, i.e. along

common normal direction we can apply

Relative speed of separation = (relative speed of approace h)

Here, e is the coefficient of restitution between the particles.
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V Example 11.19 Two blocks A and B of equal mass
m kg= 1.0 are lying on a smooth horizontal surface as shown
in figure. A spring of force constant k N m= 200 / is fixed at
one end of block A. Block B collides with block A with velocity
v m s0 = 2.0 / . Find the maximum compression of the spring.

Solution At maximum compression ( )xm velocity of both the blocks is same, say it is v.

Applying conservation of linear momentum, we have

( )m m v m vA B B+ = 0

or ( )1.0 + 1.0 (1.0)v v= 0

or v
v

= =0

2

2.0

2
=1.0 m/s

Using conservation of mechanical energy, we have

1

2

1

2

1

2
0
2 2 2m v m m v kxB A B m= + +( )

Substituting the values, we get
1

2
1

1

2
× × = × ×( ) ( (2.0) 1.0 + 1.0) (1.0)2 2 +

1

2
(200)× × xm

2

or 2 100 2= +1.0 xm

or xm = =0.1m 10.0cm Ans.

V Example 11.20 Two balls of masses m and 2 m moving in opposite directions
collide head on elastically with velocities v and 2v. Find their velocities after
collision.

Solution Here, v v1 = − , v v2 2= , m m1 = and m m2 2= .

Substituting these values in Eqs. (v) and (vi), we get

v
m m

m m
v

m

m m
v1

2

2

4

2
2′ = −

+






 − +

+






( ) ( ) or v

v v
v1

3

8

3
3′ = + =

and v
m m

m m
v

m

m m
v2

2

2
2

2

2
′ = −

+






 +

+






 −( ) ( ) or v v v2

2

3

2

3
0′ = − =

i.e. the second ball (of mass 2m) comes to a rest while the first (of mass m) moves with velocity

3v in the direction shown in Fig. 11.46.
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V Example 11.21 Two pendulum bobs of masses m and 2m collide head on
elastically at the lowest point in their motion. If both the balls are released from
a height H above the lowest point, to what heights do they rise for the first time
after collision?

Solution Given, m m1 = , m m2 2= , v gH1 2= − and v gH2 2=

Since, the collision is elastic. Using Eqs. (v) and (vi) discussed in the theory the velocities after

collision are

v
m m

m m
gH

m

m m
gH1

2

2
2

4

2
2′ = −

+






 − +

+






( )

= + =
2

3

4 2

3

5

3
2

gH gH
gH

and v
m m

m m
gH

m

m m
gH2

2

2
2

2

2
2′ = −

+






 +

+






 −( ) ( )

= − = −
2

3

2 2

3

2

3

gH gH gH

i.e. the velocities of the balls after the  collision are as shown in Fig. 11.48.

Therefore, the heights to which the balls rise after the collision are:

h
v

g
1

1
2

2
=

′( )
(using v u gh2 2 2= − )

or h

gH

g
1

2
5

3
2

2
=







or h H1

25

9
=
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and h
v

g
2

2
2

2
=

′( )

or h

gH

g
2

2
2

3

2
=











or h
H

2
9

=

Note Since, the collision is elastic, mechanical energy of both the balls will remain conserved, or

E Ei f=
⇒ ( )m m gH mgh mgh+ = +2 21 2

⇒ 3
25

9
2

9
mgH mg H mg

H= 



 + 



( ) ( )

⇒ 3 3mgH mgH=

V Example 11.22 A ball of mass m moving at a speed v makes a head on
inelastic collision with an identical ball at rest. The kinetic energy of the balls

after the collision is
3

4
th of the original. Find the coefficient of restitution.

Solution For the given conditions, we can use Eq. (xiv) or

v
e

v1

1

2
′ = +





and v
e

v2

1

2
′ = −





Given that K Kf i= 3

4

or
1

2

1

2

3

4

1

2
1

2
2

2 2mv mv mv′ + ′ = 





Substituting the value, we get

1

2

1

2

3

4

2 2+





+ −





=e e

or ( ) ( )1 1 32 2+ + − =e e

or 2 2 32+ =e

or e2 1

2
=

or e = 1

2
Ans.
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V Example 11.23 A ball is moving with velocity 2 m/s towards a heavy wall
moving towards the ball with speed 1 m/s as shown in figure. Assuming
collision to be elastic, find the velocity of ball immediately after the collision.

Solution The speed of wall will not change after the collision. So, let v

be the velocity of the ball after collision in the direction shown in figure.

Since, collision is elastic ( ).e = 1

separation speed approach speed=
or v − = +1 2 1

or v = 4 m/s Ans.

V Example 11.24 A ball of mass m hits a floor with a speed v0 making an angle
of incidence α with the normal. The coefficient of restitution is e. Find the speed
of the reflected ball and the angle of reflection of the ball.

Solution The component of velocity v0 along common tangent direction v0 sin α will remain

unchanged. Let v be the component along common normal direction after collision. Applying

Relative speed of separation (relative speed of approac= e h)

along common normal direction, we get

v ev= 0 cos α
Thus, after collision components of velocity v′ are v0 sin α and ev0 cos α

∴ v v ev′ = +( sin ) ( cos )0
2

0
2α α

and tan
sin

cos
β

α
α

=
v

ev

0

0

or tan
tanβ α=

e

Note For elastic collision, e = 1

∴ v v′ = 0 and β α= .
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V Example 11.25 After perfectly inelastic collision between two identical balls
moving with same speed in different directions, the speed of the combined mass
becomes half the initial speed. Find the angle between the two before collision.

Solution Let θ be the desired angle. Linear momentum of the system will remain conserved.

Hence, p p p p p2
1
2

2
2

2 22= + + cos θ

or 2
2

2

2

2 2m
v

mv mv mv mv














= + +( ) ( ) ( )( ) cos θ

or 1 1 1 2= + + cos θ or cos θ = − 1

2

∴ θ = °120 Ans.

V Example 11.26 The coefficient of restitution between a snooker ball and the

side cushion is
1

3
. If the ball hits the cushion and then rebounds at right angles

to its original direction, show that the angles made with the side cushion by the
direction of motion before and after impact are 60° and 30° respectively.

Solution Let the original speed be u, in a direction making an angle θ with the side cushion.

Using the law of restitution

Relative speed of separation along common normal direction

= e (relative speed of approach)

or v u= 1

3
( sin )θ ⇒ u

v
= 3

sin θ

After impact, tan
cos cos

sin
θ θ θ

θ
= =u

v

3

⇒ tan 2 3θ =

⇒ tan θ = 3

⇒ θ = °60

Therefore, the directions of motion before and after impact are at 60° and 30° to the cushion.
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1. Two blocks of masses 3 kg and 6 kg respectively are placed on a smooth horizontal surface.

They are connected by a light spring of force constant k = 200 N/m. Initially the spring is

unstretched. The indicated velocities are imparted to the blocks. Find the maximum extension

of the spring.

2. A moving body of mass m makes a head on elastic collision with another body of mass 2m

which is initially at rest. Find the fraction of kinetic energy lost by the colliding particle after

collision.

3. What is the fractional decrease in kinetic energy of a body of mass m1 when it makes a head on

elastic collision with another body of massm2 kept at rest?

4. In one dimensional elastic collision of equal masses, the velocities are interchanged. Can

velocities in a one dimensional collision be interchanged if the masses are not equal.

5. After an head on elastic collision between two balls of equal masses, one is observed to have a

speed of 3 m/s along the positive x-axis and the other has a speed of 2 m/s along the negative

x-axis. What were the original velocities of the balls ?

6. A ball of mass 1 kg moving with 4 ms−1 along +x-axis collides elastically with an another ball of

mass 2 kg moving with 6 m/s is opposite direction. Find their velocities after collision.

7. Three balls A, B and C are placed on a smooth horizontal surface. Given that m m mA C B= =4 .

Ball B collides with ball C with an initial velocity v as shown in figure. Find the total number of

collisions between the balls. All collisions are elastic.

8. Ball 1 collides directly with another identical ball 2 at rest. Velocity of second ball becomes two

times that of 1 after collision. Find the coefficient of restitution between the two balls?

9. A sphere A of mass m, travelling with speed v, collides directly with a stationary sphere B. If A is

brought to rest and B is given a speed V, find (a) the mass of B (b) the coefficient of restitution

between A and B?

10. A smooth sphere is moving on a horizontal surface with velocity vector 2 2$ $i j+ immediately

before it hits a vertical wall. The wall is parallel to $j and the coefficient of restitution of the sphere

and the wall is e = 1

2
. Find the velocity of the sphere after it hits the wall?

11. A ball falls vertically on an inclined plane of inclination α with speed v0 and makes a perfectly

elastic collision. What is angle of velocity vector with horizontal after collision.
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Final Touch Points
1. Centre of mass frame of reference or C-frame of reference or zero momentum frame A frame of

reference carried by the centre of mass of an isolated system of particles (i.e. a system not subjected

to any external forces) is called the centre of mass or C-frame of reference. In this frame of reference.

(i)  Position vector of centre of mass is zero.

(ii) Velocity and hence momentum of centre of mass is also zero.

2. A liquid of density ρ is filled in a container as shown in figure. The liquid comes out from the container

through a orifice of area ‘a’ at a depth ‘h’ below the free surface of the liquid with a velocity v. This

exerts a thrust force in the container in the backward direction. This thrust force is given by

F v
dm

dt
t r= −





Here, v vr = (in forward direction)

and −



 =dm

dt
avρ

as
dV

dt





 = Volume of liquid flowing per second

= av

∴ −



 = 



 =dm

dt

dV

dt
avρ ρ

∴ F v avt = ( )ρ
or F avt = ρ 2 (in backward direction)

Further, we will see in the chapter of fluid mechanics that v gh= 2 .

3. Suppose, a chain of mass per unit length λ begins to fall through a hole in the ceiling as shown in

Fig. (a) or the end of the chain piled on the platform is lifted vertically as in Fig. (b). In both the cases,

due to increase of mass in the portion of the chain which is moving with a velocity v at certain moment

of time a thrust force acts on this part of the chain which is given by
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v
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h



F v
dm

dt
t r= 



.. Here, v vr = and

dm

dt
v= λ

Here, vr is upwards in case (a) and downwards in case (b). Thus,

F vt = λ 2

The direction of Ft is upwards in case (a) and downwards in case (b).

4. Suppose a ball is a projected with speed u at an angle θ with horizontal. It collides at some distance

with a wall parallel to y-axis as shown in figure. Letv x andv y be the components of its velocity along x

and y-directions at the time of impact with wall. Coefficient of restitution between the ball and the wall

is e. Component of its velocity along y-direction (common tangent) v y will remain unchanged while

component of its velocity along x-direction (common normal) v x will become ev x is opposite

direction.

Further, sincev y does not change due to collision, the time of flight (time taken by the ball to return to the

same level) and maximum height attained by the ball will remain same as it would had been in the

absence of collision with the wall. Thus,

t t t T
u

g
OAB CD DEF= + = = 2 sin θ

and h h
u

g
A E= =

2 2

2

sin θ

Further, CO OF OB+ ≤ Range or

It collision is elastic, then CO OF
u

g
+ = =Range

2 2sin θ

and if it is inelastic, CO OF+ < Range

5. In the projectile motion as shown in figure,
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T
u

g

y=
2

⇒ T uy∝

⇒ H
u

g

y=
2

2
⇒ H uy∝ 2

R u T u
u

g
x x

y= =








2
⇒ R u ux y∝

As shown in above figure, vertical component of velocity just after collision becomes euy or e times,

while horizontal component remains unchanged. Hence, the next time, T will become e times (as

T uy∝ ), H will become e2 times (as H uy∝ 2) and R will also becomes e times (as R u ux y∝ ).

Thus, ifT0, H0 and R0 are the initial values then after first collision,

T eT1 0= , H e H1
2

0= and R eR1 0=
Similarly after n-collisions,

T e Tn
n= 0 , H e Hn

n= 2
0 and R e Rn

n= 0

6. Thrust force in variable mass system is nothing but a result of law of conservation of linear momentum.

Let us take an example.

A boy is standing over a trolley kept over a smooth surface. If the boy throws a stone towards right,

then mass of (trolley + boy) system is decreasing. Relative velocity of stone is towards right. So, a

thrust force will act on (trolley + boy) system towards left (in a direction opposite to relative velocity, as

mass is decreasing). Due to this thrust force (trolley + boy) system will move towards left.

And this is nothing but law of conservation of linear momentum. Initial momentum of system was zero.

Therefore final momentum should also be zero. If momentum of stone is towards right, then

momentum of (trolley + boy) system should be towards left (of same magnitude), to make total

momentum equal to zero.

7. In perfectly inelastic collision, all bodies stick together and they have a common velocity given by:

vcommon

Total momentum

Total mass
= = pTotal

TotalM

and this common velocity is also equal to the velocity of centre of mass of the system.
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TYPED PROBLEMS

Type 1. Based on law of conversation of linear momentum.

Concept

(i) If net force on a system is zero, then linear momentum of the system (or centre of mass
remains constant).

(ii) Normally the ground is given smooth. So, the net force on a system in horizontal
direction will be zero and momentum of the system in horizontal direction will remain
constant.

∴ Initial momentum = Final momentum

or p pi f= (in horizontal direction)

(iii) If all individual bodies/blocks of the system are initially at rest then, pi will be zero.
Therefore, total momentum of the system at any instant or pf is also zero.

(iv) Since, we are using only one conservation law i.e. law of conservation of linear
momentum, so we have only one equation and only one unknown.

V Example 1 A trolley of mass M is at rest over a

smooth horizontal surface as shown in figure. Two

boys each of mass ‘m’ are standing over the trolley.

They jump from the trolley (towards right) with

relative velocity vr [relative to velocity of trolley just

after jumping]

(a) together

(b) one after the other.

Find velocity of trolley in both cases.

Solution (a) Let velocity of trolley just after jumping is v1 (towards left). Relative velocity of

boys towards right is vr. Therefore, there absolute velocity is v vr − 1, towards right.

Net force on the system in horizontal direction is zero. Hence, linear momentum of the system

in horizontal direction is zero.

or p pi f=
⇒ 0 2 1 1= − −m v v Mvr( )

⇒ v
m v

m M

r
1

2

2
=

+
Ans.

v1 M 2m

( – )v vr 1

+ve

After jumping

M m+ 2

Before jumping

At rest

Solved Examples



(b) Let v1 be the velocity of trolley after the first boy jumps. Then,

p pi f=
⇒ 0 1 1= − − +m v v M m vr( ) ( )

⇒ v
mv

M m

r
1

2
=

+
…(i)

Now, the second boy jumps from the moving trolley and let v2 be the velocity of trolley after

the second boy also jumps. Then,

p pi f=
⇒ − + = − −( ) ( )M m v m v v Mvr1 2 2

∴ v
mv M m v

M m

r
2

1= + +
+

( )

( )

=
+







 +m

M m
v vr 1

Substituting the value of v1 from Eq. (i), we have

v mv
M m M m

r2

1 1

2
=

+
+

+








 Ans.

V Example 2 Two toy trains each of mass ‘M’ are moving in opposite directions

with velocities v1 and v2 over two smooth rails. Two stuntmen of mass ‘m’ each are

also moving with the trains (at rest w.r.t. trains). When trains are opposite to

each other the stuntmen interchange their positions, then find the final velocities

of the trains.

Solution When the stuntmen are in air (after jumping) they also have horizontal velocities v1

and v2 in opposite directions. Initially (A) and (B) were together. Similarly (C) and (D) were

together.

Now, (A) will fall over (D). So this is one system and suppose velocity of this system is V1

(towards right or in positive direction) after jumping. Similarly, (C) will fall over (B) after

jumping.
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M m+

v2

M m

v vr – 2

+ve

v1

M m+ m
v vr – 1

+ve
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v1

Mv2

D
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System 1

m

C

v2

M v1

V2
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Let V2 is the velocity of this system towards right after jumping.

Applying conservation of linear momentum.

System 1 p pi f=
⇒ m v M v M m V1 2 1− = +( )

⇒ V
m v M v

M m
1

1 2= −
+

Ans.

System 2 p pi f=
⇒ M v m v M m V1 2 2− = +( )

⇒ V
Mv mv

M m
2

1 2= −
+

Ans.

Type 2. Based on conservation on linear momentum and mechanical energy.

Concept

In these type of problems, all surfaces are given smooth. So, linear momentum in
horizontal direction and mechanical energy of the system remains conserved. Since, we are
applying two conservation laws. Therefore, number of equations are two. Hence, number of
unknowns are also two.

V Example 3 All surfaces shown in figure are smooth. Find velocity of wedge (of

mass M) when the block (of mass m) reaches the bottom of the wedge.

Solution When the block reaches to the bottom of the wedge, their velocities are as shown in

figure. Here v is the absolute velocity (with respect to ground), but vr is the relative velocity

(relative to wedge).

Their absolute velocity components are as shown below:

v v v vr r= + −( sin ) ( cos )θ θ2 2
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Linear momentum in horizontal direction is conserved.

∴ p pi f=
or 0 = − −m v v Mvr( cos )θ …(i)

Mechanical energy is also conserved.

∴ E Ei f=

or mgh Mv mv= +1

2

1

2

2 2

or mgh Mv m= +1

2

1

2

2 [( sin ) ( cos ) ]v v vr rθ θ2 2+ − …(ii)

We have two equations and two unknowns v and vr. Solving these equations, we can find the

value of v.

Exercise: Solve these two equations to find the value of v.

V Example 4 All surfaces shown in figure are smooth. Wedge of mass ‘M’ is free to

move. Block of mass 'm’ is given a horizontal velocity v0 as shown. Find the

maximum height 'h’ attained by ‘m’ (over the wedge or outside it).

Solution At maximum height vertical component of velocity of ‘m’ will be zero. It will have

only horizontal component of velocity and this is equal to the horizontal component of ‘M’ also

(think why ?). So at the highest point figure is like this:

Applying law of conservation of linear momentum in horizontal direction,

p pi f=
⇒ mv M m v0 = +( ) …(i)

Now, applying law of conservation of mechanical energy,

E Ei f=

∴ 1

2

1

2
0
2 2mv M m v mgh= + +( ) …(ii)

We have two unknowns v and h.

So, we can find the value of ‘h’ by solving these two equations.

Exercise : Solve these two equations to find the value of ‘h’.
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Type 3. Based on following four equations.

Σ ΣF FR L= , Σ Σm a m aR R L L= , Σ Σm v m vR R L L= , Σ Σm x m xR R L L=
In these equations, R stands for right hand side and L stands for left hand side. x is the
absolute displacement with respect to ground.

Concept

If net force on a system in a particular direction is zero (normally in horizontal direction).
And this can done by giving the ground smooth. Initially, the system is at rest. So, in this
case individual bodies can move towards right or towards left, but centre of mass will
remain stationary. Further, net force in horizontal direction is zero. Hence, total force
towards right is equal to the total force towards left or,

Σ ΣF FR L= …(i)

or Σ Σm a m aR R L L= …(ii)

Now, integrating ‘a’ we will get ‘v’ and by further integrating ‘v’, we will get ‘x’.

∴ Σ Σm v m vR R L L= …(iii)

and Σ Σm x m xR R L L= …(iv)

Note If the system is initially not at rest but net force is zero, then Eqs. (i) and (ii) are still applicable but not the

Eqs. (iii) and (iv). Think why ?

V Example 5 A wooden plank of mass 20 kg is resting on a

smooth horizontal floor. A man of mass 60 kg starts

moving from one end of the plank to the other end. The

length of the plank is 10 m. Find the displacement of the

plank over the floor when the man reaches the other end of

the plank.

Solution Here, the system is man + plank. Net force on this system in horizontal direction is

zero and initially the centre of mass of the system is at rest. Therefore, the centre of mass does

not move in horizontal direction.

Let x be the displacement of the Plank. Assuming the origin, i.e. x = 0 at the position shown in

figure.

As we said earlier also, the centre of mass will not move in horizontal direction (x-axis).

Therefore, for centre of mass to remain stationary,

x xi f=
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10 m

10 mx = 0

x

Final positionx 10 – x

Initial position



( )( ) ( )( )60 0 20
10

2

60 20

60 10 20
10

2

6

+ 





+
=

− + −



x x

0 20+

or
5

4

6 10 2
10

2

8

60 6 10 2

8
=

− + −





= − + −
( )x x

x x

or 5 30 3 5= − + −x x

or 4 30x =

or x = 30

4
m or x = 7.5 m

Note The centre of mass of the plank lies at its centre.

Alternate Method

x xL = =displacement of plank towards left

mL = mass of plank = kgdisplaced towards left 20

xR = displacement of man relative to ground towards right 10= − x

and mR = mass of man displaced towards right = 60 kg

Applying x m x mR R L L= , we get

( )( )10 60 20− =x x

or x x= −30 3

or 4 30x =

∴ x = =30

4
7.5 m

V Example 6 A man of mass m1 is standing on a platform of mass m2 kept on a

smooth horizontal surface. The man starts moving on the platform with a velocity

vr relative to the platform. Find the recoil velocity of platform.

Solution Absolute velocity of man = −v vr where v = recoil velocity of platform.

Taking the platform and the man as a system, net external force on the system in horizontal

direction is zero. The linear momentum of the system remains constant. Initially both the man

and the platform were at rest.

Hence, 0 1 2= − −m v v m vr( )

∴ v
m v

m m

r=
+
1

1 2

Alternate Method Using the equation,

Σ Σm v m vR R L L=
we have, m v v m vr1 2( )− =

∴ v
m v

m m

r=
+
1

1 2
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V Example 7 A block of mass m is released from the top of a wedge of mass M as

shown in figure. Find the displacement of wedge on the horizontal ground when

the block reaches the bottom of the wedge. Neglect friction everywhere.

Solution Here, the system is wedge + block. Net force on the system in horizontal direction

(x-direction) is zero, therefore, the centre of mass of the system will not move in x-direction so

we can apply,

x m x mR R L L= …(i)

Let x be the displacement of wedge. Then,

x xL = =displacement of wedge towards left

m ML = =mass of wedge moving towards left

xR = displacement of block with respect to ground towards right = −h xcot θ

and m mR = =mass of block moving towards right

Substituting in Eq. (i), we get

m h x xM( cot )θ − =

∴ x
mh

M m
=

+
cot θ

Ans.

Type 4. Explosion of a bomb or a projectile.

Concept

If a bomb or a projectile explodes in two or more than two parts, then it explodes due to
internal forces. Therefore, net force or net external force is zero. Hence, linear momentum
of the system can be conserved just before and just after explosion. By this momentum
conservation equation, we can find the velocity of some unknown part. If explosion takes
place in air, then during the explosion, the external force due to gravity (= weight) can be
neglected, as the time of explosion is very short. So, impulse of this force is negligible and
impulse is change in linear momentum.Hence, change in linear momentum is also
negligible.

V Example 8 A bomb of mass ‘5m’ at rest explodes into three parts of masses 2m,

2m and m. After explosion, the equal parts move at right angles with speed v

each. Find speed of the third part and total energy released during explosion.

Solution Let the two equal parts move along positive x and positive y directions and suppose

the velocity of third part is V. From law of conservation of linear momentum,

we have, p pi f=
⇒ 0 2 2= + +m v m v m( $) ( $)i j V
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Solving this equation we have, V i j= − −2 2v v$ $

∴ Speed of this particle

= V or V

= − + −( ) ( )2 22 2v v

= 2 2v Ans.

Energy released during explosion,

= kinetic energy of all three parts

= + +1

2
2

1

2
2

1

2
2 22 2 2( ) ( ) ( ) ( )m v m v m v

= 6 2mv Ans.

V Example 9 A projectile of mass 3 kg is projected with velocity 50 m/s at 37°

from horizontal. After 2 s, explosion takes place and the projectile breaks into two

parts of masses 1 kg and 2 kg. The first part comes to rest just after explosion.

Find,

(a) the velocity of second part just after explosion.

(b) maximum height attained by this part. Take g m s=10 2/

Solution

(a) u i j= ° + °( cos ) $ ( sin ) $50 37 50 37

= +( $ $)40 30i j m/s

a j= − =( $)10 2m/s constant

After t = 2 s v u a= + t

= + + −( $ $) ( $) ( )40 30 10 2i j j = +( $ $)40 10i j m/s

S u a= +t t
1

2

2

= + + −( $ $)( ) ( $)( )40 30 2
1

2
10 2 2

i j j = +( $ $)80 40i j m

sy =40m

Hence, the explosion takes place at a height of 40 m and the velocity just before explosion is

( $ $)40 10i j+ m/s.

Velocity of first part just after explosion is zero and let velocity of second part just after

explosion is V , then from conservation of linear momentum,

p pi f=
⇒ 3 40 10 1 0 2( $ $) ( ) ( )i j V+ = +

⇒ V = +( $ $)60 15i j m/s Ans.
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(b) Vertical component of velocity of second part just after collision is 15 m/s and explosion has

taken place at a height of 40 m. Therefore total height of this part from ground.

= +40
2

2v

g

y = +
×

40
15

2 10

2( ) = 51.25m Ans.

Type 5. Based on variable mass system.

Concept

In case of a variable mass system, a thrust force of magnitude v
dm

dt
r × has to be applied on

the system, whose mass is changing. Direction of this force is in the direction of v r if mass is
increasing and in the opposite direction of v r , if mass is decreasing, Further, v r is zero if a
mass is just dropped from a moving body. Because the dropped body has the same velocity as
of the moving body at the time of dropping. So, no thrust force will act in this case.

V Example 10 A constant force F is applied on a trolley of initial mass m0 kept

over a smooth surface. Sand is poured gently over the trolley at a constant rate of

( ) /µ kg s. After time t, find

(a) mass of the trolley (with sand)

(b) net force on the trolley

(c) velocity of trolley

Solution (a) Mass of the trolley after time t is

m = mass of trolley + (mass of sand poured per second) (time)

= +m t0 µ
(b) Let v is the velocity of trolley at time t. Sand is poured gently. So, velocity of sand is zero or,

relative velocity of sand is v in the opposite direction of velocity of trolley. Mass of trolley is

increasing. So, thrust force on the trolley is in the direction of relative velocity or in the

opposite direction of motion of trolley.
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Net force on trolley = −F Ft

= −F v
dm

dt
r = −F v( ) ( )µ

or F F vnet = −µ Ans.

Note In the above expression of Fnet, velocity v is a function of time which has been asked in the next part.

(c) F F vnet = − µ
∴ ma F v= −µ

⇒ ( )m t
dv

dt
F v0 + 



 = −µ µ

⇒ dv

F v

dt

m t

v t

−
=

+∫ ∫µ µ0
0

0

Solving this equation we get

v
Ft

m t
=

+0 µ
Ans.

V Example 11 A trolley of initial mass m0 is kept over a smooth surface as shown

in figure. A constant force F is applied on it. Sand kept inside the trolley drains

out from its floor at a constant rate of ( ) /µ kg s. After time t find:

(a) total mass of trolley and sand.

(b) net force on the trolley.

(c) velocity of trolley.

Solution (a) Total mass of trolley and sand

m = initial mass − mass of sand drained out

or m m t= −0 µ
(b) Let v is the velocity of trolley at time t. Then, velocity of sand drained out is also v or relative

velocity is zero. Hence, no thrust force will act in this case. Therefore,

F Fnet =
(c) F Fnet =

or ma F= or m
dv

dt
F=

or ( )m t
dv

dt
F0 − =µ

∴ dv
Fdt

m t

tv
=

−∫∫
0

00 µ

Solving this equation we get,

v
m

m t
e=

−








1 0

0µ µ
log Ans.
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Type 6. Problems based on linear impulse (J) and coefficient of restitution (e).

Concept

(i) During collision, equal and opposite impulses act on the two colliding bodies along
common normal directions. This impulse changes the linear momentum of an
individual body, but total momentum of the system remains constant, as the total linear
impulse is zero. Further, this linear impulse is equal to change in linear momentum.

(ii) Coefficient of restitution between two colliding bodies is defined along common normal
direction and this is given by:

e = relative speed of separation

relative speed of approach

V Example 12 Two balls of masses m and 2m and

momenta 4p and 2p (in the directions shown) collide as

shown in figure. During collision, the value of linear

impulse between them is J. In terms of J and p find coefficient of restitution ‘e’.

Under what condition collision is elastic. Also find the condition of perfectly

inelastic collision.

Solution Directions of linear impulses on the two colliding bodies at the time of collision are

shown in Fig. (b).

Linear impulse is equal to the change in linear momentum. Hence, momenta of the balls after

collision are shown in Fig. (c).

Let v1 and v2 are their velocities before collision [in the directions shown in figure (a)] and v1
′

and v2
′ are the velocities after collision as shown in figure (c).

v = linear momentum

mass

e = relative speed of separation

relative speed of approach

or e
v v

v v
= ′ + ′

+
1 2

1 2

=

− + −

+

J p

m

J p

m
p

m

p

m

4 2

2
4 2

2

or e
J p

p

J

p
= − = −3 10

10

3

10
1 Ans.

For elastic collision,

e =1 ⇒ 3

10
2

J

p
= or J p= 20

3
Ans.

For perfectly inelastic collision,

e =0 ⇒ 3

10
1

J

p
= or J p= 10

3
Ans.
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4p

v1 2m
v2

2p
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(a)

m 2m
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(b)

mv ¢
1 2m v ¢

2

J p– 2

After collision

(c)

J J J p– 4

m

4p

2m

2p



Type 7. Based on conservation of linear momentum and vertical circular motion.

Concept

A ball of mass M is suspended from a massless string of length l as shown in
figure. A bullet of mass m moving with velocity v0 collides with the ball and
sticks with the ball.

Now, velocity of the combined mass ( )M m+ just after collision at the
bottommost point (say it's u) can by obtained from law of conservation of
linear momentum. After finding the value of u we can use the theory of
vertical circular motion. For example, if u gl≥ 5 , then the combined mass
will complete the vertical circular motion.

If 2 5gl u gl< < , string will slack in upper half of the circle and if 0 2< ≤u gl, the
combined mass will oscillate in lower half of the circle.

V Example 13 In the situation discussed above, find

(a) velocity of combined mass just after collision at the bottommost point (or u).

(b) loss of mechanical energy during collision.

(c) minimum value of v0 so that the combined mass completes the vertical circular motion.

Solution (a) Applying conservation of linear momentum, just before and just after collision.

p pi f= ⇒ mv M m u0 = +( ) ⇒ u
mv

M m
=

+
0

Ans.

(b) Loss of mechanical energy during collision,

= −E Ei f (E = mechanical energy)

= − +1

2

1

2
0

2mv M m u( )

= − +
+











1

2

1

2
0
2 0

2

mv M m
mv

M m
( )

=
+

1

2

0
2Mm v

M m( )
Ans.

(c) For completing the vertical circular motion, velocity at bottommost point, u gl≥ 5

∴ mv

M m
gl0 5

+
≥ ⇒ ∴ v

M m

m
gl0 5≥ +

or ( )v
M m

m
gl0 5

min
= +

Ans.
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Example 14 A pendulum bob of mass 10 2− kg is raised to a height 5 10 2× − m and then

released. At the bottom of its swing, it picks up a mass 10 3− kg. To what height will the
combined mass rise ?

Solution Velocity of pendulum bob at bottom most point

v gh1
22 2 10 5 10 1= = × × × =− m/s

When the bob picks up a mass 10 3− kg at the bottom, then by conservation of linear momentum

the velocity of combined mass is given by

m v m v m m v1 1 2 2 1 2+ = +( )

10 1 10 0 10 102 3 2 3− − − −× + × = +( ) v

or v =
×

=
−

−
10

10

10

11

2

21.1
m/s

Now, h
v

g
= =

×
= × −

2 2
2

2

10 11

2 10
10

( / )
4.1 m Ans.

V Example 15 The friction coefficient between the horizontal surface and each of

the block shown in the figure is 0.2. The collision between the blocks is perfectly

elastic. Find the separation between them when they come to rest.

(Take g = 10 m/s2 ).

Solution Retardation, a
mg

m
g= =µ µ = × =02 10 2 2. m/s

Velocity of first block before collision,

v1
2 21 2 2 1= − × = −( ) 0.16 0.64

v1 =0.6 m/s

By conservation of momentum, 2 2 41 2× = ′ + ′0.6 v v

also v v v2 1 1′ − ′ = for elastic collision

It gives v2′ = 0.4 m/s, v1′ = − 0.2 m/s

Now distance moved after collision

s1
2 2

=
×

( )20.4

and s2
2 2

=
×

( )20.2

∴ s s s= + = =1 2 50.05m cm Ans.
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V Example 16 Three identical balls, ball I, ball II and ball III are placed on a

smooth floor on a straight line at the separation of 10 m between balls as shown

in figure. Initially balls are stationary. Ball I is given velocity of 10 m/s towards

ball II, collision between balls I and II is inelastic with coefficient of restitution

0.5 but collision between balls II and III is perfectly elastic. What is the time

interval between two consecutive collisions between ball I and II ?

Solution Let velocity of I ball and II ball after collision be v1 and v2

v v2 1 10− = ×0.5 K (i)

mv mv m2 1 10+ = × K (ii)

⇒ v v2 1 10+ =
Solving Eqs. (i) and (ii), we get v1 = 2.5 m/s, v2 = 7.5 m/s

Ball II after moving 10 m collides  with ball III elastically and stops. But ball I moves towards

ball II. Time taken between two consecutive collisions

10
10 10

7.5

2.5

7.5

2.5
4s−

− ×
= Ans.

V Example 17 A plank of mass 5 kg is placed on a frictionless horizontal plane.

Further a block of mass 1 kg is placed over the plank. A massless spring of natural

length 2 m is fixed to the plank by its one end. The other end of spring is

compressed by the block by half of spring’s natural length. They system is now

released from the rest. What is the velocity of the plank when block leaves the

plank ? (The stiffness constant of spring is 100 N/m)

Solution Let the velocity of the block and the plank, when the block leaves the spring be u
and v respectively.

By conservation of energy
1

2

1

2

1

2

2 2 2kx mu Mv= + [M = mass of the plank, m = mass of the block]

⇒ 100 52 2= +u v K (i)

By conservation of momentum

mu Mv+ =0 ⇒ u v= −5 K (ii)

Solving Eqs. (i) and (ii) 30 100
10

3

2v v= ⇒ = m/s

From this moment until block falls, both plank and block keep their velocity constant.

Thus, when block falls, velocity of plank = 10

3
m/s. Ans.
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V Example 18 A ball is projected from the ground with speed u at an angle α
with horizontal. It collides with a wall at a distance a from the point of projection

and returns to its original position. Find the coefficient of restitution between the

ball and the wall.

Solution As we have discussed in the theory, the horizontal component of the velocity of ball

during the path OAB is u cos α while in its return journey BCO it is eu cos .α The time of flight

T also remains unchanged. Hence,

T t tOAB BCO= +

or
2u

g

a

u

a

eu

sin

cos cos

α
α α

= +

or
a

eu

u

g

a

ucos

sin

cosα
α

α
= −2

or
a

eu

u ag

gucos

sin cos

cosα
α α

α
= −2 2

e
ag

u ag
=

−2 2 sin cosα α

or e
u

ag

=
−









1

2
1

2 sin α

V Example 19 A ball of mass m kg= 1 falling

vertically with a velocity v0 2= m/s strikes a wedge

of mass M = 2 kg kept on a smooth, horizontal

surface as shown in figure. If impulse between ball

and wedge during collision is J. Then make two

equations which relate J with velocity components of

wedge and ball. Also find impulse on wedge from

ground during impact.

Solution Given M = 2 kg and m = 1 kg

Let, J be the impulse between ball and wedge during collision and v v1 2, and v3 be the

components of velocity of the wedge and the ball in horizontal and vertical directions

respectively.

Applying impulse = change in momentum

we get J Mv mvsin 30 1 2° = =

or
J

v v
2

2 1 2= = …(i)
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J cos 30°
v1

M J sin 30°

J

J cos 30°

30° 30°
30°

v2

v3

m
m

J

J sin 30°

C

O

A

a

30°

M
v0

m



J m v vcos ( )30 3 0° = +

or
3

2
23J v= +( ) …(ii)

So these are two equations relating J and velocity components of wedge and ball.

Further, net vertical impulse on wedge should be zero. Therefore, impulse on wedge from

ground is J sin 30° or
J

2
in upward direction.

V Example 20 Two blocks of equal mass m are connected by an unstretched

spring and the system is kept at rest on a frictionless horizontal surface. A

constant force F is applied on one of the blocks pulling it away from the other as

shown in figure. (a) Find the displacement of the centre of mass at time t. (b) If

the extension of the spring is x0 at time t, find the displacement of the two blocks

at this instant.

Solution (a) The acceleration of the centre of mass is

a
F

m
COM =

2

The displacement of the centre of mass at time t will be

x a t
Ft

m
= =1

2 4

2
2

COM Ans.

(b) Suppose the displacement of the first block is x1 and that of the second is x2. Then,

x
mx mx

m
= +1 2

2
or

Ft

m

x x2
1 2

4 2
= +

or x x
Ft

m
1 2

2

2
+ = …(i)

Further, the extension of the spring is x x1 2− . Therefore,

x x x1 2 0− =
From Eqs. (i) and (ii),

x
Ft

m
x1

2

0

1

2 2
= +







 and x

Ft

m
x2

2

0

1

2 2
= −







 .

V Example 21 A block of mass m is connected to another block of mass M by a

massless spring of spring constant k. The blocks are kept on a smooth horizontal

plane. Initially, the blocks are at rest and the spring is unstretched when a

constant force F starts acting on the block of mass M to pull it. Find the

maximum extension of the spring.
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Solution The centre of mass of the system (two blocks + spring) moves with an acceleration

a
F

m M
=

+
. Let us solve the problem in a frame of reference fixed to the centre of mass of the

system. As this frame is accelerated with respect to the ground, we have to apply a pseudo

force ma towards left on the block of mass m and Ma towards left on the block of mass M. The

net external force on m is

F ma
mF

m M
1 = =

+
(towards left)

and the net external force on M is

F F Ma F
MF

m M

mF

m M
2 = − = −

+
=

+
(towards right)

As the centre of mass is at rest in this frame, the blocks move in opposite directions and come to

instantaneous rest at some instant. The extension of the spring will be maximum at this

instant. Suppose, the left block is displaced through a distance x1 and the right block through a

distance x2 from the initial positions. The total work done by the external forces F1 and F2 in

this period are

W F x F x
mF

m M
x x= + =

+
+1 1 2 2 1 2( )

This should be equal to the increase in the potential energy of the spring, as there is no change

in the kinetic energy. Thus,

mF

m M
x x k x x

+
+ = +( ) ( )1 2 1 2

21

2
or x x

mF

k m M
1 2

2+ =
+( )

Ans.

This is the maximum extension of the spring.

V Example 22 Two blocks A and B of masses m and 2m respectively are placed

on a smooth floor. They are connected by a spring. A third block C of mass m

moves with a velocity v0 along the line joining A and B and collides elastically

with A, as shown in figure. At a certain instant of time t0 after collision, it is

found that the instantaneous velocities of A and B are the same. Further, at this

instant the compression of the spring is found to be x0 . Determine (i) the common

velocity of A and B at time t0 , and (ii) the spring constant.

Solution Initially, the blocks A and B are at rest and C is moving with velocity v0 to the right.

As masses of C and A are same and the collision is elastic the body C transfers its whole

momentum mv0 to body A and as a result the body C stops and A starts moving with velocity v0

to the right. At this instant the spring is uncompressed and the body B is still at rest.

The momentum of the system at this instant = mv0

Now, the spring is compressed and the body B comes in motion. After time t0 , the compression

of the spring is x0 and common velocity of A and B is v (say).

As external force on the system is zero, the law of conservation of linear momentum gives

mv mv m v0 2= + ( ) or v
v= 0

3
Ans.
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The law of conservation of energy gives

1

2

1

2

1

2
2

1

2
0
2 2 2

0
2mv mv m v kx= + +( )

or
1

2

3

2

1

2
0
2 2

0
2mv mv kx= +

1

2

3

2 3

1

2
0
2 0

2

0
2mv m

v
kx= 



 +

∴ 1

2

1

2

1

6
0
2

0
2

0
2kx mv mv= −

or
1

2

1

3
0
2

0
2kx mv=

k
mv

x
= 2

3

0
2

0
2

Ans.

V Example 23 A uniform chain of mass m and length l hangs on a thread and

touches the surface of a table by its lower end. Find the force exerted by the table

on the chain when half of its length has fallen on the table. The fallen part does

not form heap.

Solution Force exerted by the chain on the table consists of two parts:

1. Weight of the portion BC of the chain lying on the table,

W
mg=
2

(downwards)

2. Thrust force F vt = λ 2

Here, λ = =mass per unit length of chain
m

l

v gl gl2 2= =( )

∴ F
m

l
gl mgt = 



 =( ) (downwards)

∴ Net force exerted by the chain on the table is

F W F
mg

mg mgt= + = + =
2

3

2
(downwards)
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So, from Newton’s third law the force exerted  by the table on the chain will be
3

2
mg

(vertically upwards).

Note Here, the thrust force ( )Ft applied by the chain on the table will be vertically downwards, as F v
dm

dt
t r= 





and in this expression vr is downwards plus
dm

dt
is positive. So, Ft will be downwards.

V Example 24 A ball of mass m makes an elastic collision with another identical

ball at rest. Show that if the collision is oblique, the bodies go at right angles to

each other after collision.

Solution In head on elastic collision between two particles, they exchange their velocities. In

this case, the component of ball 1 along common normal direction, v cos θ becomes zero after

collision, while that of 2 becomes v cos .θ While the components along common tangent direction

of both the balls remain unchanged. Thus,  the components along common tangent and common

normal direction of both the balls in tabular form are given below.

Ball Component along common tangent direction Component along common normal direction

Before collision After collision Before collision After collision

1 v sin θ v sin θ v cos θ 0

2 0 0 0 v cos θ

From the above table and figure, we see that both the balls move at right angles after collision

with velocities v sin θ and v cos .θ

60 � Mechanics - II

v sin θ

v cos θ

1

2

Before collision

v
θ

v sin θ

v cos θ
After collision

1

2



LEVEL 1
Assertion and Reason

Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : Centre of mass of a rigid body always lies inside the body.
Reason : Centre of mass and centre of gravity coincide if gravity is uniform.

2. Assertion : A constant force F is applied on two blocks and one spring system as shown in
figure. Velocity of centre of mass increases linearly with time.

Reason : Acceleration of centre of mass is constant.

3. Assertion : To conserve linear momentum of a system, no force should act on the system.
Reason : If net force on a system is zero, its linear momentum should remain constant.

4. Assertion : A rocket moves forward by pushing the surrounding air backwards.
Reason : It derives the necessary thrust to move forward according to Newton’s third law of
motion.

5. Assertion : Internal forces cannot change linear momentum.
Reason : Internal forces can change the kinetic energy of a system.

6. Assertion : In case of bullet fired from gun, the ratio of kinetic energy of gun and bullet is
equal to ratio of mass of bullet and gun.

Reason : Kinetic energy ∝ 1

mass
; if momentum is constant.

7. Assertion : All surfaces shown in figure are smooth. System is released from rest.
Momentum of system in horizontal direction is constant but overall momentum is not constant.

Reason : A net vertically upward force is acting on the system.

8. Assertion : During head on collision between two bodies let ∆p1 is change in momentum of
first body and ∆p2 the change in momentum of the other body, then ∆ = ∆p p1 2.

Reason : Total momentum of the system should remain constant.

F2mm

Smooth

Exercises

A

B



9. Assertion : In the system shown in figure spring is first
stretched then left to oscillate. At some instant kinetic energy
of mass m is K . At the same instant kinetic energy of mass 2m

should be
K

2
.

Reason : Their linear momenta are equal and opposite and K
p

m
=

2

2
or K

m
∝ 1

.

10. Assertion : Energy can not be given to a system without giving it momentum.

Reason : If kinetic energy is given to a body it means it has acquired momentum.

11. Assertion : The centre mass of an electron and proton, when released moves faster towards
proton.

Reason : Proton is heavier than electron.

12. Assertion : The relative velocity of the two particles in head-on elastic collision is unchanged
both in magnitude and direction.

Reason : The relative velocity is unchanged in magnitude but gets reversed in direction.

13. Assertion : An object of mass m1 and another of mass m m m2 2 1( )> are released from certain
distance. The objects move towards each other under the gravitational force between them. In
this motion, centre of mass of their system will continuously move towards the heavier mass
m2.
Reason : In a system of a heavier and a lighter mass, centre of mass lies closer to the heavier
mass.

14. Assertion : A given force applied in turn to a number of different masses may cause the same
rate of change in momentum in each but not the same acceleration to all.

Reason : F
p

a
F= =d

dt m
and

15. Assertion : In an elastic collision between two bodies, the relative speed of the bodies after
collision is equal to the relative speed before the collision.

Reason : In an elastic collision, the linear momentum of the system is conserved.

Objective Questions
Single Correct Option

1. A ball is dropped from a height of 10 m. Ball is embedded in sand through 1 m and stops.

(a) only momentum remains conserved

(b) only kinetic energy remains conserved

(c) both momentum and kinetic energy are conserved

(d) neither kinetic energy nor momentum is conserved

2. If no external force acts on a system

(a) velocity of centre of mass remains constant

(b) position of centre of mass remains constant

(c) acceleration of centre of mass remains non-zero and constant

(d) All of the above
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3. When two blocks connected by a spring move towards each other under mutual interaction

(a) their velocities are equal

(b) their accelerations are equal

(c) the force acting on them are equal and opposite

(d) All of the above

4. If two balls collide in air while moving vertically, then momentum of the system is conserved
because

(a) gravity does not affect the momentum of the system

(b) force of gravity is very less compared to the impulsive force

(c) impulsive force is very less than the gravity

(d) gravity is not acting during collision

5. When a cannon shell explodes in mid air, then identify the incorrect statement

(a) the momentum of the system is conserved at the time of explosion

(b) the kinetic energy of the system always increases

(c) the trajectory of centre of  mass remains unchanged

(d) None of the above

6. In an inelastic collision

(a) momentum of the system is always conserved

(b) velocity of separation is less than the velocity of approach

(c) the coefficient of restitution can be zero

(d) All of the above

7. The momentum of a system is defined

(a) as the product of mass of the system and the velocity of centre of mass

(b) as the vector sum of the momentum of individual particles

(c) for bodies undergoing translational, rotational and oscillatory motion

(d) All of the above

8. The momentum of a system with respect to centre of mass

(a) is zero only if the system is moving uniformly

(b) is zero only if no external force acts on the system

(c) is always zero

(d) can be zero in certain conditions

9. Three identical particles are located at the vertices of an equilateral triangle. Each particle
moves along a meridian with equal speed towards the centroid and collides inelastically.

(a) all the three particles will bounce back along the meridians with lesser speed.

(b) all the three particles will become stationary

(c) all the particles will continue to move in their original directions but with lesser speed

(d) nothing can be said

10. The average resisting force that must act on a 5 kg mass to reduce its speed from 65 to15ms−1 in
2s is

(a) 12.5 N (b) 125 N (c) 1250 N (d) None of these

11. In a carbon monoxide molecule, the carbon and the oxygen atoms are separated by a distance
1 2 10 10. × − m. The distance of the centre of mass from the carbon atom is

(a) 048 10 10. × − m (b) 051 10 10. × − m

(c) 0 74 10 10. × − m (d) 068 10 10. × − m
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12. A bomb of mass 9 kg explodes into two pieces of masses 3 kg and 6 kg. The velocity of mass 3 kg
is 16 ms−1. The kinetic energy of mass 6 kg is

(a) 96 J (b) 384 J (c) 192 J (d) 768 J

13. A heavy ball moving with speed v collides with a tiny ball. The collision is elastic, then
immediately after the impact, the second ball will move with a speed approximately equal to

(a) v (b) 2v (c)
v

2
(d)

v

3

14. A loaded 20, 000 kg coal wagon is moving on a level track at 6 ms−1. Suddenly 5000 kg of coal is
dropped out of the wagon. The final speed of the wagon is

(a) 6 ms−1 (b) 8 ms−1 (c) 4.8 ms−1 (d) 4.5 ms−1

15. A machine gun shoots a 40 g bullet at a speed of 1200 ms−1. The man operating the gun can bear
a maximum force of 144 N. The maximum number of bullets shot per second is

(a) 3 (b) 5 (c) 6 (d) 9

16. A projectile of mass m is fired with a velocity v from point P at an angle 45°. Neglecting air
resistance, the magnitude of the change in momentum leaving the point P and arriving at Q is

(a) 2 mv (b) 2mv (c)
mv

2
(d)

mv

2

17. A ball after freely falling from a height of 4.9 m strikes a horizontal plane. If the coefficient of
restitution is 3/4, the ball will strike second time with the plane after

(a)
1

2
s (b) 1 s (c)

3

2
s (d)

3

4
s

18. The centre of mass of a non uniform rod of length L, whose mass per unit length varies as

ρ = ⋅k x

L

2

where k is a constant and x is the distance of any point from one end is (from the same

end)

(a)
3

4





 L (b)

1

4





 L (c)

1

6





 L (d)

2

3





 L

19. A boat of length 10 m and mass 450 kg is floating without motion in still water. A man of mass
50 kg standing at one end of it walks to the other end of it and stops. The magnitude of the
displacement of the boat in metres relative to ground is

(a) zero (b) 1 m (c) 2 m (d) 5 m

20. A man of mass M stands at one end of a stationary plank of length L, lying on a smooth surface.

The man walks to the other end of the plank. If the mass of the plank is M / 3, the distance that

the man moves relative to the ground is

(a)
3

4

L
(b)

L

4
(c)

4

5

L
(d)

L

3

21. A ball of mass m moving at a speed v collides with another ball of mass 3m at rest. The lighter
block comes to rest after collision. The coefficient of restitution is

(a)
1

2
(b)

2

3
(c)

1

4
(d) None of these

64 � Mechanics - II

45°

P Q

v



22. A particle of mass m moving with velocity u makes an elastic
one-dimensional collision with a stationary particle of mass m. They
come in contact for a very small time t0. Their force of interaction
increases from zero to F0 linearly in time 0 5 0. t , and decreases linearly to
zero in further time 0 5 0. t as shown in figure. The magnitude of F0 is

(a)
mu

t0

(b)
2

0

mu

t

(c)
mu

t2 0

(d) None of these

23. Two identical blocks A and B of mass m joined together with a massless spring as shown in
figure are placed on a smooth surface. If the block A moves with an acceleration a0, then the
acceleration of the block B is

(a) a0 (b) −a0 (c)
F

m
a− 0 (d)

F

m

24. A ball of mass m moving with velocity v0 collides a wall as shown

in figure. After impact it rebounds with a velocity
3

4
0v . The

impulse acting on ball during impact is

(a) − m
v

2
0 j

^

(b) − 3

4
0mv i

^

(c)
−5

4
0mv i

^

(d) None of the above

25. A steel ball is dropped on a hard surface from a height of 1 m and rebounds to a height of 64 cm.

The maximum height attained by the ball after n th bounce is (in m)

(a) ( )0.64 2n (b) ( )0.8 2n

(c) ( )0.5 2n (d) ( )0.8 n

26. A car of mass 500 kg (including the mass of a block) is moving on a smooth road with velocity

1.0 ms−1 along positive x-axis. Now a block of mass 25 kg is thrown outside with absolute

velocity of 20 ms−1 along positive z-axis. The new velocity of the car is (ms−1)

(a) 10 20i k
^^ + (b) 10 20i k

^ ^−

(c)
20

19

20

19
i k
^ ^− (d) 10

20

19
i k
^ ^−
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27. The net force acting on a particle moving along a straight line varies with time as shown in the
diagram. Force is parallel to velocity. Which of the following graph is best representative of its
speed with time ? (Initial velocity of the particle is zero)

(a) (b) (c) (d)

28. In the figure shown, find out centre of mass of a system of a uniform circular plate of radius 3R
from O in which a hole of radius R is cut whose centre is at 2R distance from the centre of large
circular plate

(a)
R

2
(b)

R

5

(c)
R

4
(d) None of these

29. From the circular disc of radius 4R two small discs of radius R are cut
off. The centre of mass of the new structure will be at

(a) i j
^ ^R R

5 5
+

(b) − +i j
^ ^R R

5 5

(c) − −i j
^ ^R R

5 5

(d) None of the above

30. A block of mass m rests on a stationary wedge of mass M. The wedge
can slide freely on a smooth horizontal surface as shown in figure. If
the block starts from rest

(a) the position of the centre of mass of the system will change

(b) the position of the centre of mass of the system will change

along the vertical but not along the horizontal

(c) the total energy of the system will remain constant

(d) All of the above
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31. A bullet of mass m hits a target of mass M hanging by a string and gets embedded in it. If the
block rises to a height h as a result of this collision, the velocity of the bullet before collision is

(a) v gh= 2 (b) v gh
m

M
= +





2 1 (c) v gh
M

m
= +





2 1 (d) v gh
m

M
= −





2 1

32. A loaded spring gun of mass M fires a bullet of mass m with a velocity v at an angle of elevation
θ. The gun is initially at rest on a horizontal smooth surface. After firing, the centre of mass of
the gun and bullet system

(a) moves with velocity
v

M
m

(b) moves with velocity
vm

M cosθ
in the horizontal direction

(c) does not move in horizontal direction

(d) moves with velocity
v M m

M m

( )−
+

in the horizontal direction

33. Two bodies with masses m1and m m m2 1 2( )> are joined by a string passing over fixed pulley.
Assume masses of the pulley and thread negligible. Then the acceleration of the centre of mass
of the system ( )m m1 2+ is

(a)
m m

m m
g1 2

1 2

−
+







 (b)

m m

m m
g1 2

1 2

2
−
+









(c)
m g

m m

1

1 2+
(d)

m g

m m

2

1 2+
34. A rocket of mass m0 has attained a speed equal to its exhaust speed and at that time the mass of

the rocket is m. Then the ratio
m

m

0 is ( neglect gravity )

(a) 2.718 (b) 7.8 (c) 3.14 (d) 4

35. A jet of water hits a flat stationary plate perpendicular to its motion. The jet ejects 500g of
water per second with a speed of1 m/ s. Assuming that after striking, the water flows parallel to
the plate, then the force exerted on the plate is

(a) 5 N (b) 1.0 N

(c) 0.5 N (d) 10 N

36. Two identical vehicles are moving with same velocity v towards an
intersection as shown in figure. If the collision is completely inelastic, then

(a) the velocity of separation is zero

(b) the velocity of approach is 2
2

vsin
θ

(c) the common velocity after collision is v cos
θ
2

(d) All of the above

37. A ball of mass m = 1 kg strikes a smooth horizontal floor as shown in figure. The impulse
exerted on the floor is

(a) 6.25 Ns (b) 1.76 Ns (c) 7.8 Ns (d) 2.2 Ns
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38. A small block of mass m is placed at rest on the top of a smooth wedge of mass M, which in turn
is placed at rest on a smooth horizontal surface as shown in figure. It h be the height of wedge
and θ is the inclination, then the distance moved by the wedge as the block reaches the foot of
the wedge is

(a)
Mh

M m

cotθ
+

(b)
mh

M m

cotθ
+

(c)
Mh

M m

cosecθ
+

(d)
mh

M m

cosecθ
+

39. A square of side 4 cm and uniform thickness is divided into four squares. The square portion
A AB D′ ′ is removed and the removed portion is placed over the portion DB BC′ ′ . The new
position of centre of mass is

(a) (2 cm, 2 cm) (b) ( 2 cm, 3 cm) (c) (2 cm, 2.5 cm) (d) (3 cm, 3 cm)

40. A boy having a mass of 40 kg stands at one end Aof a boat of length 2 m at rest. The boy walks to
the other end B of the boat and stops. What is the distance moved by the boat? Friction exists
between the feet of the boy and the surface of the boat. But the friction between the boat and the
water surface may be neglected. Mass of the boat is 15 kg.

(a) 0.49 m (b) 2.46 m (c) 1.46 m (d) 3.2 m

41. Three identical particles with velocities v v0 03i j
^ ^
, − and 5 0v k

^
collide successively with each

other in such a way that they form a single particle. The velocity vector of resultant particle is

(a)
v0

3
( )
^ ^ ^
i j k+ + (b)

v0

3
( )
^ ^ ^
i j k− + (c)

v0

3
3( )

^ ^ ^
i j k− + (d)

v0

3
3 5( )

^ ^ ^
i j k− +

42. A mortar fires a shell of mass M which explodes into two pieces of mass
M

5
and

4

5

M
at the top of

the trajectory. The smaller mass falls very close to the mortar. In the same time the bigger piece
lands a distance D from the mortar. The shell would have fallen at a distance R from the mortar
if there was no explosion. The value of D is (neglect air resistance)

(a)
3

2

R
(b)

4

3

R
(c)

5

4

R
(d) None of these
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Subjective Questions

1. Consider a rectangular plate of dimensions a b× . If this plate is considered to be made up of

four rectangles of dimensions
a b

2 2
× and we now remove one out of four rectangles. Find the

position where the centre of mass of the remaining system will be zero.

2. The uniform solid sphere shown in the figure has a spherical hole in it. Find the position of its
centre of mass.

3. A gun fires a bullet. The barrel of the gun is inclined at an angle of 45° with horizontal. When
the bullet leaves the barrel it will be travelling at an angle greater than 45° with the
horizontal. Is this statement true or false?

4. Two blocks A and B of masses mA and mB are connected together by means of a spring and are
resting on a horizontal frictionless table. The blocks are then pulled apart so as to stretch the
spring and then released. Show that the kinetic energies of the blocks are, at any instant
inversely proportional to their masses.

5. Show that in a head on elastic collision between two particles, the transference of energy is
maximum when their mass ratio is unity.

6. A particle moving with kinetic energy K makes a head on elastic collision with an identical
particle at rest. Find the maximum elastic potential energy of the system during collision.

7. A ball is projected from the ground at some angle with horizontal. Coefficient of restitution
between the ball and the ground is e. Let a, b and c be the ratio of times of flight, horizontal
range and maximum height in two successive paths. Find a, b and c in terms of e.
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8. x-y is the vertical plane as shown in figure. A particle of mass 1 kg is
at (10 m, 20 m) at time t = 0. It is released from rest. Another particle
of mass 2 kg is at (20 m, 40 m) at the same instant. It is projected with
velocity ( $ $)10 10i j+ m/s. After 1 s. Find

(a) acceleration,

(b) velocity and

(c) position of their centre of mass.

9. A system consists of two particles. At t = 0, one particle is at the origin; the other, which has a

mass of 0.60 kg, is on the y-axis at y = 80 m. At t = 0, the centre of mass of the system is on the

y-axis at y = 24 m and has a velocity given by ( $6.0 m/ s3 2) t j .

(a) Find the total mass of the system.

(b) Find the acceleration of the centre of mass at any time t.

(c) Find the net external force acting on the system at t = 3.0 s.

10. A particle of mass 2 kg moving with a velocity 5$i m/s collides head-on with another particle of
mass 3 kg moving with a velocity − 2$i m/s. After the collision the first particle has speed of
1.6 m/ s in negative x direction. Find

(a) velocity of the centre of mass after the collision,

(b) velocity of the second particle after the collision,

(c) coefficient of restitution.

11. A rocket of mass 40 kg has 160 kg fuel. The exhaust velocity of the fuel is 2.0 km/s. The rate of
consumption of fuel is 4 kg/s. Calculate the ultimate vertical speed gained by the rocket.

( )g = 10 2m/ s

12. A boy of mass 60 kg is standing over a platform of mass 40 kg placed over a smooth horizontal
surface. He throws a stone of mass 1 kg with velocity v = 10m/s at an angle of 45° with respect to
the ground. Find the displacement of the platform (with boy) on the horizontal surface when the

stone lands on the ground. Take g = 10 2m/ s .

13. A man of mass m climbs to a rope ladder suspended below a balloon of mass M. The balloon is
stationary with respect to the ground.

(a) If the man begins to climb the ladder at speed v (with respect to the ladder), in what direction

and with what speed (with respect to the ground) will the balloon move ?

(b) What is the state of the motion after the man stops climbing ?

14. Find the mass of the rocket as a function of time, if it moves with a constant acceleration a, in
absence of external forces. The gas escapes with a constant velocity u relative to the rocket and its
mass initially was m0.

15. A particle of mass 2 m is projected at an angle of 45° with horizontal with a velocity of

20 2 m/ s. After 1 s explosion takes place and the particle is broken into two equal pieces. As a

result of explosion one part comes to rest. Find the maximum height attained by the other part.

Take g = 10 2m/ s .

16. A ball of mass 1 kg is attached to an inextensible string. The ball is released from

the position shown in figure. Find the impulse imparted by the string to the ball

immediately after the string becomes taut. (Take g = 10 2m/ s )
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17. Two balls shown in figure are identical. Ball A is moving
towards right with a speed v and the second ball is at rest.
Assume all collisions to be elastic. Show that the speeds of
the balls remain unchanged after all the collisions have
taken place.

18. A particle of mass 0.1 kg moving at an initial speed v collides with another particle of same
mass kept initially at rest. If the total energy becomes 0.2 J after the collision, what would be
the minimum and maximum values of v ?

19. A particle of mass m moving with a speed v hits elastically another stationary particle of mass
2 m on a smooth horizontal circular tube of radius r. Find the time when the next collision will
take place?

20. In a one-dimensional collision between two identical particles A and B, B is stationary and A
has momentum p before impact. During impact, B gives an impulse J to A. Find the coefficient
of restitution between A and B ?

21. Two billiard balls of same size and mass are in contact on a billiard table. A third ball of same
mass and size strikes them symmetrically and remains at rest after the impact. Find the
coefficient of restitution between the balls?

22. Two identical blocks each of mass M kg= 9 are placed on a rough

horizontal surface of frictional coefficient µ = 0.1. The two blocks are

joined by a light spring and block B is in contact with a vertical fixed

wall as shown in figure. A bullet of mass m = 1 kg and v0 10= m/s hits

block A and gets embedded in it. Find the maximum compression of

spring. (Spring constant = 240 N/m, g = 10 m/s2)

23. Block A has a mass of 5 kg and is placed on top of a smooth triangular block, B having a mass of
30 kg. If the system is released from rest, determine the distance, B moves when A reaches the
bottom. Neglect the size of block A.

24. A trolley was moving horizontally on a smooth ground with velocity v with respect to the earth.
Suddenly a man starts running from rear end of the trolley with a velocity (3/2) v with respect to
the trolley. After reaching the other end, the man turns back and continues running with a
velocity (3/2) v with respect to trolley in opposite direction. If the length of the trolley is L, find
the displacement of the man with respect to earth when he reaches the starting point on the
trolley. Mass of the trolley is equal to the mass of the man.

25. A 4.00 g bullet travelling horizontally with a velocity of magnitude 500 m/s is fired into a
wooden block with a mass of 1.00 kg, initially at rest on a level surface. The bullet passes
through the block and emerges with speed 100 m/s. The block slides a distance of 0.30 m along
the surface from its initial position.

(a) What is the coefficient of kinetic friction between block and surface ?

(b) What is the decrease in kinetic energy of the bullet ?

(c) What is the kinetic energy of the block at the instant after the bullet has passed through it ?

Neglect friction during collision of bullet with the block.
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26. A bullet of mass 0.25 kg is fired with velocity 302 m/s into a block of wood of mass m1 = 37.5 kg.
It gets embedded into it. The block m1 is resting on a long block m2 and the horizontal surface on
which it is placed is smooth. The coefficient of friction between m1 and m2 is 0.5. Find the
displacement of m1 on m2 and the common velocity of m1 and m2. Mass m2 = 1.25 kg.

27. A wagon of mass M can move without friction along horizontal rails. A simple pendulum
consisting of a sphere of mass m is suspended from the ceiling of the wagon by a string of length
l. At the initial moment the wagon and the pendulum are at rest and the string is deflected
through an angle α from the vertical. Find the velocity of the wagon when the pendulum passes
through its mean position.

28. A block of mass M with a semicircular track of radius R rests on a
horizontal frictionless surface shown in figure. A uniform
cylinder of radius r and mass m is released from rest at the point
A. The cylinder slips on the semicircular frictionless track. How
far has the block moved when the cylinder reaches the bottom of
the track ? How fast is the block moving when the cylinder
reaches the bottom of the track ?

29. A ball of mass 50 g moving with a speed 2 m/s strikes a plane surface at an angle of incidence
45°. The ball is reflected by the plane at equal angle of reflection with the same speed. Calculate

(a) The magnitude of the change in momentum of the ball.

(b) The change in the magnitude of the momentum of the wall.

30. A uniform rope of mass m per unit length, hangs vertically from a support so that the lower end
just touches the table top shown in figure. If it is released, show that at the time a length y of the
rope has fallen, the force on the table is equivalent to the weight of a length 3y of the rope.

31. Sand drops from a stationary hopper at the rate of 5 kg/s on to a conveyor belt moving with a
constant speed of 2 m/s. What is the force required to keep the belt moving and what is the
power delivered by the motor, moving the belt ?

32. A 3.0 kg block slides on a frictionless horizontal surface, first moving to the left at 50 m/s. It

collides with a spring as it moves left, compresses the spring and is brought to rest

momentarily. The body continues to be accelerated to the right by the force of the compressed

spring. Finally, the body moves to the right at 40 m/s. The block remains in contact with the

spring for 0.020 s. What were the magnitude and direction of the impulse of the spring on the

block? What was the spring’s average force on the block?

33. Block A has a mass 3 kg and is sliding on a rough horizontal surface with a velocity vA = 2 m/s

when it makes a direct collision with block B, which has a mass of 2 kg and is originally at rest.

The collision is perfectly elastic. Determine the velocity of each block just after collision and the

distance between the blocks when they stop sliding. The coefficient of kinetic friction between

the blocks and the plane is µ k = 0.3. (Take g = 10 2m/ s )
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LEVEL 2

Objective Questions
Single Correct Option

1. A pendulum consists of a wooden bob of mass m and length l. A bullet of mass
m1 is fired towards the pendulum with a speed v1 and it emerges from the bob

with speed
v1

3
. The bob just completes motion along a vertical circle. Then v1

is

(a)
m

m
gl

1

5 (b)
3

2
5

1

m

m
gl

(c)
2

3
5

1

m

m
gl







 (d)

m

m
gl1





2. A bob of mass m attached with a string of length l tied to a point on ceiling is released from a
position when its string is horizontal. At the bottom most point of its motion, an identical mass
m gently stuck to it. Find the maximum angle from the vertical to which it rotates.

(a) cos− 





1 2

3
(b) cos− 





1 3

4

(c) cos− 





1 1

4
(d) 60°

3. A train of mass M is moving on a circular track of radius R with constant speed v. The length of
the train is half of the perimeter of the track. The linear momentum of the train will be

(a) zero (b)
2Mv

π
(c) MvR (d) Mv

4. Two blocks A and B of mass m and 2 m are connected together by a
light spring of stiffness k. The system is lying on a smooth horizontal
surface with the block A in contact with a fixed vertical wall as shown
in the figure. The block B is pressed towards the wall by a distance x0

and then released. There is no friction anywhere. If spring takes time
∆t to acquire its natural length then average force on the block A by
the wall is

(a) zero (b)
2

0

mk

t
x

∆
(c)

mk

t
x

∆ 0 (d)
3

0

mk

t
x

∆

5. A striker is shot from a square carom board from a point A exactly at

midpoint of one of the walls with a speed of 2 ms−1 at an angle of 45° with
the x-axis as shown in the figure. The collisions of the striker with the
walls of the fixed carom are perfectly elastic. The coefficient of kinetic
friction between the striker and board is 0.2. The coordinate of the
striker when it stops (taking point O to be the origin) is (in SI units)

(a)
1

2 2

1

2
, (b) 0

1

2 2
,

(c)
1

2 2
0, (d)

1

2

1

2 2
,

m1 m1

m
v1 3

v1

O

y

x
A

O
45°

L =
1

√2
m

BA

2mm



6. A ball of mass 1 kg is suspended by an inextensible string 1 m
long attached to a point O of a smooth horizontal bar resting
on fixed smooth supports A Band . The ball is released from
rest from the position when the string makes an angle 30°
with the vertical. The mass of the bar is 4 kg. The
displacement of bar when ball reaches the other extreme
position (in m ) is

(a) 0.4 (b) 0.2

(c) 0.25 (d) 0.5

7. A ball falls vertically onto a floor with momentum pand then bounces repeatedly. If coefficient
of restitution is e, then the total momentum imparted by the ball to the floor is

(a) p e( )1 + (b)
p

e1 −

(c) p
e

e

1

1

−
+







 (d) p

e

e

1

1

+
−









8. A bullet of mass m penetrates a thickness h of a fixed plate of mass M. If the plate was free to
move, then the thickness penetrated will be

(a)
Mh

M m+
(b)

2Mh

M m+

(c)
mh

M m2( )+
(d)

Mh

M m2( )+

9. Two identical balls of equal masses A Band , are lying on a smooth surface as shown in the

figure. Ball A hits the ball B (which is at rest) with a velocity v = 16 ms−1. What should be the

minimum value of coefficient of restitution e between A Band so that B just reaches the highest

point of inclined plane? ( )g = −10 2ms

(a)
2

3
(b)

1

4
(c)

1

2
(d)

1

3

10. The figure shows a metallic plate of uniform thickness and density. The value
of l in terms of L so that the centre of mass of the system lies at the interface of
the triangular and rectangular portion is

(a) l
L=
3

(b) l
L=
2

(c) l
L=
3

(d) l L= 2

3

11. Particle A makes a head on elastic collision with another stationary particle B. They fly apart in
opposite directions with equal speeds. The mass ratio will be

(a)
1

3
(b)

1

2

(c)
1

4
(d)

2

3
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12. A particle of mass 4m which is at rest explodes into four equal fragments.
All four fragments scattered in the same horizontal plane. Three fragments
are found to move with velocity v as shown in the figure. The total energy
released in the process is

(a) mv2 3 2( )− (b)
1

2
3 22mv ( )−

(c) 2 2mv (d)
1

2
1 22mv ( )+

13. In figures (a), (b) and (c) shown, the objects A B C, and are of same mass. String, spring and
pulley are massless.C strikes Bwith velocity u in each case and sticks it. The ratio of velocity of
B in case (a) to (b) to (c) is

(a) 1 : 1 : 1 (b) 3 : 3 : 2

(c) 3 : 2 : 2 (d) 1 : 2 : 3

14. A ladder of length L is slipping with its ends against a vertical wall and a horizontal floor. At a
certain moment, the speed of the end in contact with the horizontal floor is v and the ladder
makes an angleθ = °30 with horizontal. Then, the speed of the ladder’s centre of mass must be

(a)
3

2
v (b)

v

2

(c) v (d) 2v

15. A body of mass 2 g, moving along the positive x-axis in gravity free space with velocity 20 1cms−

explodes at x = 1 m, t = 0 into two pieces of masses 2/3 g and 4/3 g. After 5s, the lighter piece is
at the point (3m, 2m, − 4m). Then the position of the heavier piece at this moment, in metres is

(a) ( , , )1.5 − −1 2 (b) ( , , )1.5 − −2 2

(c) ( , , )1.5 − −1 1 (d) None of these

16. A body of mass m is dropped from a height of h. Simultaneously another body of mass 2m is

thrown up vertically with such a velocity v that they collide at height
h

2
. If the collision is

perfectly inelastic, the velocity of combined mass at the time of collision with the ground will be

(a)
5

4

gh
(b) gh (c)

gh

4
(d) None of these

17. A man is standing on a cart of mass double the mass of man. Initially
cart is at rest. Now, man jumps horizontally with velocity u relative to
cart. Then work done by man during the process of jumping will be

(a)
mu2

2
(b)

3

4

2mu

(c) mu2 (d) None of these
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18. Two balls of equal mass are projected upwards simultaneously, one from the ground with initial

velocity 50 ms−1 and the other from a 40m tower with initial velocity of 30 ms−1. The maximum
height attained by their COM will be

(a) 80 m (b) 60 m

(c) 100 m (d) 120 m

19. A particle of mass m and momentum p moves on a smooth horizontal table and collides directly
and elastically with a similar particle (of mass m) having momentum − 2 p.The loss ( )− or gain
( )+ in the kinetic energy of the first particle in the collision is

(a) + p

m

2

2
(b) − p

m

2

4
(c) + 3

2

2p

m
(d) zero

20. An equilateral triangular plate of mass 4m of side a is kept as shown.
Consider two cases : (i) a point mass 4m is placed at the vertex P of
the plate (ii) a point mass m is placed at the vertex R of the plate. In
both cases the x-coordinate of centre of mass remains the same. Then
x coordinate of centre of mass of the plate is

(a)
a

3
(b)

a

6

(c)
6

7

a
(d)

2

3

a

21. Four cubes of side a each of mass 40 g, 20 g, 10 g and 20 g are arranged in XY plane as shown in
the figure. The coordinates of COM of the combination with respect to point O is

(a)
19

18

17

18

a a
, (b)

17

18

11

18

a a
, (c)

17

18

13

18

a a
, (d)

13

18

17

18

a a

,

22. A particle of mass m0, travelling at speed v0, strikes a stationary particle of mass 2 0m . As a

result the particle of mass m0 is deflected through 45° and has a final speed of
v0

2
. Then the

speed of the particle of mass 2 0m after this collision is

(a)
v0

2
(b)

v0

2 2
(c) 2 0v (d)

v0

2

23. Two bars of masses m m1 2and , connected by a weightless spring of stiffness k, rest on a smooth
horizontal plane. Bar 2 is shifted by a small distance x0 to the left and released. The velocity of
the centre of mass of the  system when bar 1 breaks off the wall is

(a) x
km

m m
0

2

1 2+
(b)

x

m m
km0

1 2
2+

(c) x k
m m

m
0

1 2

2

+
(d) x

km

m m
0

1

1 2( )+
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24. n elastic balls are placed at rest on a smooth horizontal plane which is circular at the ends with

radius r as shown in the figure. The masses of the balls are m,
m m m

n2 2 22 1
, .............. −

respectively. What is the minimum velocity which should be imparted to the first ball of mass m
such that n th ball completes the vertical circle

(a)
3

4
5

1





−n

gr (b)
4

3
5

1





−n

gr

(c)
3

2
5

1





−n

gr (d)
2

3
5

1





−n

gr

More than One Correct Options

1. A particle of mass m, moving with velocity v collides a stationary particle of mass 2m. As a

result of collision, the particle of mass m deviates by 45° and has final speed of
v

2
. For this

situation mark out the correct statement (s).

(a) The angle of divergence between particles after collision is
π
2

(b) The angle of divergence between particles after collision is less than
π
2

(c) Collision is elastic

(d) Collision is inelastic

2. A pendulum bob of mass m connected to the end of an ideal string of length l
is released from rest from horizontal position as shown in the figure. At the
lowest point the bob makes an elastic collision with a stationary block of
mass 5m, which is kept on a frictionless surface. Mark out the correct
statement(s) for the instant just after the impact.

(a) Tension in the string is
17

9
mg

(b) Tension in the string is 3 mg.

(c) The velocity of the block is
2

3

gl

(d) The maximum height attained by the pendulum bob after impact is (measured from the lowest

position)
4

9

l

3. A particle of mass m strikes a horizontal smooth floor with a velocity u making an angle θ with

the floor and rebound with velocity v making an angle φ with the floor. The coefficient of

restitution between the particle and the floor is e. Then

(a) the impulse delivered by the floor to the body is mu e( ) sin1 + θ
(b) tan tanφ =e θ
(c) v u e= − −1 1 2 2( ) sin θ

(d) the ratio of the final kinetic energy to the initial kinetic energy is cos sin2 2 2θ θ+ e
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4. A particle of mass m moving with a velocity ( )
^ ^

3 2i j+ ms−1 collides with another body of mass M

and finally moves with velocity ( )
^ ^− +2 i j ms−1. Then during the collision

(a) impulse received by m mis ( )
^ ^

5 i j+

(b) impulse received by m mis ( )
^ ^− −5 i j

(c) impulse received by M mis ( )
^ ^− −5 i j

(d) impulse received by M mis ( )
^ ^

5 i j+

5. All surfaces shown in figure are smooth. System is released from rest. x yand components of
acceleration of COM are

(a) ( )a
m m g

m m
xcm =

+
1 2

1 2

(b) ( )
( )

a
m m g

m m
xcm =

+
1 2

1 2
2

(c) ( )a
m

m m
gycm =

+






2

1 2

2

(d) ( )a
m

m m
gycm =

+






2

1 2

6. A block of mass m is placed at rest on a smooth wedge of mass M placed
at rest on a smooth horizontal surface. As the system is released

(a) the COM of the system remains stationary

(b) the COM of the system has an acceleration g vertically downward

(c) momentum of the system is conserved along the horizontal direction

(d) acceleration of COM is vertically downward (a g< )

7. In the figure shown, coefficient of restitution between A Band is e = 1

2
, then

(a) velocity of B after collision is
v

2

(b) impulse between two during collision is
3

4
mv

(c) loss of kinetic energy during the collision is
3

16

2mv

(d) loss of kinetic energy during the collision is
1

4

2mv

8. In case of rocket propulsion, choose the correct options.

(a) Momentum of system always remains constant

(b) Newton’s third law is applied

(c) If exhaust velocity and rate of burning of mass is kept constant, then acceleration of rocket

will go on increasing

(d) Newton’s second law can be applied
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Comprehension Based Questions

Passage 1 (Q. Nos. 1 to 2)

A block of mass 2 kg is attached with a spring of spring constant 4000 Nm−1 and the system is
kept on smooth horizontal table. The other end of the spring is attached with a wall. Initially
spring is stretched by 5 cm from its natural position and the block is at rest. Now suddenly an

impulse of 4 kg-ms−1 is given to the block towards the wall.

1. Find the velocity of the block when spring acquires its natural length

(a) 5 ms−1 (b) 3 ms−1

(c) 6 ms−1 (d) None of these

2. Approximate distance travelled by the block when it comes to rest for a second time (not

including the initial one) will be (Take 45 = 6.70)

(a) 30 cm (b) 25 cm

(c) 40 cm (d) 20 cm

Passage 2 (Q. Nos. 3 to 7)

A uniform bar of length 12L and mass 48 m is supported horizontally on two fixed smooth tables
as shown in figure. A small moth (an insect) of mass 8m is sitting on end A of the rod and a
spider (an insect) of mass 16m is sitting on the other end B. Both the insects moving towards
each other along the rod with moth moving at speed 2v and the spider at half this speed
(absolute). They meet at a point P on the rod and the spider eats the moth. After this the spider

moves with a velocity
v

2
relative to the rod towards the end A. The spider takes negligible time

in eating on the other insect. Also, let v
L

T
= where T is a constant having value 4 s.

3. Displacement of the rod by the time the insect meet the moth is

(a)
L

2
(b) L (c)

3

4

L
(d) zero

4. The point P is at

(a) the centre of the rod

(b) the edge of the table supporting the end B

(c) the edge of the table supporting end A

(d) None of the above

5. The speed of the rod after the spider eats up the moth and moves towards A is

(a)
v

2
(b) v (c)

v

6
(d) 2v

6. After starting from end B of the rod the spider reaches the end A at a time

(a) 40 s (b) 30 s (c) 80 s (d) 10 s

7. By what distance the centre of mass of the rod shifts during this time?

(a)
8

3

L
(b)

4

3

L
(c) L (d)

L

3
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Match the Columns

1. Two identical blocks A Band are connected by a spring as shown in
figure. Block A is not connected to the wall parallel to y-axis. B is
compressed from the natural length of spring and then left. Neglect
friction. Match the following two columns.

Column I Column II

(a) Acceleration of centre of

mass of two blocks

(p) remains constant

(b) Velocity of centre of mass

of two blocks

(q) first increases then

becomes constant

(c) x-coordinate of centre of

mass of two blocks

(r) first decreases then

becomes zero

(d) y-coordinate of centre of

mass of two blocks

(s) continuously increases

2. One particle is projected from ground upwards with velocity 20 ms−1. At the same time

another identical particle is dropped from a height of 180 m but not along the same vertical

line. Assume that collision of first particle with ground is perfectly inelastic. Match the

following two columns for centre of mass of the two particles (g = 10 ms−2)

Column I Column II

(a) Initial acceleration (p) 5 SI units

(b) Initial velocity (q) 10 SI units

(c) Acceleration at t =5 s (r) 20 SI units

(d) Velocity at t = 5 s (s) 25 SI units

Note Only magnitudes are given in column-II.

3. Two identical blocks of mass 0.5 kg each are shown in figure. A massless elastic spring is
connected with A B. is moving towards A with kinetic energy of 4 J. Match the following two
columns. Neglect friction.

Column I Column II

(a) Initial momentum of B (p) zero

(b) Momentum of centre of mass of

two blocks

(q) 1 kg-ms−1

(c) Momentum of A at maximum

compression

(r) 2 kg-ms−1

(d) Momentum of B when spring is

relaxed after compression

(s) 4 kg-ms−1

80 � Mechanics - II

x

y

BA

BA



4. Two identical balls A Band are kept on a smooth table as shown. B
collides with A with speed v. For different conditions mentioned in
Column I, match with speed of A after collision given in Column II.

Column I Column II

(a) Elastic collision (p)
3

4
v

(b) Perfectly inelastic collision (q)
5

8
v

(c) Inelastic collision with e = 1

2
(r) v

(d) Inelastic collision with e = 1

4
(s)

v

2

5. Two boys A Band of masses 30 kg and 60 kg are standing over a plankC of mass 30 kg as shown.
Ground is smooth. Match the displacement of plank of Column II with the conditions given in
Column I.

Column I Column II

(a) A moves x towards right (p) x towards right

(b) B moves x towards left (q) 2x towards left

(c) A moves x towards right  and B
moves x towards left

(r)
x

3
towards left

(d) A Band both move x towards right (s) None

Note All displacements mentioned in two columns are with respect to ground.

6. A man of mass M is standing on a platform of mass m1 and holding a string passing over a
system of ideal pulleys. Another mass m2 is hanging as shown.

(m2 20= kg, m1 10= kg, g =10 ms−2)

Column I Column II

(a) Weight of man for equilibrium (p) 100 N

(b) Force exerted by man on string to

accelerate the COM of system upwards

(q) 150 N

(c) Force exerted by man on string to

accelerate the COM of system downwards

(r) 500 N

(d) Normal reaction of platform on man in

equilibrium

(s) 600 N
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7. Two blocks of masses 3 kg and 6 kg are connected by an ideal spring and are placed on a

frictionless horizontal surface. The 3 kg block is imparted a speed of 2 ms−1 towards left.
(consider left as  positive direction)

Column I Column II

(a) When the velocity of 3 kg

block is
2

3
ms−1

(p) velocity of centre of mass is
2

3
ms−1

(b) When the velocity of 6 kg

block is
2

3
ms−1

(q) deformation of the spring is

zero

(c) When the speed of 3 kg block

is minimum

(r) deformation of the spring is

maximum

(d) When the speed of 6 kg block

is maximum

(s) both the blocks are at rest

with respect to each other

8. In a two block system shown in figure match the following

Column I Column II

(a) Velocity of centre of mass (p) Keep on changing all the time

(b) Momentum of centre of mass (q) First decreases then become zero

(c) Momentum of 1 kg block (r) Zero

(d) Kinetic energy of 2 kg block (s) Constant

Subjective Questions

1. A ladder AP of length 5 m inclined to a vertical wall is slipping over a horizontal surface with
velocity of 2 m/s, when A is at distance 3 m from ground. What is the velocity of COM at this
moment?
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2. A ball of negligible size and mass m is given a velocity v0 on the
centre of the cart which has a mass M and is originally at rest.
If the coefficient of restitution between the ball and walls A
and B is e. Determine the velocity of the ball and the cart just
after the ball strikes A. Also, determine the total time needed
for the ball to strike A, rebound, then strike B, and rebound
and then return to the centre of the cart. Neglect friction.

3. Two point masses m1 and m2 are connected by a spring of natural length l0. The spring is

compressed such that the two point masses touch each other and then they are fastened by a

string. Then the system is moved with a velocity v0 along positive x-axis. When the system reached

the origin, the string breaks ( )t = 0 . The position of the point mass m1 is given by

x v t A t1 0 1= − −( cos )ω where A and ω are constants. Find the position of the second block as a

function of time. Also, find the relation between A and l0.

4. A small sphere of radius R is held against the inner surface of larger sphere of radius 6R (as
shown in figure). The masses of large and small spheres are 4M and M respectively. This
arrangement is placed on a horizontal table. There is no friction between any surfaces of
contact. The small sphere is now released. Find the coordinates of the centre of the large sphere,
when the smaller sphere reaches the other extreme position.

5. A chain of length l and mass m lies in a pile on the floor. If its end A is raised
vertically at a constant speed v0, express in terms of the length y of chain which
is off the floor at any given instant.

(a) The magnitude of the force P applied to end A.

(b) Energy lost during the lifting of the chain.

6. A is a fixed point at a height H above a perfectly inelastic smooth horizontal plane. A light

inextensible string of length L H( )> has one end attached to A and other to a heavy particle. The

particle is held at the level of A with string just taut and released from rest. Find the height of

the particle above the plane when it is next instantaneously at rest.

7. A particle of mass 2 m is projected at an angle of 45° with horizontal with a velocity of 20 2 m/ s.

After 1 s, explosion takes place and the particle is broken into two equal pieces.

As a result of explosion one part comes to rest. Find the maximum height attained by the other

part. (Take g = 10 2m/ s )
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8. A sphere of mass m, impinges obliquely on a sphere, of mass M, which is at rest. Show that, if
m eM= , the directions of motion of the spheres after impact are at right angles.

9. A gun of mass M (including the carriage) fires a shot of mass m. The gun along with the carriage
is kept on a smooth horizontal surface. The muzzle speed of the bullet vr is constant. Find

(a) The elevation of the gun with horizontal at which maximum range of bullet with respect to the

ground is obtained.

(b) The maximum range of the bullet.

10. A ball is released from rest relative to the elevator at a distance h1 above the floor. The speed of
the elevator at the time of ball release is v0. Determine the bounce height h2 relative to elevator

of the ball (a) if v0 is constant and (b) if an upward elevator acceleration a
g=
4

begins at the

instant the ball is released. The coefficient of restitution for the impact is e.

11. A plank of mass 5 kg is placed on a frictionless horizontal plane. Further a block of mass 1 kg is
placed over the plank. A massless spring of natural length 2 m is fixed to the plank by its one
end. The other end of spring is compressed by the block by half of spring’s natural length. The
system is now released from the rest. What is the velocity of the plank when block leaves the
plank? (The stiffness constant of spring is 100 N/m).

12. To test the manufactured properties of 10N steel balls, each ball is released from rest as shown
and strikes a 45° inclined surface. If the coefficient of restitution is to be e = 0.8, determine the
distance s, where the ball must strike the horizontal plane at A. At what speed does the ball strike

at A?(g = 9.8 m/s2)
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13. Two particles A and B of equal masses lie close together on a horizontal table and are connected

by a light inextensible string of length l. A is projected vertically upwards with a velocity 10gl.

Find the velocity with which it reaches the table again.

14. A small cube of mass m slides down a circular path of radius R cut into a large block of mass M,
as shown in figure. M rests on a table, and both blocks move without friction. The blocks are
initially at rest, and m starts from the top of the path. Find the horizontal distance from the
bottom of block where cube hits the table.

15. A thin hoop of mass M and radius r is placed on a horizontal plane. At the
initial instant, the hoop is at rest. A small washer of mass m with zero
initial velocity slides from the upper point of the hoop along a smooth
groove in the inner surface of the hoop. Determine the velocity u of the
centre of the hoop at the moment when the washer is at a certain point A
of the hoop, whose radius vector forms an angle φ with the vertical
(figure). The friction between the hoop and the plane should be neglected.

16. A shell of mass 1 kg is projected with velocity 20 m/s at an angle 60° with horizontal. It collides
inelastically with a ball of mass 1 kg which is suspended through a thread of length 1 m. The

other end of the thread is attached to the ceiling of a trolley of mass
4

3
kg as shown in figure.

Initially the trolley is stationary and it is free to move along horizontal rails without any
friction. What is the maximum deflection of the thread with vertical? String does not slack.

Take g = 10 2m/ s .

17. A small ball is projected at an angle α between two vertical walls
such that in the absence of the wall its range would have been 5d.
Given that all the collisions are perfectly elastic, find

(a) maximum height attained by the ball.

(b) total number of collisions with the walls before the ball comes back

to the ground, and

(c) point at which the ball finally  falls. The walls are supposed to be

very tall.
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18. Two large rigid vertical walls A and B are parallel to each other and separated by 10 m. A

particle of mass 10 g is projected with an initial velocity of 20 m/s at 45° to the horizontal from

point P on the ground, such that AP = 5 m. The plane of motion of the particle is vertical and

perpendicular to the walls. Assuming that all the collisions are perfectly elastic , find the

maximum height attained by the particle and the total number of collisions suffered by the

particle with the walls before it hits ground. Take g = 10 2m/ s .

19. Two blocks of masses 2 kg and M are at rest on an inclined plane and are separated by a

distance of 6.0 m as shown. The coefficient of friction between each block and the inclined plane

is 0.25. The 2 kg block is given a velocity of 10.0 m/s up the inclined plane. It collides with M ,

comes back and has a velocity of 1.0 m/s when it reaches its initial position. The other block M

after the collision moves 0.5 m up and comes to rest. Calculate the coefficient of restitution

between the blocks and the mass of the block M.

[Take sin tanθ θ≈ = 0.05 and g = 10 2m/ s ]

20. A small block of mass m is placed on top of a smooth hemisphere also of mass m which is placed

on a smooth horizontal surface. If the block begins to slide down due to a negligible small

impulse, show that it will loose contact with the hemisphere when the radial line through

vertical  makes an angle θ given by the equation cos cos3 6 4 0θ θ− + = .

21. A ball is projected from a given point with velocity u at some angle with the horizontal and after

hitting a vertical wall returns to the same point. Show that the distance of the point from the

wall must be less than
eu

e g

2

1( )
,

+
where e is the coefficient of restitution.
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Answers
Introductory Exercise 11.1

1. r
r

COM = =

=

Σ

Σ

i

n

i i

i

n

i

m

m

1

1

while r
r

CG
i

n

i i

i

n

i

w

w

= =

=

Σ

Σ

1

1

Here, w mg= weight ( ), r rCOM = CG when g = constant

2. False 3. True 4. True 5. less than
r

2

6. False 7.
19

6
m 8.

4

3

2 2

π
a ab b

a b

+ +
+









9.
5

6

5

6

a a
,







10. 0.74 m
2 11.

π
π +











4
a 12. x

l
COM = 3

4
13.

2

3
L

Introductory Exercise 11.2

1. xCM = 12.67 m 2. zero 3.
ml m l

m m

11 2 2

1 2

+
+

4. (a) 0.30 kg (b) (2.4 kg-ms
−1

)
$
j (c) (8.0 ms

−1
)
$
j

5. (a) 28 cm (b) 2.3 ms
−1 6.

3 1

4 2

−







 g

Introductory Exercise 11.3

1. (2.5
$ $ $

)i j k+ +15 5 cm/s 2. 12.5 m/s in opposite direction, 17.5 m/s 3. 1 : 2

4. 2.4 m/s× 10
5 5. 1.5 m/s× −

10
23 6. 9 ms

−1
, 1.08 kJ 7. 60 m

Introductory Exercise 11.4

1. 1.225 kgs
−1

,  (i) 2.8 kms
−1

, (ii) 3.6 kms
−1 2. 1232.6 ms

−1

3. ( ) ( )m t
d x

dt
u m t g0

2

2 0− = − −µ µ µ 4. u gln
3

2







−

Introductory Exercise 11.5

1. 4 10
3× N 2. − +$ $

i j3 3. 200 m/s 4. (a) 1.2 × −
10

3
s (b) 0.5 N-s (c) 417 N

Introductory Exercise 11.6

1. 30 cm 2.
8

9
3.

4 1 2

1 2

2

mm

m m( )+
4. No

5. 2 ms
−1

in negative x-axis, 3 m/s in positive x-axis.

6. v1

28

3
= ms

−1
(in negative x-direction) and v2

2

3
= ms

−1
(in positive x-direction)

7. Two 8.
1

3
9. (a)

mv

V
(b)

V

v
10. − +$ $i j2 11. 90 2° − α

Exercises
LEVEL 1

Assertion and Reason

1. (d) 2. (a) 3. (d) 4. (d) 5. (b) 6. (a) 7. (c) 8. (d) 9. (a) 10. (d)

11. (d) 12. (d) 13. (d) 14. (a) 15. (d)



Single Correct Option

1. (a) 2. (a) 3. (c) 4. (b) 5. (b) 6. (d) 7. (d) 8. (c) 9. (d) 10. (b)

11. (d) 12. (c) 13. (b) 14. (a) 15. (a) 16. (a) 17. (c) 18. (a) 19. (b) 20. (b)

21. (d) 22. (b) 23. (c) 24. (c) 25. (b) 26. (c) 27. (a) 28. (c) 29. (d) 30. (d)

31. (c) 32. (c) 33. (b) 34. (a) 35. (c) 36. (d) 37. (a) 38. (b) 39. (c) 40. (c)

41. (d) 42. (c)

Subjective Questions

1. − −





a b

12 12
, 2. x

a b

R a
COM = −

−

3

3 3
3. True 6.

K

2

7.
1 1 1

2e e e
, ,

8. (a) ( 10 ) ms− −$
j 2

(b)
10

3
2

1
(

$ $
)i j− −
ms (c)

70

3
35

$ $
i j+





m

9. (a) 2.0 kg (b) (12.0 ms )
2− t

$
j (c) (72.0 N)

$
j 10. (a) 0.8 m/s

$i (b) 2.4 m/s
$i (c)

4

7

11. 2.82 kms
−1 12. 10 cm 13. (a)

mv

M m+
(b) balloon will also stop moving

14. m m e a u t= −
0

( / ) 15. 35 m 16. 2 10 N-s

18. 2 ms
−1

, 2 2 ms
−1 19.

2πr

v

20.
2

1
J

P
− 21.

2

3

22.
1

6
m

23. 71.4 mm 24.
4

3

L

25. (a) 0.43 (b) 480 J (c) 1.28 J

26. 0.011mm, 1.94 m/s 27. 2
2

m
gl

M M m
sin

( )

α



 +

28.
m R r

M m
m

g R r

M M m

( )
,

( )

( )

−
+

−
+

2

29. (a) 0.14 kg-ms
−1

(b) zero

31. 10 N, 20 W

32. 270 N-s (to the right), 13.5 kN (to the right)

33. 0.4 ms
−1

, 2.4 ms
−1

, 0.93 m

LEVEL 2

Single Correct Option

1. (b) 2. (b) 3. (b) 4. (b) 5. (a) 6. (b) 7. (d) 8. (a) 9. (b) 10. (c)

11. (a) 12. (a) 13. (b) 14. (c) 15. (d) 16. (d) 17. (d) 18. (c) 19. (c) 20. (b)

21. (a) 22. (b) 23. (b) 24. (a)

More than One Correct Options

1. (b,d) 2. (a,c,d) 3. (all) 4. (b,d) 5. (b,c) 6. (c,d) 7. (b,c) 8. (b,c,d)

Comprehension Based Questions

1. (b) 2. (b) 3. (d) 4. (b) 5. (c) 6. (c) 7. (a)
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Match the Columns
1. (a) → (r) (b) → (q) (c) → (s) (d) → (p)

2. (a) → (q) (b) → (q) (c) → (p) (d) → (s)

3. (a) → (r) (b) → (r) (c) → (q) (d) → (p)

4. (a) → (r) (b) → (s) (c) → (p) (d) → (q)

5. (a) → (r) (b) → (p) (c) → (p) (d) → (s)

6. (a) → (r) (b) → (r,s) (c) → (p,q) (d) → (p)

7. (a) → (p,r,s) (b) → (p,r,s) (c) → (p) (d) → (p,q)

8. (a) → (r,s) (b) → (r,s) (c) → (q) (d) → (q)

Subjective Questions

1. 1.25 ms
−1 2. v

eM m

M m
vball =

−
+









 0 (leftwards), v

e
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12.1 Introduction
A particle means mass with negligible volume. A rigid body is made up of too many particles but

distance between any two particles is always constant. In any type of motion of a rigid body this

distance always remains constant. A particle has only translational motion. Even if a particle is

rotating in a circle it has only translational motion and it has only translational kinetic energy
1

2

2mv .

A rigid body may have either of the following three types of motions :

(i) Translational motion

(ii) Rotational motion

(iii) Translational plus rotational motion

In translational motion of the rigid body all particles of the rigid body have same linear displacement,

same linear velocity and same linear acceleration. In rest two motions, different particles have

different linear displacement, different linear velocity and different linear acceleration.

As far as translational motion is concerned we do not differentiate between a particle and a rigid body.

This motion is already discussed in the chapter of kinematics. This is the reason, in the chapter of

kinematics, sometimes we write: a particle is moving and sometimes we write: a block (or a body) is

moving. Rest two motions are only defined for a rigid body. In the present chapter, we shall discuss

these two motions of a rigid body.

12.2 Moment of Inertia
Like the centre of mass, the moment of inertia is a property of an object that is related to its mass

distribution. The moment of inertia (denoted by I ) is an important quantity in the study of system of

particles that are rotating . The role of the moment of inertia in the study of rotational motion is

analogous to that of mass in the study of linear motion. Moment of inertia gives a measurement of the

resistance of a body to a change in its rotational motion. If a body is at rest, the larger the moment of

inertia of a body, the more difficult it is to put that body into rotational motion. Similarly, the larger

the moment of inertia of a body, the more difficult it is to stop its rotational motion. The moment of

inertia is calculated about some axis (usually the rotational axis) and it depends on the mass as well as

its distribution about that axis.

Moment of Inertia of a Single Particle
For a very simple case the moment of inertia of a single particle about an axis is given by,

I mr= 2 …(i)

Here, m is the mass of the particle and r its distance from the axis under consideration.
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Moment of Inertia of a System of Particles
The moment of inertia of a system of particles about an axis is given by,

I m r
i

i i= Σ 2 …(ii)

where, ri is the perpendicular distance from the axis to the ith particle, which has a mass mi .

For example, in Fig. 12.2:

I m r m r m r= + +1 1
2

2 2
2

3 3
2

Moment of Inertia of Rigid Bodies

For a continuous mass distribution such as found in a rigid body, we replace the

summation of Eq. (ii) by an integral. If the system is divided into infinitesimal

elements of mass dm and if r is the distance from a mass element to the axis of

rotation, the moment of inertia is,

I r dm= ∫ 2

where the integral is taken over the system.

Moment of Inertia of a Uniform Cylinder
Let us find the moment of inertia of a uniform cylinder about an axis through its centre of mass and

perpendicular to its base. Mass of the cylinder is M and radius is R.

We first divide the cylinder into annular shells of width dr and length l as shown in figure. The

moment of inertia of one of these shells is

dI r dm r dV= = ⋅2 2 ( )ρ
Here, ρ = density of cylinder

and dV = volume of shell =2πrl dr

∴ dI l r dr=2 3πρ
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The cylinder’s moment of inertia is found by integrating this expression between 0 and R,

So, I l r dr
l

R
R

= =∫2
2

3

0

4πρ
πρ

…(iii)

The density ρ of the cylinder is the mass divided by the volume.

∴ ρ
π

=
M

R l2
…(iv)

From Eqs. (iii) and (iv), we have

I MR=
1

2

2

Proceeding in the similar manner we can find the moment of inertia of certain rigid bodies about some

given axis. Moments of inertia of several rigid bodies with symmetry are listed in Table. 12.1.

Table 12.1

Thin rod
I1 0= , I

ml
2

2

12
=

I
ml

3

2

3
= , I

ml
4

2
2

12
= sin θ

I
ml

5

2
2

3
= sin θ, I mx6

2=

Circular disc
I I

mR
1 2

2

4
= =

I I I
mR

3 1 2

2

2
= + =

I I mR mR4 2
2 25

4
= + =

I I mR mR5 3
2 23

2
= + =

Circular ring
I I

mR
1 2

2

2
= =

I I I mR3 1 2
2= + =

I I mR mR4 2
2 23

2
= + =

I I mR mR5 3
2 22= + =

Rectangular
slab

I
mb

1

2

12
=

I
ma

2

2

12
=

I I I3 1 2= +

= +m
a b

12

2 2( )

94 � Mechanics - II

θ θ

3 2

4

1

6

x

5

4 2

3

1
5

⊗ ⊗

4 2

3

1

5

⊗ ⊗

⊗

2

3

1

a

b



Square slab
I I I

ma
1 2 3

2

12
= = =

I I I
ma

4 1 3

2

6
= + =

Solid sphere I mR1
22

5
=

I I mR2 1
2= +

= 7

5

2mR

m = mass of sphere

Hollow sphere I mR1
22

3
=

I I mR2 1
2= +

= 5

3

2mR

Theorems on Moment of Inertia
There are two important theorems on moment of inertia, which, in some cases, enable the moment of

inertia of a body to be determined about any general axis, if its moment of inertia about some other

axis is known. Let us now discuss both of them.

Theorem of Parallel Axes

A very useful theorem, called the parallel axes theorem relates the moment of inertia of a rigid body

about two parallel axes, one of which passes through the centre of mass.

Two such axes are shown in figure for a body of mass M. If r is the distance between the axes and

ICOM and I are the respective moments of inertia about them then, these two are related by,

I I Mr= +COM
2
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We now present a proof of the above theorem.

Proof To prove this theorem, we consider two axes, both parallel to the z-axis, one through the

center of mass and the other through a point P (Fig 12.6). First we take a very thin slice of the body,

parallel to the xy-plane and perpendicular to the z-axis. We take the origin of our coordinate system to

be at the centre of mass of the body; the coordinates of the centre of mass are then

x y zcm cm cm= = =0. The axis through the centre of mass passes through this thin slice at point O and

the parallel axis passes through point P, whose x and ycoordinates are ( , )a b . The distance of this axis

from the axis through the centre of mass is r, where r a b2 2 2= + .

We can write an expression for the moment of inertia I P about the axis through point P. Let mi be a

mass element in our slice, with coordinates ( , , )x y zi i i . Then, the moment of inertia ICOM of the slice

about the axis through the centre of mass (at O) is

I m x y
i

i i iCOM = +Σ ( )2 2

The moment of inertia of the slice about the axis through P is

I m x a y bP
i

i i i= − + −Σ [( ) ( ) ]2 2

These expressions don’t involve the coordinates zi measured perpendicular to the slice, so we can

extend the sums to include all particles in all slices. Then, I P becomes the moment of inertia of the

entire body for an axis through P. We then expand the squared terms, regroup and obtain

I m x y a m x b m y a y mP
i

i i i
i

i i
i

i i
i

i= + − − + +Σ Σ Σ Σ( ) ( )2 2 2 22 2

The first sum is ICOM . From the, definition of the centre of mass the second and third sums are

proportional to xcm and ycm . These are zero because we have taken our origin to be the centre of

mass. The final term is r 2 multiplied by the total mass or r 2 . This completes our proof that

I I MrP = +COM
2
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Note From the above theorem we can see that among several parallel axes, moment of inertia is least about an

axis which passes through centre of mass. e g. . I2 is least among I I1 2, and I3. Similarly, I5 is least among I I4 5,

and I6.

Theorem of Perpendicular Axes

This theorem is applicable only to the plane bodies (two dimensional).

The theorem states that the moment of inertia of a plane lamina about an

axis perpendicular to the plane of the lamina is equal to the sum of the

moments of inertia of the lamina about two axes perpendicular to each

other, in its own plane and intersecting each other, at the point where the

perpendicular axis passes through it. Let x and y axes be chosen in the

plane of the body and z-axis perpendicular, to this plane, three axes being

mutually perpendicular, then the theorem states that

I I Iz x y= +

Proof Consider an arbitrary particle P of mass mi , distant ri fromO and

xi and yi are the perpendicular distances of point P from the x and y-axes respectively, we have

I m rz
i

i i= Σ 2 , I m yx
i

i i= Σ 2 and I m xy
i

i i= Σ 2

So that, I I m y m xx y
i

i i
i

i i+ = +Σ Σ2 2

= +Σ
i

i i im y x( )2 2 = Σ
i

i im r 2 = I z

i.e. I I Iz x y= + Hence Proved.

Radius of Gyration

Radius of gyration ( )K of a body about an axis is the effective distance

from this axis where the whole mass can be assumed to be concentrated so

that the moment of inertia remains the same. Thus,

I MK= 2 or K
I

M
=

e.g. radius of gyration of a disc about an axis perpendicular to its plane

and passing through its centre of mass is

K

MR

M

R
= =

1

2

2

2
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Extra Points to Remember

� Theorem of parallel axes is applicable for any type of rigid body whether it is a two dimensional or three

dimensional, while the theorem of perpendicular axes is applicable for laminar type or two dimensional

bodies only.

� In theorem of perpendicular axes, the point of intersection of the three axes (x, y and z) may be any point on

the plane of body (it may even lie outside the body also). This point may or may not be the centre of mass

of the body.

� If whole mass of the rigid body is kept at same distance x or R from the axis, then moment of intertia is mx2

or mR2, where m is the mass of whole body.

� If a portion is symmetrically cut about an axis and mass of

remaining portion is M. Then, moment of inertia of the remaining

portion is same as the moment of inertia of the whole body of

same mass M. e.g. in figure 12.11(a) moment of inertia of the

section shown (a part of circular disc) about an axis

perpendicular to its plane and passing through point O is
1

2

2MR

as the moment of inertia of the complete disc is also
1

2

2MR .

Proof : Suppose the given section is
1

n
th part of the disc, then mass of the disc will be nM.

I nM R
disc

= 1

2

2( )

∴ I
n

I MR
section disc

= =1 1

2

2

� If whole mass of the rigid body is kept over the axis then, moment of inertia

is zero. For example, moment of inertia of a thin rod about an axis passing

through the rod is zero.

V Example 12.1 Three particles of masses 1g, 2g and 3g are kept at points
(2cm, 0), (0,6 cm), (4cm, 3cm). Find moment of inertia of all three particles
(in gm cm-

2 ) about, (a) x-axis (b) y-axis (c) z-axis

Solution (a) About x-axis

I I I Ix = + +1 2 3

= + +m r m r m r1 1
2

2 2
2

3 3
2

Here r = perpendicular distance of the particle from x-axis

∴ I1
2 2 21 0 2 6 3 3= + +( ) ( ) ( )( ) ( )( )

= 99 2g -cm Ans.

(b) About y-axis

I m r m r m ry = + +1 1
2

2 2
2

3 3
2
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Here, r = perpendicular distance of the particle from y-axis

∴ I y = + +( )( ) ( )( ) ( )( )1 2 2 0 3 42 2 2 = 52 2g -cm Ans.

(c) About z-axis I m r m r m rz = + +1 1
2

2 2
2

3 3
2

Here, r = perpendicular distance of the particle from z-axis.

r0
2 23 4 5= + =( ) ( ) cm

∴ I z = + +( )( ) ( )( ) ( )1 2 2 6 3 52 2 2 = 151 2g -cm Ans.

Note In the above example, from theorem of perpendicular axes, we can see that

I I Iz x y= +

V Example 12.2 Three rods each of mass m and length l are
joined together to form an equilateral triangle as shown in
figure. Find the moment of inertia of the system about an
axis passing through its centre of mass and perpendicular to
the plane of the triangle.

Solution Moment of inertia of rod BC about an axis perpendicular to

plane of triangle ABC and passing through the mid-point of rod BC

( )i.e. D is

I
ml

1

2

12
=

r BD= °tan 30

or r
l= 












2

1

3
= l

2 3

From theorem of parallel axes, moment of inertia of this rod about the

asked axis is

I I mr2 1
2= + = + 








ml
m

l2 2

12 2 3
= ml2

6
Ans.

∴ Moment of inertia of all the three rods is

I I= 3 2 =








3

6

2ml = ml2

2
Ans.

V Example 12.3 Find the moment of inertia of a solid sphere of mass M and
radius R about an axis XX shown in figure. Also find radius of gyration about
the given axis.
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Solution From theorem of parallel axis,

I I MrXX = +COM
2 = +2

5

2 2MR MR

= 7

5

2MR Ans.

Radius of gyration, K
I

M

MR

M
R= = =

7

5 7

5

2

Note If whole mass M is kept at a distance K R=








7

5
as a particle, then moment of inertia is again

7

5

2MR .

V Example 12.4 Consider a uniform rod of mass m and length 2l with two
particles of mass m each at its ends. Let AB be a line perpendicular to the
length of the rod and passing through its centre. Find the moment of inertia of
the system about AB.

Solution I I IAB = +rod both particles

= +m l
ml

( )
( )

2

12
2

2
2

= 7

3

2ml Ans.

V Example 12.5 Find the moment of inertia of the rod AB about an axis yy as
shown in figure. Mass of the rod is m and length is l.

Solution Mass per unit length of the rod = m

l

Mass of an element PQ of the rod is, dm
m

l
dx= 





Perpendicular distance of this elemental mass about yy is, r x= sin α
∴ Moment of inertia of this small element of the rod (can be

assumed as a point mass) about yy is,

dI dm r= ( ) 2 = 





m

l
dx x( sin )α 2 = 





m

l
x dxsin 2 2α
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∴ Moment of inertia of the complete rod,

I dI
x

x l
=

=

=
∫ 0

= ∫
m

l
x dx

l
sin 2 2

0
α = ml2

2

3
sin α Ans.

Note (i) I = 0 if α = 0 (ii) I
ml=

2

3
if α π=

2
or 90°

1. Find the radius of gyration of a rod of mass m and length2 l about an axis passing through one of

its ends and perpendicular to its length.

2. A mass of 1 kg is placed at (1 m, 2 m, 0). Another mass of 2 kg is placed at (3 m, 4 m, 0). Find

moment of inertia of both the masses about z-axis.

3. Four thin rods each of mass m and length l are joined to make a square. Find moment of inertia

of all the four rods about any side of the square.

4. About what axis would a uniform cube have its minimum moment of inertia?

5. There are four solid balls with their centres at the four corners of a square of side a. The mass of

each sphere is m and radius is r. Find the moment of inertia of the system about (i) one of the

sides of the square  (ii) one of the diagonals of the square.

6. A non-uniform rod AB has a mass M and length2 l .The mass per unit length of the rod is mx at a

point of the rod distant x from A. Find the moment of inertia of this rod about an axis

perpendicular to the rod  (a) through A (b) through the mid-point of AB.

7. The uniform disc shown in the figure has a moment of inertia of 06 2. kg -m around the axis that

passes through O and is perpendicular to the plane of the page. If a segment is cut out from the

disc as shown, what is the moment of inertia of the remaining disc?

8. If two circular disks of the same weight and thickness are made from metals having different

densities. Which disk, if either will have the larger moment of inertia about its central axis.

9. Particles of masses 1 2 3 100g, g g, g, K are kept at the marks 1 2 3 100cm, cm, cm, , cmK

respectively on a metre scale. Find the moment of inertia of the system of particles about a

perpendicular bisector of the metre scale.

10. If I1 is the moment of inertia of a thin rod about an axis perpendicular to its length and passing

through its centre of mass and I2 the moment of inertia of the ring formed by the same rod about

an axis passing through the centre of mass of the ring and perpendicular to the plane of the ring.

Then find the ratio
I

I

1

2

.
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12.3 Angular Velocity
Angular velocity is a vector quantity. It is represented by ω. Its SI unit is radian per second. It can be

defined for following three situations :

(i) Angular velocity of a particle (in motion) about a fixed point.

(ii) Angular velocity of a rigid body in pure rotational motion.

(iii) Angular velocity of a rigid body in rotational and translational motion.

Angular Velocity of a Particle (in motion) about a Fixed Point
At a given instant a particle P has velocity v. It has position

vector r with respect to a fixed point O as shown in figure.

After some time position vector has become r ′. We can see two

changes in its position vector.

First, its magnitude | |r has changed, second its direction has

changed or we can say, its position vector has been rotated. If we

resolve v along r and perpendicular to r then its two components

v|| and v⊥ have the following meanings.

v v|| = =
⋅

cosθ
v r

r

= component of v along r =
d

dt

| |r

= rate by which magnitude of r changes

= rate by which distance of P from O changes.

θ = angle between r and v

v v

r

v

OP

⊥ ⊥ ⊥= = =
| |r

ω

= angular velocity of particle P about point O at this instant

= rate by which r rotates

If θ is acute, cosθ or v|| is positive i.e. distance of P fromO is increasing. If θ is

obtuse, cosθ or v|| is negative i.e. distance of P fromO is decreasing. Ifθ is 90°,
then cosθ or v|| is zero or distance of P from O is constant. For example, when

particle rotates in a circle then with respect to centre,θ is always90°. This is the

reason, why distance of particle from centre always remains constant.With

respect to any other point θ is sometimes acute and sometimes

obtuse.Therefore, distance sometimes increases and sometimes decreases.

v r⊥ = ×ω i.e. perpendicular component of velocity in vector form is the cross product of ωand r.

Direction of ω is given by right hand screw law. For example:

in Fig. 12.24 rotation is clockwise. So, ω is perpendicular to

paper inwards. If a particle moves in a straight line, then about

any point lying on this line angle between r and v is 0° or180°.
Hence, v ⊥ =0 or ω =0.
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Angular Velocity of a Rigid Body in Pure Rotational Motion
Consider a rigid body rotating about a fixed line AB. Consider a particle

P. Draw a perpendicular PO to the axis of rotation. In time ∆t, this

particle moves to point Q.

Let ∠ =QOP ∆θ
Then, we say that the particle has rotated through an angle ∆θ. In fact, all

the particles of the rigid body have rotated the same angle ∆θ or we can

say that the whole body has rotated through an angle ∆θ.

The average angular velocity of the rigid body during the time interval

∆t is

ω
θ

av
t

=
∆
∆

The instantaneous angular velocity of the rigid body is

ω
θ θ

= =
∆ →
lim
t t

d

dt0

∆
∆

Direction of angular velocity is given by right hand rule. The direction of angular velocity is defined

to be the direction in which the thumb of your right hand points when you curl your fingers in the

direction of rotation.

For example, direction ofωin the given figure is along the axis of rotation from B to A. The magnitude

of angular velocity is called angular speed. However, we shall continue to use the word angular

velocity.

Angular Velocity of a Rigid Body in Rotational and Translational Motion
Consider two particles A and B on a rigid body (in translational and rotational motion). In general,

velocity of A is not equal to the velocity of B.

or v vA B≠
Find their components along AB and perpendicular to AB. Now,

(a) Along AB their components are always equal or,

v vA Bcos cosα β=
This is because, in a rigid body distance between two particles (here A and B) is always constant.
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Extra Points to Remember

If the components are not equal then the distance AB will either increase

(when v vA Bcos cosα β> ) or decrease (when v vB Acos cosβ α> ).

(b) Find relative component perpendicular to AB and divide it by the distance AB to find angular

velocity of the rigid body. In the given figure, the perpendicular components are v A sin α and

vB sin β (in the same direction). Suppose v vA Bsin sinα β> . Then, the relative component

perpendicular to AB is

v v vr A B= −sin sinα β

∴ ω =
v

AB

r =
−v v

AB

A Bsin sinα β

As, v vA Bsin sinα > β, so rotation of the body is clockwise and according to right hand rule,

angular velocity vector is perpendicular to paper inwards. This direction is also shown like ⊗ .

� If a particle P is moving in a circle, its angular velocity about centre of the circle

( )ωC is two times the angular velocity about any point on the circumference of the

circle ( )ωO or ω ωC O= 2

This is because ∠ ′ = ∠ ′P CP P OP2 (by property of a circle)

ωC

pp

P CP

t
= ∠ ′

′

, ωO

pp

P OP

t
= ∠ ′

′

From these relations we can see that ω ωC O= 2 .

� In pure translational motion of a rigid body its angular velocity will be zero.

� According to right hand rule direction of angular velocity in some cases (in pure rotational motion) have

been shown below :
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V Example 12.6 Rod AB has a length L. Velocity of end A of the rod has velocity
v0 at the given instant.

(a) Which type of motion the rod has?

(b) Find velocity of end B at the given instant.

(c) Find the angular velocity of the rod.

Solution (a) The rod has rotational plus translational motion.

(b) Let velocity of end B is vB in the direction shown in figure.

Components of vA and vB along AB and perpendicular to AB are also shown in the same

figure.

Rod is a rigid body. So, distance AB should remain constant or the components along AB

should be same.

∴
3

2 2

0v vB= or v vB = 3 0 Ans.

(c) Perpendicular to AB, components are in opposite directions. So, the relative component will

be

v
v v

r
B= +0

2

3

2

Substituting v vB = 3 0 we get, v vr = 2 0
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Now angular velocity of the rod is ω =
v

AB

r

or ω =
2v

L

o Ans.

Rotation of the rod is anticlockwise. Therefore, from right hand rule ω is perpendicular to paper

outwards or in O. direction.

1. Find angular speed of second’s clock.

2. Two points P and Q, diametrically opposite on a disc of radius R have linear velocities v and 2v

as shown in figure. Find the angular speed of the disc.

3. A particle is located at (3 m, 4 m) and moving with v = −( $ $)4 3i j m/s. Find its angular velocity

about origin at this instant.

4. In the figure shown, the instantaneous speed of end A of the rod is v to the left. Find angular

velocity of the rod at given instant.

12.4 Torque
Suppose a force F is acting on a particle P and let r be the position vector of

this particle about some reference point O. The torque of this force F, about

O is defined as,

τ = ×r F

This is a vector quantity having its direction perpendicular to both r and F,
according to the rule of cross product.

Note Here, r r r= −P O

rP = position vector of point, where force is acting and

rO = position vector of point about which torque is required.
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Extra Points to Remember

Torque of a Force about a Line
Consider a rigid body rotating about a fixed axis AB. Let F be a

force acting on the body at point P. Take the origin O somewhere

on the axis of rotation. The torque of F about O is

τ = ×r F

Its component along AB is called the torque of F about AB. This is

also equal to

τ = × ⊥F r

Here, r⊥ = perpendicular distance of point of application of force from the line AB

� When a rigid body is rotating about a fixed axis and a force is applied on it at some point then we are

concerned with the component of torque of this force about the axis of rotation not with the net torque.

� The component of torque about axis of rotation is independent of the choice of the origin O, so long as it is

chosen on the axis of rotation, i.e. we may choose point O anywhere on the line AB.

� Component of torque along axis of rotation AB is zero if

(a) F is parallel to AB (b) F intersects AB at some point

� If F is perpendicular to AB, but does not intersect it, then component of torque about line AB = magnitude

of force F × perpendicular distance of F from the line AB (called the lever arm or moment arm) of this

torque.

� If there are more than one force F F1 2, ,K acting on a body, the total torque will be

τ = × + × +r F r F1 1 2 2 K

But if the forces act on the same particle, one can add the forces and then take the torque of the resultant force,

or

τ = × + +r F F . . .( )1 2

V Example 12.7 Find the torque of a force F i j k= + −( $ $ $ )2 3 N about a point O.
The position vector of point of application of force about O is r i j k= + −( $ $ $ )2 3 m .

Solution Torque τ = ×r F = −
−

$ $ $i j k

2 3 1

1 2 3

= − + + − + + −$ ( ) $( ) $ ( )i j k9 2 1 6 4 3

or τ = − + +( $ $ $ )7 5i j k N-m Ans.

V Example 12.8 A small ball of mass 1.0 kg is attached to one end of a 1.0 m
long massless string and the other end of the string is hung from a point O.
When the resulting pendulum is making 30° from the vertical, what is the
magnitude of net torque about the point of suspension?

[Take g m s= 10 2/ ]
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Solution Two forces are acting on the ball

(i) tension ( )T (ii) weight ( )mg

Torque of tension about point O is zero, as it passes through O.

τ mg F r= × ⊥
Here, r OP⊥ = = ° =1.0 0.5 msin 30

∴ τ mg mg= ( )(0.5)

= ( )( )1 10 (0.5) = 5 N-m Ans.

V Example 12.9 A force F i j k= + −( $ $ $ )2 3 4 N is acting at point P m m m(2 , 3 , 6 ).−
Find torque of this force about a point O whose position vector is
( $ $ $ )2 5 3i j k− + m.

Solution τ = ×r F Here, r r r= −P O = − + − − +( $ $ $ ) ( $ $ $ )2 3 6 2 5 3i j k i j k = +( $ $ )2 3j k m

Now, τ = × =
−















r F

i j k$ $ $

0

2

2

3

3

4

= − + −( $ $ $ )17 6 4i j k N-m Ans.

1. A forceF = + −( $ $ $ )2 3 2i j k N is acting on a body at point (2 m, 4 m, –2 m). Find torque of this force

about origin.

2. A particle of massm = 1kg is projected with speedu = 20 2 m/s at angleθ = °45 with horizontal.

Find the torque of the weight of the particle about the point of projection when the particle is at

the highest point.

3. Point C is the centre of mass of the rigid body shown in figure. Find the total torque acting on the

body about point C.

4. Find the net torque on the wheel in figure about the pointO if a = 10 cm and b = 25 cm.
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12.5 Rotation of a Rigid Body about a Fixed Axis
When a body is rotating about a fixed axis, any point P located in the body

travels along a circular path. Before, analyzing the circular motion of point P,

we will first study the angular motion properties of a rigid body.

Angular Motion
Since, a point is without dimension, it has no angular motion. Only lines or

bodies undergo angular motion. Let us consider the angular motion of a radial

line r located with the shaded plane.

Angular Position
The angular position of r is defined by the angle θ, measured between a fixed

reference line OA and r.

Angular Displacement
The change in the angular position, often measured as a differential dθ is

called the angular displacement. (Finite angular displacements are not vector

quantities, although differential rotations dθ are vectors). This vector has a

magnitude dθ and the direction of dθ is along the axis.

Specifically, the direction of dθ is determined by right hand rule; that is, the

fingers of the right hand are curled with the sense of rotation, so that in this case the thumb or dθ
points upward.

Angular Velocity
The time rate of change in the angular position is called the angular velocity ω. Thus,

ω
θ

=
d

dt
…(i)

It is expressed here in scalar form, since its direction is always along the axis of rotation, i.e. in the

same direction as dθ.

Angular Acceleration
The angular acceleration α measures the time rate of change of the angular velocity. Hence, the

magnitude of this vector may be written as,
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α
ω

=
d

dt
…(ii)

It is also possible to express α as,

α
θ

=
d

dt

2

2

The line of action of α is the same as that forω, however its sense of direction depends on whetherωis

increasing or decreasing with time. In particular, ifωis decreasing,α is called an angular deceleration

and therefore, has a sense of direction which is opposite to ω.

Torque and Angular Acceleration for a Rigid Body
The angular acceleration of a rigid body is directly proportional to the sum of the torque components

along the axis of rotation. The proportionality constant is the inverse of the moment of inertia about

that axis, or

α
τ

=
Σ
I

Thus, for a rigid body we have the rotational analog of Newton’s second law :

Στ α= I …(iii)

Following two points are important regarding the above equation :

(i) The above equation is valid only for rigid bodies. If the body is not rigid like a rotating tank of

water, the angular acceleration α is different for different particles.

(ii) The sum Στ in the above equation includes only the torques of the external forces, because all

the internal torques add to zero.

Rotation with Constant Angular Acceleration
If the angular acceleration of the body is constant then Eqs. (i) and (ii) when integrated yield a set of

formulae which relate the body’s angular velocity, angular position and time. These equations are

similar to equations used for rectilinear motion. Table given ahead compares the linear and angular

motion with constant acceleration.

Table 12.2

Straight line motion with constant linear

acceleration

Fixed axis rotation with constant angular

acceleration

a = constant

v u at= +

s s ut at= + +0
21

2

v u a s s2 2
02= + −( )

α = constant

ω ω α= +0 t

θ θ ω α= + +0 0
21

2
t t

ω ω α θ θ2
0
2

02= + −( )

Here,θ ω0 0and are the initial values of the body’s angular position and angular velocity respectively.

Note If α is not constant then we will have to take help of either differentiation or integration (with limits). The

equations involved are :
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Extra Points to Remember

Equations of Differentiation
ω

θ
=

d

dt
and α

ω
ω

ω
θ

= =
d

dt

d

d

Equations of Integration

d dt d dt∫ ∫ ∫ ∫= =θ ω ω α, and ω ω α θ∫ ∫=d d

Kinetic Energy of a Rigid Body Rotating about a Fixed Axis
Suppose a rigid body is rotating about a fixed axis with angular speed ω. Then,

kinetic energy of the rigid body will be

K m v
i

i i= Σ
1

2

2 = Σ
i

i im r
1

2

2( )ω

=
1

2

2 2ω Σ
i

i im r =
1

2

2Iω (as Σ
i

i im r I2 = )

Thus, KE =
1

2

2Iω

Sometimes it is called the rotational kinetic energy.

� In pure rotational motion of a rigid body all particles rotate in circular paths

except the particles lying on the axis.The particles lying on the axis are at

rest.

� Planes of all circular paths are mutually parallel with their centres lying on the

axis.

� Linear velocity of any particle is tangential to its own circle and its linear

speed is,

v r= ω
In this equation, ω is same for all particles (and that is also called ωof the

rigid body).

∴ v r∝
In the figure shown, r r2 1> ⇒ ∴ v v2 1>
Further, r for the particles lying on the axis is zero. Therefore, their linear velocity is zero or they are at rest.

� Since every particle is rotating in a circle (except the particles lying on the axis). Hence acceleration of the

particle has two components :

(i) Radial component or centripetal acceleration given by

a r
v

r
r = =ω2

2

This component is always towards the centre and this can't be zero.

(ii) Tangential component given by a
dv

dt
rt = = α where, α ω=d

dt

This component is tangential and it may be zero, positive or negative. If v orωis constant then at is zero. If

v or ω is increasing then this component is positive and in the direction of linear velocity. If v or ω is

decreasing then this component is negative and in the opposite direction of linear velocity.

(iii) Net acceleration of the particle is the resultant of these two perpendicular components.
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Note From the above discussions, we have seen that pure rotational motion of a rigid body is nothing but circular

motion of its different particles. So, before solving the problems of this topic make yourself expert in circular

motion.

V Example 12.10 A solid sphere of mass 2 kg and radius 1 m is free to rotate
about an axis passing through its centre. Find a constant tangential force F
required to rotate the sphere with 10 rad/s in 2 s. Also find the number of
rotations made by the sphere in that time interval.

Solution Since, the force is constant, the torque produced by it and the angular acceleration α
will be constant. Hence, we can apply

ω ω α= +0 t ⇒ 10 0 2= + ( )( )α ⇒ α = 5 2rad /s

Further, the force is tangential. Therefore, the perpendicular distance from the axis of rotation

will be equal to the radius of the sphere.

∴ α τ=
I

= ⋅F R

mR
2

5

2

= 5

2

F

mR
or F

mR= 2

5

α

Substituting the value, we have F = =( )( )( )( )

( )

2 2 1 5

5
4 N Ans.

Further,  angle rotated θ α= 1

2

2t = 1

2
5 2 2( )( ) = 10 rad

∴ Number of rotations n = = =θ
π π π2

10

2

5
Ans.

V Example 12.11 The angular position of a point on the rim of a rotating wheel

is given by θ = − +4 3 2 3t t t , where θ is in radians and t is in seconds. What are

the angular velocities at

(a) t s= 2.0 and (b) t s= 40. ?

(c) What is the average angular acceleration for the time interval that begins at

t s= 2.0 and ends at t s= 4.0 ?

(d) What are the instantaneous angular acceleration at the beginning and the end of

this time interval?

Solution Angular velocity ω θ= = − +d

dt

d

dt
t t t( )4 3 2 3 or ω = − +4 6 3 2t t

(a) At t = 2.0s, ω = − × +4 6 2 3 2 2( ) or ω = 4 rad/s Ans.

(b) At t = 4.0s, ω = − × +4 6 4 3 4 2( ) or ω = 28 rad/s Ans.

(c) Average angular acceleration α
ω ω

av =
−
−

f i

f it t
= −

−
28 4

4 2
or α av rad/s= 12 2

Ans.

(d) Instantaneous angular acceleration is,

α ω= d

dt
= − +d

dt
t t( )4 6 3 2 or α = − +6 6t

At t = 2.0s, α = − + × =6 6 2 6 2rad/s Ans.

At t = 4.0s, α = − + × =6 6 4 18 2rad/s Ans.
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V Example 12.12 A circular disc is rotating
with an angular speed (in radian per sec)

ω =2 2t

Given, CP m= 2

In terms of $i, $j and $k, at t =1 s

find,

(a) ω
(b) α
(c) linear velocity of the particle lying at P

(d) linear acceleration of the particle lying at P

Solution ω =2 2t ⇒ α ω= =d

dt
t4

At t =1s, ω =2rad /s and α = 4 2rad /s

For the particle at P, r CP= =2m

(a) Rotation is clockwise. So, according to right hand rule, ω is perpendicular to paper inwards

along negative z-direction.

∴ ω = −( $ )2k rad /s

(b) ω is increasing. So, α is also in the direction of ω.

∴ α = −( $ )4 2
k rad /s

(c) v r= =ω ( ) ( )2 2 = 4 m/s

This velocity is tangential to the doted circle of P as shown

in figure.

∴ v i j= ° − °( cos ) $ ( sin ) $4 53 4 53

or v i j= −( $ $ )2.4 3.2 m/s

(d) Acceleration of the particle has two components

(i) a rr = ω2 (radial component)

= ( ) ( )2 2 2 = 8 2m/s

This components is towards centre C.

(ii) a rt = α (tangential component)

= ( ) ( )2 4 = 8 2m/s

This component is in the direction of linear velocity, as

ω or v is increasing.

∴ a i= ° − °( cos cos )($ )8 53 8 37

+ ° + ° −( sin sin ) ( $ )8 53 8 37 j

or a i j= − −( $ $ )1.6 11.2 m/s 2
Ans.
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1. A wheel rotating with uniform angular acceleration covers 50 rev in the first five seconds after

the start. Find the angular acceleration and the angular velocity at the end of five seconds.

2. A body rotates about a fixed axis with an angular acceleration 1 rad/s2. Through what angle

does it rotates during the time in which its angular velocity increases from 5 rad/s to 15 rad/s?

3. A flywheel of moment of inertia 5.0 kg -m2 is rotated at a speed of 10 rad/s. Because of the

friction at the axis it comes to rest in 10 s. Find the average torque of the friction.

4. A wheel starting from rest is uniformly accelerated at 4 rad/s2 for 10 s. It is allowed to rotate

uniformly for the next 10 s and is finally brought to rest in the next 10 s. Find the total angle

rotated by the wheel.

5. A wheel of mass 10 kg and radius 0.2 m is rotating at an angular speed of 100 rpm, when the

motion is turned off. Neglecting the friction at the axis, calculate the force that must be applied

tangentially to the wheel to bring it to rest in 10 rev. Assume wheel to be a disc.

6. A solid body rotates about a stationary axis according to the lawθ = −6 2 3t t .Here, θ is in radian

and t in seconds. Find

(a) the mean values of the angular velocity and angular acceleration averaged over the time

interval between t = 0 and the complete stop,

(b) the angular acceleration at the moment when the body stops.

Hint If y y t= ( ), then mean/average value of y between t1 and t2 is < > =
−

∫
y

y t dt

t t

t

t

1

2

2 1

( )
.

7. A body rotating at 20 rad/s is acted upon by a constant torque providing it a deceleration of

2 2rad/s . At what time will the body have kinetic energy same as the initial value if the torque

continues to act ?

8. A wheel whose moment of inertia is 0.03 kgm2, is accelerated from rest to 20 rad/s in 5 s. When

the external torque is removed, the wheel stops in 1 min. Find

(a) the frictional torque, (b) the external torque.

9. A flywheel whose moment of inertia about its axis of rotation is 16 kg -m2 is rotating freely in its

own plane about a smooth axis through its centre. Its angular velocity is 9 rads−1 when a torque

is applied to bring it to rest in t0 seconds. Find t0 if

(a) the torque is constant and of magnitude 4 N-m,

(b) the magnitude of the torque after t seconds is given by kt.

10. A shaft is turning at 65 rad/s at time zero. Thereafter, angular acceleration is given by

α = − −10 52 2rad/s rad/st

where t is the elapsed time.

(a) Find its angular speed at t = 3.0 s.

(b) How much angle does it turn in these 3s ?

11. The angular velocity of a gear is controlled according to ω = −12 3 2t where ω, in radian per

second, is positive in the clockwise sense and t is the time in seconds. Find the net angular

displacement ∆θ from the time t = 0 to t = 3 s. Also, find the number of revolutions N through

which the gear turns during the 3 s.
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12.6 Angular Momentum
A mass moving in a straight line has linear momentum ( )P . When a mass rotates about some

point/axis, there is momentum associated with rotational motion called the angular momentum ( )L .

Just as net external force is required to change the linear momentum of an object a net external torque

is required to change the angular momentum of an object. Keeping in view the problems asked in

JEE, the angular momentum is classified in following three types.

Angular Momentum of a Particle about a Fixed Point
Suppose a particle A of mass m is moving with linear momentum P v= m . Its angular momentum L

about point O is defined as

L r P r v r v= × = × = ×( ) ( )m m

Here, r is the radius vector of particle A about O at that instant of time. The magnitude of L is

L mvr mvr= = ⊥sin θ

Here, r r⊥ = sin θ is the perpendicular distance of line of action of velocity v from point O. The

direction of L is same as that of r v× .

Direction of angular momentum can also be by right hand rule as shown below:

In figures (a) and (c), rotation is clockwise. Hence, according to right hand rule angular momentum is

perpendicular to paper inwards or in ⊗ direction.

In figures (b) and (d), rotation is anticlockwise. Hence, direction of angular momentum is

perpendicular to paper outwards or in O. direction.
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Extra Points to Remember
� If line of action of velocity passes through the point O, then r⊥ =0. Therefore, angular momentum is zero.

� If a particle rotates in a circle then r⊥ from centre is always equal to R (= radius of circle). Or, θ between r

and v (or P) is always 90°. Therefore, angular momentum about centre is L mv R=

In figure (a), direction of angular momentum is perpendicular to paper inwards ⊗ and in figure (b) outwards

or O. .
� If a particle is moving with a constant velocity (speed and

direction of velocity both are constant) then angular
momentum about any point always remains constant. But
this constant value will be different about different points.

In the figure shown,

LO1
0= as r⊥ = 0

L mvbO2
= (= constant), perpendicular to paper inwards

L mvcO3
= (= constant), perpendicular to paper outwards.

Angular Momentum of a Rigid Body Rotating about a Fixed Axis
Suppose a particle P of mass m is going in a circle of radius r and at some instant

the speed of the particle is v. For finding the angular momentum of the particle

about the axis of rotation, the origin may be chosen anywhere on the axis. We

choose it at the centre of the circle. In this case r and P are perpendicular to each

other and r P× is along the axis. Thus, component of r P× along the axis is mvr

itself. The angular momentum of the whole rigid body about AB is the sum of

components of all particles, i.e.

L m r v
i

i i i= Σ

Here, v ri i= ω
∴ L m r

i
i i= Σ 2ω

or L m r
i

i i=ω Σ 2 or L I= ω (as Σ
i

i im r I2 = )

Here, I is the moment of inertia of the rigid body about AB.

Thus, L I= ω is the component of angular momentum of the whole rigid body about axis of rotation

AB. Direction of this component is again given by right hand rule. For example, in the given figure

L I= ω is upwards or along the axis of rotation from B to A.
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Extra Points to Remember
� The vector relation L = Iω is not correct in the above case because L and ω do not point in the same

direction, but we could write L IAB = ω. If however the body is symmetric about the axis of rotation L and ω
are parallel and we can write ( )L I= ω in vector form as L = Iω..

� By symmetric we mean that for every mass element in the body there must be an identical mass element
diametrically opposite the first element and at the same distance from the axis of rotation.

� Thus, remember that L = Iω applies only to bodies that have symmetry about the (fixed) rotational axis.
Here, L stands for total angular momentum. However the relation L IAB = ω holds for any rigid body
symmetrical or not that is rotating about a fixed axis.

Angular Momentum of a Rigid Body in Combined Rotation and Translation
Let O be the fixed point in an inertial frame of reference.

Angular momentum of the rigid body about O is the vector sum of two terms (as discussed above).

(i) mvrsin θ or mvr⊥ (ii) Iω
Here, v is the velocity of centre of mass. Moment of inertia I is about an axis passing through

centre of mass. Directions of above two terms can be determined by right hand rule. If both the

terms are in the same direction then these two terms are additive and if they are in opposite

directions, then they are subtractive.

V Example 12.13 A particle of mass m is moving along the line y b= , z = 0 with
constant speed v. State whether the angular momentum of particle about origin
is increasing, decreasing or constant.

Solution | | sinL = mvr θ = ⊥mvr = mvb

∴ | |L = constant as m v, and b all are constants.

Direction of r v× also remains the same. Therefore, angular momentum of particle about origin

remains constant with due course of time.

Note In this problem | |r is increasing, θ is decreasing but r sin ,θ i.e. b remains constant. Hence, the angular

momentum remains constant.

Chapter 12 Rotational Mechanics � 117

θ
v

r⊥

O

r
ω

θ

r rsin =θ ⊥

Fig. 12.54

O

y

x

v
P

r

θ

r b⊥ =

Fig. 12.55



V Example 12.14 A particle of mass m is projected from origin O with speed u

at an angle θ with positive x-axis. Positive y-axis is in vertically upward

direction. Find the angular momentum of particle at any time t about O before

the particle strikes the ground again.

Solution L r v= ×m( )

Here, r i j( ) $ $t x y= + = + −( cos ) $ ( sin ) $u t ut gtθ θi j
1

2

2

and v i j( ) $ $t v vx y= + = + −( cos )$ ( sin )$u u gtθ θi j

∴ L r v= ×m ( ) = −

−

m u t u t gt

u u gt

$ $ $

( cos ) ( sin )

cos sin

i j k

θ θ

θ θ

1

2
0

0

2

= − − +m u t u gt u t u( sin cos ) ( cos ) ( sin cos ) ( cos )2 2 2 1

2
θ θ θ θ θ θ gt 2





$k

= − 1

2

2m u gt( cos ) $θ k Ans.

V Example 12.15 A rod of mass 2kg and length 2m is
rotating about its one end O with an angular velocity
ω =4 rad/s. Find angular momentum of the rod about the
axis rotation.

Solution In pure rotational motion of a rigid body, component of total angular momentum

about axis of rotation is given by

L I= ω =








ml2

3
ω I

ml
0

2

3
=











Substituting the values we have,

L= ( ) ( )
( )

2 2

3
4

2

= 32

3
kg -m /s2

Ans.

Direction of this component is perpendicular to paper inwards (from right hand rule), as the

rotation is clockwise.

V Example 12.16 A circular disc of mass m and radius R is
set into motion on a horizontal floor with a linear speed v in

the forward direction and an angular speed ω =
v

R
in

clockwise direction as shown in figure. Find the magnitude of
the total angular momentum of the disc about bottommost
point O of the disc.

Solution As we have discussed, angular momentum about O is the vector sum of two terms:
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Iω and mvr⊥

Here, I I mR
v

R
cmω ω= = 











1

2

2 = 1

2
mvR (perpendicular to paper inwards)

and mvr mv r mRvc⊥ ⊥= = (perpendicular to paper inwards)

Since, both the terms are in the same direction.

L mvR mvRTotal = +1

2

or L mvRTotal = 3

2
(perpendicular to paper inwards)

1. A uniform rod of mass m is rotated about an axis passing through point O as shown. Find

angular momentum of the rod about rotational axis.

2. A particle of mass 1 kg is moving along a straight line y x= + 4. Both x and y are in metres.

Velocity of the particle is 2 m/s. Find magnitude of angular momentum of the particle about

origin.

3. A particle of mass m is projected from the ground with an initial speed u at an angle α . Find the

magnitude of its angular momentum at the highest point of its trajectory about the point of

projection.

4. If the angular momentum of a body is zero about some point. Is it necessary that it will be zero

about a different point?

5. A solid sphere of mass m and radius R is rolling without slipping as shown in figure. Find angular

momentum of the sphere about z-axis.

6. In example number 12.16 suppose the disc starts rotating anticlockwise with the same angular

velocity ω = v

R
, then what will be the angular momentum of the disc about bottommost point in

this new situation?

7. Two particles each of mass m and speed v, travel in opposite directions along parallel lines
separated by a distance d. Show that the vector angular momentum of this system of particles is
the same about any point taken as origin.
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12.7 Conservation of Angular Momentum
As we have seen in Article 12.6, the angular momentum of a particle about some reference point O is

defined as,

L r p= × …(i)

Here, P is the linear momentum of the particle and r its position vector with respect to the reference

point O. Differentiating Eq. (i)  with respect to time, we get

d

dt

d

dt

d

dt

L
r

p r
p= × + × …(ii)

Here,
d

dt

p
F= and

d

dt

r
v= (velocity of particle)

Hence, Eq. (ii) can be rewritten as,

d

dt

L
r F v p= × + ×

Now, v p× = a null vector, because v and p are parallel to each other and the cross product of two

parallel vectors is a null vector. Thus,

d

dt

L
r F= × = τ or τ =

d

dt

L
…(iii)

Which states that the time rate of change of angular momentum of a particle about some reference

point in an inertial frame of reference is equal to the net torques acting on it. This result is rotational

analog of the equation F
p

=
d

dt
, which states that the time rate of change of the linear momentum of a

particle is equal to the force acting on it. Eq. (iii), like all vector equations, is equivalent to three scalar

equations, namely

τ x

x

dL

dt
= 





, τ y

y

dL

dt
= 





and τ z

z

dL

dt
= 





The same equation can be generalised for a system of particles as, τ ext =
d

dt

L
.According to which the

time rate of change of the total angular momentum of a system of particles about some reference point

in an inertial frame of reference is equal to the sum of all external torques (of course the vector sum)

acting on the system about the same reference point.

Now, suppose that τ ext =0, then
d

dt

L
=0, so that L =constant.

When the resultant external torque acting on a system is zero, the total vector angular momentum of

the system remains constant. This is the principle of the conservation of angular momentum.

For a rigid body rotating about an axis (the z-axis, say) that is fixed in an inertial reference frame, we

have

L Iz = ω
It is possible for the moment of inertia I of a rotating body to change by rearrangement of its parts. If

no net external torque acts, then Lz must remain constant and if I does change, there must be a
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compensating change in ω. The principle of conservation of angular momentum in this case is expressed

as

Iω =constant or I I1 1 2 2ω ω= …(iv)

Note According to above equation, if some mass moves away from the axis of rotation, its moment of inertia will

increase. So, to conserve angular momentum or Iω its angular speed ω should decrease. Therefore, time

period of rotation T =





2π
ω

should also increase.

V Example 12.17 A wheel of moment of inertia I and radius R is rotating about
its axis at an angular speed ω0 . It picks up a stationary particle of mass m at
its edge. Find the new angular speed of the wheel.

Solution Net external torque on the system is zero. Therefore, angular momentum will remain

conserved. Thus,

I I1 1 2 2ω ω= or ω
ω

2
1 1

2

=
I

I

Here, I I1 = , ω ω1 0= , I I mR2
2= +

∴ ω
ω

2
0

2
=

+
I

I mR
Ans.

1. A thin circular ring of mass M and radius R is rotating about its axis with an angular speed ω0.

Two particles each of mass m are now attached at diametrically opposite points. Find the new

angular speed of the ring.

2. If the ice at the poles melts and flows towards the equator, how will it affect the duration of

day-night?

3. When tall buildings are constructed on earth, the duration of day night slightly increases. Is this

statement true or false?

4. If radius of earth is increased, without change in its mass, will the length of day increase,

decrease or remain same?

12.8 Combined Translational and Rotational Motion of a Rigid Body
This is the most complex motion of a rigid body. But this can be simplified by splitting this motion

into following two parts:

(i) pure translational motion with the velocity ( )v and acceleration ( )a of centre of mass.

(ii) pure rotational motion about an axis passing through centre of mass with angular velocity ωand

angular acceleration α.

As we have discussed earlier also, different particles of the rigid body in this type of motion have

different linear velocity and linear acceleration. So, now the question is how to find linear velocity

and linear acceleration of a general particle P on the rigid body?
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Method of Finding Linear Velocity of a General Particle P

Suppose linear velocity v (of centre of mass) and angular velocity ω(of the rigid body) are known to

us and we wish to find linear velocity of a general particle P at a distance r from C.

As we know that

v v vPC P C= −
∴ v v vP C PC= +
or, absolute velocity of P is the vector sum of vC and v PC . Here, v vC = and motion of P with respect

to C is a circle (dotted circle shown in figure). In circular motion, velocity of a particle is rω,

tangential to its circle (in the direction of rotation). So, v PC is rωin the tangential direction as shown

in Fig. 12.62. Thus net velocity of P is the vector sum of following two terms:

(i) v and (ii) rω
For different particles, values of v andωare same. But values of r and therefore rωand direction of rω
are different . This is the reason why different particles have different linear velocities.

Method of Finding Acceleration of a General Particle P

Suppose linear acceleration a (of centre of mass) angular velocity ω and

angular acceleration α (of the rigid body) are known to us and we wish to

find linear acceleration of a general  particle P at a distance r from C.

As we know that

a a aPC P C= −
∴ a a aP C PC= +
Thus, absolute acceleration of P is the vector sum of aC and a PC .

Here, a aC = and motion of P with respect to C is a circle (dotted circle

shown in figure). In circular motion, acceleration of a particle has two

components:

(i) tangential component, a t (ii) radial component, ar

Here, a rt = α (where, α
ω

=
d

dt
)

This component is tangential in the direction of linear velocity if ω is increasing and in the opposite

direction of linear velocity if ω is decreasing. Further, this component is zero if ω is constant.

a rr = ω2
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and this component is always towards centre C.

Hence, net acceleration of the particle P is the vector sum of the following three terms:

(i) a (ii) a rt = α (iii) a rr = ω2

For different particles, values of a,ωandα are same. But value of r is different. Therefore rα, rω2 and

their directions are different. This is the reason why different particles have different linear

accelerations.

Kinetic Energy of Rigid Body in Combined Translational and Rotational Motion

Here, two energies are associated with the rigid body. One is translational =





1

2

2m vCOM and another

is rotational =





1

2

2ICOM ω . Thus, total kinetic energy of the rigid body is

K mv I= +
1

2

1

2

2 2
COM COM ω

V Example 12.18

In the figure shown v m s= 2 / , ω =5rad s/ and CP m= 1

In terms of $i and $j find linear velocity of particle P.

Solution For particle P,

r CP= =1 m

⇒ rω = =( )( )1 5 5 m/s

Net velocity of P is the vector sum of v and rω as shown in figure.

∴ v
P

cos= + ° − °2 5 53 5 53$ ( $ sin $ )i i j

= + −2 3 4$ $ $i i j = −( $ $ )5 4i j m/s Ans.
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V Example 12.19 A disc of radius R has linear velocity v and angular velocity ω as
shown in the figure. Given v r= ω. Find velocity of points A, B, C and D on the disc.

Solution As stated in above article, velocity of any point of the rigid body in rotation plus

translation is the vector sum of v (the velocity of centre of mass) and rω. Here, r is the distance of

the point under consideration from the centre of mass of the body. Direction of this rω is perpen-

dicular to the line joining the point with centre of mass in the sense of rotation. Based on this,

velocities of points A, B, C and D are as shown below

Thus, vA is zero, velocity of B and D is 2v or 2Rω and velocity of C is 2v or 2Rω in the

directions shown in figure.

V Example 12.20 In the shown figure,

a m s= 2 2/ , ω = −( )2 1t rads and CP m=1 .

In terms of $i and $j , find linear acceleration of the particle at P at t s=1 .
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Solution For particle at P

r CP= =1m

⇒ α ω= = =d

dt

d

dt
t( )2 2 2rad /s

At t =1s,

ω =2rad /s

α = 2 2rad /s

a rt = =α 2 2m/s

a rr = =ω2 24 m/s

and a = 2 2m/s

Net acceleration of P is the vector sum of three terms a, ar and at as shown in figure below.

∴ a i i jP = + ° − °2 2 37 2 37$ ( cos $ sin $ ) + − ° − °( sin $ cos $ )4 37 4 37i j

= + − − −2 $ $ $ $ $i i j i j1.6 1.2 2.4 3.2

= −( $ $ )1.2 4.4 m/si j
2

Ans.

1. In the figure shown,ω = v

R2
. In terms of $i and $j, find linear velocities of particles M, N, R and S.

2. In the same figure, if v and ω both are constant, then find linear accelerations of points M, N, R

and S in terms of R, ω, $i and $j, where R is the radius of disc.
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12.9 Uniform Pure Rolling
Pure rolling means no relative motion (or no slipping) at point of contact between two bodies.

For example, consider a disc of radius R moving with linear velocity v and angular velocity ω on a

horizontal ground. The disc is said to be moving without slipping if velocities of points P and Q

(shown in figure  12.71 (b) are equal, i.e.

v vP Q=
or v R− =ω 0

or v R= ω
If v vP Q> or v R> ω, the motion is said to be in forward slipping and if v vP Q< or v R< ω, the

motion is said to be in backward slipping (or sometimes called forward English).

In pure rolling ( )v R= ω over a stationary ground net velocity of bottommost point of the body is zero.

In forward slip condition ( )v R> ω net velocity is in the direction of motion. In backward slip

condition ( )v R< ω net velocity is in the opposite direction of motion.

Thus, v R= ω is the condition of pure rolling on a stationary ground. Sometimes it is simply said

rolling. Suppose the base over which the disc in rolling, is also moving with some velocity (say v0)

then in that case condition of pure rolling is different.

For example, in the Fig. 12.72,

v vP Q=
or v R v− =ω 0

Thus, in this case v R− ≠ω 0, but v R v− =ω 0 . By uniform pure rolling we mean that v and ω are

constant.

They are neither increasing nor decreasing.
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In case of pure rolling on a stationary horizontal ground (when v R= ω), following points are important to

note:

� Distance moved by the centre of mass of the rigid body in one full rotation is 2 πR.

This is because s v T R R= ⋅ = 





=( )ω π
ω

π2
2

In forward slipping s R> 2 π (as v R> ω )

and in backward slipping s R< 2 π (as v R< ω )

� The speed of a point on the circumference of the body at the instant shown in

figure is 2
2

v sin
θ

or 2
2

Rω θ
sin . i.e.

| | sin sinvP pv v R= = =2
2

2
2

θ ω θ

This can be shown as :

v v vP C PC= +

∴ | | cos ( )vP v v v v= + + ⋅ ° −2 2 2 180 θ = 2
2

v sin
θ

� From the above expression we can see that :

vA = 0 as θ = °0

v vB = 2 as θ = °90

and v vC = 2 as θ = °180

� The path of a point on circumference is a cycloid and the distance moved by this

point in one full rotation is 8R.
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In the figure, the dotted line is a cycloid and the distance A A A1 2 5K is 8R. This can be proved as under.

In Fig. 12.79

θ ω= t

Speed of point A at this moment is, v R R
t

A = = 





2
2

2
2

ω θ ω ω
sin sin

Distance moved by it in time dt is, ds v dt R
t

dtA= = 





2
2

ω ω
sin

Therefore, total distance moved in one full rotation is,

s ds
T

=
=

∫0

2π / ω
or s R

t
dt

T
= 





=

∫ 2
20

2π ω
ω ω/

sin

On integration we get, s R= 8 .

�

K

K

R

T

= 1 for a ring

= 1

2
for a disc

= 2

5
for a solid sphere

= 2

3
for a hollow sphere etc.

Here, KR stands for rotational kinetic energy =





1

2

2Iω and KT for translational kinetic energy =





1

2

2mv .

For example, for a disc

K IR = 1

2

2ω = 











1

2

1

2

2
2

mR
v

R

= 1

4

2mv and K mvT = 1

2

2

∴ K

K

R

T

= 1

2

V Example 12.21 A solid disc is rolling without
slipping on a horizontal ground as shown in figure.
Its total kinetic energy is 100 J. What is its
translational and rotational kinetic energy.

Solution In case of pure rolling, ratio of rotational kinetic

energy and translational kinetic energy is
1

2
.

or
K

K

R

T

= 1

2
⇒ ∴ K R =

+








1

1 2
(Total kinetic energy)

128 � Mechanics - II

A

A
θ

t = 0 t t=

ω
c

v

c

Fig. 12.79

Fig. 12.80



= 1

3
100( )J = 100

3
J Ans.

Similarly, K T =
+









2

1 2
(Total kinetic energy)

= =2

3
100

200

3
( )J J Ans.

V Example 12.22 A disc of radius R starts at time t = 0 moving along the
positive x-axis with linear speed v and angular speed ω.Find the x and y
coordinates of the bottommost point at any time t.

Solution At time t the bottommost point will rotate an angle θ ω= t with respect to the centre

of the disc C. The centre C will travel a distance s vt= .

In the figure, PQ R R t= =sin sinθ ω and CQ R R t= =cos cosθ ω
Coordinates of point P at time t are,

x OM PQ vt R t= − = − sin ω
and y CM CQ R R t= − = − cos ω
∴ ( , ) ( sin , cos )x y vt R t R R t≡ − −ω ω

1. A solid sphere is rolling without slipping on a horizontal ground. Its rotational kinetic energy is

10 J. Find its translational and total kinetic energy.

2. Under forward slip condition, translational kinetic energy of a ring is greater than its rotational

kinetic energy. Is this statement true or false?

3. In backward slip condition, translational kinetic energy of a disc may be equal to its rotational

kinetic energy. Is this statement true of false?
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12.10 Instantaneous Axis of Rotation
As we have seen that combined rotational and translational motion of a rigid body is the most

complex motion. But this motion can be simplified and may be assumed to be in pure rotational

motion (with same ω) about an axis called instantaneous axis of rotation.

Further as we know that, in pure rotational motion, points lying on the axis of rotation are at rest.

Therefore, we can say that, instantaneous axis of rotation passes through those points which are at

rest.

For example, in pure rolling over ground instantaneous axis of rotation (IAOR) passes through the

bottommost point, as it is a point of zero velocity. Thus, the combined motion of rotation and

translation can be assumed to be pure rotational motion about bottommost point with same angular

speed ω.

Now, there are two uses of the concept of instantaneous axis of rotation.

(i) Velocity of any point P can obtained by a single term

v r= ω
as in pure rotational motion this is the expression of velocity of any

point P. Here r is the distance of P from instantaneous axis of rotation.

With respect to O, point P is rotating in a circle with centre at O and

radius as r. Velocity of P is tangential to this circle (or perpendicular

to OP), in the direction of rotation.

(ii) We can find total kinetic energy of the body by a single term.

K I=
1

2

2ω

But here, I is the moment of inertia about instantaneous axis of rotation.

V Example 12.23 Using the concept of instantaneous axis of rotation. Find
speed of particle P as shown in figure, under pure rolling condition.
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Solution In pure rolling, combined rotation and translation

motion may be assumed to be a pure rotational motion about

an axis passing through bottommost point (with same ω) or

instantaneous axis of rotation.

| | ( )vP OP= ω Here, OP R= 2
2

sin
θ

∴ | | sinvP R= 





2
2

θ ω = 





2
2

Rω θ
sin = 2

2
v sin

θ

V Example 12.24 A disc is rolling (without slipping) on a
horizontal surface. C is its centre and Q and P are two
points equidistant from C. Let v v vP Q C, and be the
magnitude of velocities of points P Q, and C respectively,
then (JEE 2004)

(a) v v vQ C P> > (b) v v vQ C P< <
(c) v v v vQ P C P= =,

1

2
(d) v v vQ C P< >

Solution In case of pure rolling bottom most point is the instanta-

neous centre of zero velocity.

Velocity of any point on the disc, v r= ω, where r is the distance of

point from O.

r r rQ C P> > ⇒ ∴ v v vQ C P> >
Therefore, the correct option is (a).

1. A disc is rolling without slipping with linear velocity v as shown in figure. With the concept of

instantaneous axis of rotation, find velocities of points A B C, , and D.

2. A solid sphere is rolling without slipping as shown in figure. Prove that

1

2

1

2

1

2

2 2
0

2mv I IC+ =ω ω
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12.11 Accelerated Pure Rolling
Till now we were discussing the uniform pure rolling in which v and ωwere constants. Now, suppose

an external force is applied to the rigid body, the motion will no longer remain uniform. The condition

of pure rolling on a stationary ground is,

v R= ω
Differentiating this equation with respect to time, we have

dv

dt
R

d

dt
= .

ω

or a R= α
Thus, in addition to v R= ωat every instant of time there is one additional

condition, linear acceleration = ×R angular acceleration or a R= α for pure

rolling to take place. Here, friction plays an important role in maintaining

the pure rolling. The friction may sometimes act in forward direction,

sometimes in backward direction or under certain conditions it may be zero.

Here, we should not forget the basic nature of friction, which is a self

adjusting force (upto a certain maximum limit) and which has a tendency to

stop the relative motion between two bodies in contact and here the relative

motion stops when at every instant v R= ω. To satisfy this equation all the time, a R= α equation

should also be satisfied. Let us take an example illustrating the above theory.

Suppose a force F is applied at the topmost point of a rigid body of radius

R, mass M and moment of inertia I about an axis passing through the

centre of mass. Now, the applied force F can produce by itself:

(i) a linear acceleration a and

(ii) an angular acceleration α.

If a R= α, then there is no need of friction and force of friction f =0. If

a R< α, then to support the linear motion the force of friction f will act in

forward direction. Similarly, if a R> α, then to support the angular

motion the force of friction will act in backward direction. So, in this case force of friction will be

either backward, forward or even zero also. It all depends on M, I and R. For calculation purpose

initially we can choose any direction of friction. Let we assume it in forward direction,

Let, a = linear acceleration, α = angular acceleration

then, a
F

M

F f

M
= =

+net
…(i)

α
τ

= =
−c

I

F f R

I

( )
…(ii)

For pure rolling to take place, a R= α …(iii)

Solving Eqs. (i), (ii) and (iii), we get f
MR I

MR I
F=

−
+

( )

( )
.

2

2
…(iv)
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Extra Points to Remember

From Eq. (iv) following conclusions can be drawn

(i) If I MR= 2 (e.g. in case of a ring) f =0 i.e. if a force F is applied on the top of a ring, the force

of friction will be zero and the ring will roll without slipping.

(ii) If I MR< 2 , (e.g. in case of a solid sphere or a hollow sphere), f is positive, i.e. force of friction

will be forward.

(iii) If I MR> 2 , f is negative, i.e. force of friction will be backwards. Although under no condition

I MR> 2 . (Think why?). So, force of friction is either in forward direction or zero. Here, it

should be noted that the force of friction f obtained in Eq. (iv) should be less than the limiting

friction ( )µMg for pure rolling to take place. Further, we have seen that for I MR< 2 force of

friction acts in forward direction. This is because α is more if I is small α
τ

=



I

i.e. to support

the linear motion force of friction is in forward direction.

Note It is often said that rolling friction is less than the sliding friction. This is because the force of friction

calculated by equation number (iv) is normally less than the sliding friction ( )µk N and sometimes it is in

forward direction, i.e. it supports the motion.

� In accelerated pure rolling, v R= ωand a R= α are not the only conditions to be satisfied, sense of rotation is
also important as per the direction of linear acceleration. Sense of rotation (or direction of α) should be as
shown below in following two figures:

� In following two figures accelerated pure rolling is not possible.

� There are certain situations in which the direction of friction is fixed. For example in the following situations
the force of friction is backwards. This is because linear acceleration 'a' due to the applied force ( sin= mg θ
in first case) is in the direction shown in figure. So, direction ofα should also be in the shown direction. We
have only friction force which can provide 'α' in that direction. Hence, it should be in backward direction.
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Rolling on Rough Inclined Plane
A body of mass M , radius R and moment of inertia I is kept over a

rough ground as shown in figure. In this case no external force is

applied for accelerated pure rolling. But mg sin θ is already acting at

centre.

As we said earlier also, force of friction in this case will be

backward. Equations of motion are

a
Mg f

M
=

−sin θ
…(i)

α =
f R

I
…(ii)

For pure rolling to take place,

a R= α …(iii)

Solving Eqs. (i), (ii) and (iii), we get

f
Mg

MR

I

=
+

sin θ

1
2

…(iv)

and a
g

I

MR

=
+

sin θ

1
2

…(v)

From Eq. (v), we can see that if a solid sphere and a hollow sphere of same mass and radius are

released from a rough inclined plane and pure rolling is taking place, then the solid sphere reaches the

bottom first because

I Isolid hollow< or a asolid hollow> ⇒ ∴ t tsolid hollow<
Further, the force of friction calculated in Eq. (iv) for pure rolling to take place should be less than or

equal to the maximum available friction µ θMg cos .

or
Mg

MR

I

Mg
sin

cos
θ

µ θ
1

2

+
≤ or µ

θ
≥

+

tan

1
2MR

I

Thus, minimum value of friction required for pure rolling is

µ
θ

min

tan

/
=

+1 2MR I

If given value of µ µ> min , then friction acting on the body is

f
Mg

MR I
=

+
sin

/

θ
1 2

and in this case linear acceleration of the body is

a
g

I MR
=

+
sin

/

θ
1 2
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V Example 12.25 In the shown figure, accelerated pure rolling will takes place,
if a R= α. Find the case if

(a) a R> α (b) a R< α

Solution (a) If a R> α, then at any instant v R> ω. So, it is a case of forward slipping.

(b) If a R< α, then at any instant v R< ω. So, it is a case of backward slipping.

V Example 12.26 If accelerated pure rolling is taking place on a stationary
ground, then work done by friction is always zero. Comment on this.

Solution In pure rolling on stationary ground the bottommost point of the rigid body (where

force of friction is acting) is at rest. Therefore, work done by friction is zero.

V Example 12.27 In the shown figure, M is mass of the
body, R its radius and I the moment of inertia about an
axis passing through centre. Find force of friction ‘f’
acting on the body (upwards), its linear acceleration ‘a’
(down the plane) and type of motion if:

(a) µ = 0 (b) µ µ< min (c) µ µ> min

where, µ min is the minimum value of coefficient of friction

required for pure rolling.

Solution (a) If µ = 0 then,

f = 0 and a g a= =sin θ 1 (say)

and the motion is only translational.

(b) If µ µ< min , then maximum value of friction will act, as friction is insufficient to provide

accelerated pure rolling or to stop the relative motion.

∴ f f mg= =max cosµ θ

and a
Mg Mg

m
= −sin cosθ µ θ

= − =g g asin cosθ µ θ 2 (say)

In this case, motion is rotation + translation with forward slip (as a R> α).

(c) If µ µ> min , Then we have discussed in the above article that

f
Mg

MR

I

=
+

sin θ

1
2

and a
g

I

MR

a=
+

=sin
( )

θ

1
2

3 say

Motion in this case is rotation + translation with accelerated pure rolling.

Note In the above example, we can see that a1 and a2 are independent of moment of inertia I, but a3 depends on
it.
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V Example 12.28 A tangential force F acts at the top of a thin spherical shell of
mass m and radius R. Find the acceleration of the shell if it rolls without
slipping.

Solution Let f be the force of friction between the shell and the

horizontal surface.

For translational motion,

F f ma+ = … (i)

For rotational motion,

FR f R I I
a

R
− = =α

[ ]Qa R= α for pure rolling

⇒ F f I
a

R
− =

2
K (ii)

Adding Eqs. (i) and (ii), we get

2
2

F m
I

R
a= +





= +





=m m a ma
2

3

5

3

or F ma= 5

6
Q I mRshell =





2

3

2

⇒ a
F

m
= 6

5
Ans.

V Example 12.29 A horizontal force F acts on the sphere at its centre as shown.
Coefficient of friction between ground and sphere is µ. What is maximum value
of F, for which there is no slipping ?

Solution F f Ma− = …(i)

τ = α = 





I I
a

R

⇒ f R MR
a

R
⋅ = 2

5

2

⇒ f Ma= 2

5
…(ii)
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Solving Eqs. (i) and (ii) we get,

f F= 2

7

2

7
F mg≤ µ

⇒ F mg≤ 7

2
µ Ans.

1. Work done by friction in pure rolling is always zero. Is this statement true or false?

2. In the figure shown, a force F is applied at the top of a disc of mass 4 kg and radius 0.25 m. Find

maximum value of F for no slipping.

3. In the figure shown a solid sphere of mass 4 kg and radius 0.25

m is placed on a rough surface. Find ( )g = 10 2ms

(a) minimum coefficient of friction for pure rolling to take place.

(b) If µ µ> min, find linear acceleration of sphere.

(c) If µ µ= min

2
, find linear acceleration of cylinder.

Here, µmin is the value obtained in part (a).

4. A ball of mass M and radius R is released on a rough inclined plane of inclinationθ. Friction is not

sufficient to prevent slipping. The coefficient of friction between the ball and the plane isµ.Find:

(a) the linear acceleration of the ball down the plane,

(b) the angular acceleration of the ball about its centre of mass.

5. A spool is pulled by a force in vertical direction as shown in figure. What is the direction of friction

in this case? The spool does not loose contact with the ground.
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12.12 Angular Impulse
In the previous chapter, we have learnt that linear impulse

= ⋅ =F J∆t = change in linear momentum ∆P

or, J P P P v v= = − = −∆ f i f im ( )

In one dimension, we can simply write as:

J P P P m v vf i f i= = − = −∆ ( )

If vi =0 and v vf = , then

J mv= or v
J

m
=

In the similar manner, angular impulse

= ⋅ = ⋅τ ∆t A I = change in angular momentum ∆L

or A I t L L Lf i⋅ = = = −τ ∆ ∆
But τ = × ⊥F r

∴ A I F r t⋅ = × ×⊥ ∆
= × ⊥J r (as F t J× =∆ )

Thus, A I J r L Lf i⋅ = × = −⊥
If L L L Ii f= = =0, then ω

∴ A I J r I⋅ = × =⊥ ω or ω =
× ⊥J r

I

In Fig. (a) A linear impulse J is applied at centre of mass C of the rigid body. Just after hitting, it will

have only translational motion and its linear velocity will be given by

v
J

m
=

In Fig. (b) A linear impulse J is applied at point P, at a perpendicular distance r CP⊥ = . Just after

hitting it will have both translational and rotational motion. Its linear velocity v and angular velocityω
will be given by

v
J

m
= and ω =

× ⊥J r

I

If r⊥ is increased (keeping J to be constant) then v will remain same but ω will increase. So, the

translational kinetic energy will have the same value but rotational kinetic energy will be more.
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Extra Points to Remember
� Angular impulse A I t L⋅ = × =τ ∆ ∆

Now, there are following three cases:

(i) If torque is constant, then angular impulse can be obtained by directly multiplying this constant torque

with the given time interval.

(ii) If torque is a function of time then angular impulse can be obtained by integration.

∴ A I dt
t

t

i

f⋅ =∫ τ

(iii) If torque versus time graph is given then angular impulse can be obtained by the area under that graph.

In all three cases, angular impulse is equal to the change in angular momentum.

V Example 12.30 A solid sphere of mass M and radius R is hit by a cue at a
height h above the centre C. For what value of h the sphere will roll without
slipping ?

Solution For rolling without slipping,

v R= ω
Here, v and ω are the values obtained just after hitting.

∴ J

M
R

J r

I
=

×





⊥ …(i)

Here, r h⊥ = and I I MRC= = 2

5

2

Substituting these values in Eq. (i), we have

h R= 2

5
Ans.
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V Example 12.31 A uniform sphere of mass m and radius R starts rolling

without slipping down an inclined plane. Find the time dependence of the

angular momentum of the sphere relative to the point of contact at the initial

moment. How will the result be affected in the case of a perfectly smooth inclined

plane? The angle of inclination of the plane is θ.

Solution Applying the equation (about bottommost point)

Angular impulse = change in angular momentum about point of contact we have,

τ θ= =( sin )mg R constant

∴ Angular impulse = × =τ θt mg Rt( sin )

or L mg Rt= ( sin )θ Ans.

Note There will be no change in the result even if body pure rolls or slides, as the torque of force of friction is zero

about point of contact. So, it hardly matters whether the surface is rough or smooth.

1. A cylinder is rolling down a rough inclined plane. Its angular momentum about the point of

contact remains constant. Is this statement true or false?

2. A solid sphere and a hollow sphere both of same mass and same radius are hit by a cue at a

height h above the centre C. In which case,

(a) linear velocity will be more ?

(b) angular velocity will be more ?

(c) rotational kinetic energy will be more ?

Note Linear impulse in both cases is same.
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12.13 Toppling
You might have seen in your practical life that if a force F is

applied to a block A of smaller width and greater height it is

more likely to topple down before sliding while if the same

force F is applied to an another block B of broader base,

chances of its sliding are more compared to its toppling. Have

you ever thought why it happens so. To understand it in a

better way let us take an example.

Suppose a force F is applied at a height b above the base AE of the block.

Further, suppose the friction f is sufficient to prevent sliding. In this case,

if the normal reaction N also passes through C, then despite the fact that

the block is in translational equilibrium (F f= and N mg= ), an

unbalanced torque (due to the couple of forces F and f) is there.

This torque has a tendency to topple the block about point E. To cancel

the effect of this unbalanced torque the normal reaction N is shifted

towards right a distance ‘a’ such that, net anticlockwise torque is equal

to the net clockwise torque or

Fb mg a= ( )

or a
Fb

mg
=

Now, if F or b (or both) is increased, distance a also increases. But it can not go beyond the right edge

of the block. So, in extreme case (beyond which the block will topple down), the normal reaction

passes through E as shown in Fig. 12.113 (b).

Now, if F or b is further increased, the block will topple down. This is why

the block having the broader base has less chances of toppling in

comparison to a block of smaller base. Because the block of larger base has

more margin for the normal reaction to shift. On the similar ground we can

see why the rolling is so easy.

Because in this case the normal reaction has zero margin to shift. So even if

the body is in translational equilibrium (F f= , N mg= ) an unbalanced

torque is left behind and the body starts toppling and here the toppling

means motion. Under ideal conditions, the body will start moving by a very

small force F tending to zero also.
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V Example 12.32 A uniform cube of side a and mass m rests on a rough
horizontal table. A horizontal force F is applied normal to one of the faces at a

point directly above the centre of the face, at a height
3

4

a
above the base. What is

the minimum value of F for which the cube begins to tip about an edge?

Solution In the limiting case normal reaction will pass through

O. The cube will tip about O if torque of F exceeds the torque of

mg.

Hence, F
a

mg
a3

4 2







> 





or F mg> 2

3

Therefore, minimum value of F is
2

3
mg.

V Example 12.33 A uniform cylinder of height h and radius r is placed with its
circular face on a rough inclined plane and the inclination of the plane to the
horizontal is gradually increased. If µ is the coefficient of friction, then under
what condition the cylinder will (a) slide before toppling (b) topple before
sliding.

Solution (a) The cylinder will slide if

mg mgsin cosθ µ θ>
or tan θ µ> …(i)

The cylinder will topple if ( sin ) ( cos )mg
h

mg rθ θ
2

>

or tan θ > 2r

h
…(ii)

Thus, the condition of sliding is tan θ µ> and condition of toppling is tan .θ > 2r

h
Hence, the

cylinder will slide before toppling if

µ < 2r

h

(b) The cylinder will topple before sliding if µ > 2r

h
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Final Touch Points
1. Whether a particle is in translational motion, rotational motion or in both it merely depends on the

reference point with respect to which the motion of the particle is described.

For example: a particle P of mass m is moving in a straight line as shown in figures (a), (b) and (c).

Refer Fig. (a) With respect to point A, the particle is in pure translational motion. Hence, kinetic

energy of the particle can be written as

KE = 1

2

2mv

Refer Fig. (b) With respect to point B, the particle is in pure rotational motion. Hence, the kinetic

energy of the particle can be  written as

KE = 1

2

2Iω = 





1

2

2
2

( )mr
v

r
= 1

2

2mv

Refer Fig. (c) With respect to point C, the particle can be assumed to be in rotational as well as

translational motion. Hence, the kinetic energy of the particle can be written as

KE = +1

2

1

2

2 2m v I( cos )θ ω

= + 





1

2

1

2

2 2
2

m v mr
v

r
( cos ) ( )

sinθ θ

= 1

2

2mv

Thus, in all the three cases, the kinetic energy of the particle comes out to be the same.

2. In cases where pulley is having some mass and friction is sufficient enough to prevent slipping, the

tension on two sides of the pulley will be different and rotational motion of the pulley is also to be

considered.

3. Finite angular displacements are not vector quantities, the reason being that they do not obey the law

of vector addition. This law asserts that the order in which vectors are added does not affect their

sum.

A B B A+ = +
It can be seen applying two successive 90° rotations-one about the x-axis, and the other about the

z-axis to a six-sided dice. In the first case, the z-rotation is applied before the x-rotation and vice

versa in the second case. It can be seen that the dice ends up in two completely different states.

Clearly, the z-rotation plus the x-rotation does not equal the x-rotation plus the z-rotation. This

non-commutative algebra cannot be represented by vectors. We conclude that, rotations are not, in

general, vector quantities.

However infinitesimal angles do commute under addition, making it possible to treat them as vectors.
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4. Rotation plus translation motion of a rigid body is simplified by splitting this motion into two parts.

(i) pure translation motion with the linear velocity and acceleration of the centre of mass.

(ii) pure rotational motion about an axis passing through centre of mass and perpendicular to the

plane of motion of the particles.

But this motion may be considered as pure rotational motion about an axis called instantaneous

axis of rotation (say IAOR). If this IAOR is non-inertial, then we cannot apply,

τ αext =I

about this axis. This is because in the derivation of this equation we useF ma= for each particle. If

IAOR has an accelerationa, we have to apply a pseudo force −ma to each particle. These pseudo

forces produce a pseudo torque about this axis.

But this equation can be applied about an axis passing through centre of mass even if this is

non-inertial. Let us prove this:

Take the origin at the centre of mass. The total torque of the pseudo force is

Σ Σr a r ai i i i im m× − = − ×( ) ( )

= − 



 ×M

m

M
i iΣ r

a

But
Σm

M
i ir is the position vector of the centre of mass and that is zero as the centre of mass is at the

origin. Hence, the torque of pseudo forces acting on all particles of the rigid body is zero.
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TYPED PROBLEMS

Type 1. Based on rotational equilibrium about a fixed axis.

Concept

Given that a rigid body can only rotate about a fixed axis, (i.e. hinged at some point) still it
is not rotating or it is at rest or it is in equilibrium.

How to Solve?
l Net torque about hinge point should be zero. But torque of hinge force about the same point is already

zero.

l Net force on the rigid body is also zero.

V Example 1 A uniform L shaped rod of mass 3m

is hinged at point O. Length OB is two times the

length OA. It is in equilibrium.

Find

(a) relation between α and β (b) net hinge force.

Solution (a) Length OB is two times the length OA. Therefore,

mass of OB is 2m and that of OA is m and their weight will act at

their centres (as the rod is uniform).

If total length is 3l then,

OA l= ⇒ OC
OA l

1
2 2

= =

and r OC
l

1 1
2

= =sin sinα α

OB l=2 ⇒ OC
OB

l2
2

= =

and r OC l2 2= =sin sinβ β
Net torque about O =0

⇒ anticlockwise torque of mg = clockwise torque of 2mg

⇒ ( ) ( )mg r mg r1 22=

⇒ mg
l

mg l
2

2sin ( ) sinα β



 =

or
sin

sin

α
β

=4 is the required relation between α and β.

(b) Net force on the rod is also zero. Therefore, hinge force is 3 2mg mg mg( )= + in upward

direction.

α β+ 90°≠α β
A

B

O

α
β

A

B

C1
C2

O

2 mgmg

r2
r1

Solved Examples



Type 2. To find total kinetic energy of a system of rigid bodies in rotation plus translation.

Concept

A particle has only translation kinetic energy
1

2

2mv . But a rigid body may have
1

2

2mv and

1

2

2Iω . Here, v is velocity of centre of mass, ω is angular speed of the rigid body and I is the

moment of inertia about an axis passing through centre of mass and perpendicular to the
plane of motion of the body.

V Example 2 A ring of mass ‘m’ is rolling without slipping

with linear speed v as shown in figure. Four particles each of

mass ‘m’ are also attached at points A, B, C and D. Find

total kinetic energy of the system.

Solution Earlier we have learned that in case of pure rolling,

ω = v

R
, vA =0, v v vB D= = 2 and v vC =2

Now, total kinetic energy = [translational kinetic energy of four particles]+[translational kinetic

energy of ring + rotational kinetic energy of ring]

∴ ( ) ( ) ( )KE
total

= +

1

2
0

1

2
22 2m m v + + 


1

2
2

1

2
22 2m v m v( ) ( ) + +





1

2

1

2

2 2mv I ω

Substituting I mR= 2 and ω = v

R

we get, ( )
total

KE =5 2mv Ans.

Type 3. Energy conservation in pure rotational motion.

Concept

A rigid body (suppose a rod) is hinged at O as shown in figure. It can have only rotational
motion in a vertical plane about a smooth horizontal axis passing through O and
perpendicular to plane of paper.

It is released from the horizontal position. As the rod rotates downwards its gravitational
potential energy decreases and rotational kinetic energy increases.
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How to Solve?

l Put decrease in gravitational potential energy (mgh) equal to increase in rotational kinetic energy
1

2

2I ω



 .

Here, h is the fall of height of centre of mass of the rigid body. In case of particle, ‘h’ is decrease in height
of the particle. From this equation, we can find the value of ω.

l In pure rotational motion velocity of any point is

l v r= ω
l Here, r is the distance of that point from the axis of rotation.

V Example 3 A uniform circular disc has radius R and
mass m. A particle, also of mass m, is fixed at a point A
on the edge of the disc as shown in the figure. The disc
can rotate freely about a horizontal chord PQ that is at
a distance R/4 from the centre C of the disc. The line
AC is perpendicular to PQ. Initially the disc is held
vertical with the point A at its highest position. It is
then allowed to fall, so that it starts rotation about PQ.
Find the linear speed of the particle as it reaches its lowest position. (JEE 1998)

Solution Initial and final positions are shown below.

Decrease in potential energy of mass

= ×







=mg
R mgR

2
5

4

5

2

Decrease in potential energy of disc

= mg
R

2
4

×







= mgR

2

Therefore, total decrease in potential energy of system

= + =5

2 2
3

mgR mgR
mgR

Gain in kinetic energy of system =
1

2

2I ω

where, I = moment of inertia of system (disc + mass) about axis PQ

= moment of inertia of disc + moment of inertia of mass

= + 













+ 





mR
m

R
m

R2 2 2

4 4

5

4

I
mR= 15

8

2
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4
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From conservation of mechanical energy,

Decrease in potential energy = Gain in kinetic energy

∴ 3
1

2

15

8

2
2mgR

mR=






 ω

⇒ ω = 16

5

g

R

Therefore, linear speed  of particle at its lowest point

v r
R= = 



ω 5

4

ω = 5

4

16

5

R g

R

⇒ v gR= 5 Ans.

Type 4. Based on Angular Impulse.

Concept

Angular impulse A.I = τ ∆t

If torque is a function of time, then

A.I = ∫ τ dt

and this angular impulse is equal to the change in angular momentum.

V Example 4 A solid sphere of mass ‘m’ and radius ‘R’ is

kept over a rough ground. A time varying force F t=2 is

acting at the topmost point as shown in figure.

(a) Find angular momentum of the sphere about the

bottommost point as a function of time ‘t’.

(b) Does this result depend on the fact whether the ground is

rough or smooth?

Solution (a) Suppose ‘f ’ is the force of friction acting on the sphere

in forward direction as shown in figure.

Taking torque about bottommost point O. Torque of friction is

already zero, as this force already passes through O. Torque of

applied force is only there.

∴ τ = × ⊥F r

= ( ) ( )2 2t R = 4 RT

As, this toque is a function of time.

∴ Angular impulse = = ∫∫ τ dt Rt dt
tt
( )4

00
= 2 2Rt

This angular impulse is equal to  change in angular momentum. Hence, angular momentum

at time ‘t’ is 2 2Rt .

(b) This result is independent of the nature of surface (smooth or rough), as the torque of friction
about bottommost point is already zero. It does not contribute in angular impulse and
therefore in angular momentum.
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Type 5. Role of friction in acceleration pure rolling.

Concept

Friction has a tendency to stop the relative motion. In case of rolling (rotation +
translation) over a stationary ground relative motion is stopped when v R= ω equation is
satisfied at all instants. To satisfy this equation, a should be equal to ‘Rα’. Hence, friction
has a tendency to satisfy the equation,a R= α. Sometimes friction is sufficient and
sometimes not.

If friction is sufficient, then accelerated pure rolling will takes place. Otherwise forward or
backward slipping occurs.

How to Solve?
l Find N, µ sN and µkN (or µN)

l Find requirement of friction to satisfy the equation a R= α.

l For this, apply a general value of f in either forward or backward direction.

l Put a R= α

l or
F

m
R

I

net net= 





τ

l and find the required value of f for accelerated pure rolling.

l If f Ns≤µ i.e. requirement ≤ availability then pure rolling will take place and a R= α. In this case the
obtained value of friction in step (iii) will act.

l If f Ns>µ then either forward or backward slip will take place and a R≠ α . But,

l a
F

m
= net and α τ= net

I

l are still applicable.

l In this case, µkN friction will act.

l If required value of friction in step (iii) comes out to be negative then just change the direction of friction
which was initially assumed. Otherwise, magnitude wise all calculations are same.

l After calculation, if force of friction comes in forward direction, then if there is slip, it is backward slip and
a R< α.

V Example 5 A solid sphere of mass 5 kg and radius 1 m

is kept over a rough surface as shown in figure. A force

F =30N is acting at the topmost point.

(a) Check whether the pure rolling will take place or not.

(b) Find direction and magnitude of friction actually acting on

the sphere.

(c) Find linear acceleration ‘a’ and angular acceleration ‘α’.

Take g m s=10 2/

Solution (a) Availability of friction.

N mg= = × =5 10 50 N

µsN = × =03 50 15. N

µkN = × =02 50 10. N
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Requirement of friction for accelerated pure rolling (or to satisfy a R= α).

Let the friction f acts in forward direction.

a R= α

⇒ F

m
R

I

net net= 





τ

or
F f

m
R

FR fR

mR

+ = −
















2

5

2

Solving this equation, we get

f F= 3

7

= 3

7
30( ) = 90

7
N

Since, this value of f is less than µsN . Therefore, friction is sufficient for accelerated pure

rolling to take place. Hence, pure rolling is taking place.

(b) The above value of f is positive, hence direction of friction is forward and
90

7
N friction will

be acting.

(c) The actual forces acting on the sphere are as under

a
F

m
= =

+
=net m/s

30
90

7

5
857 2. Ans.

Since, a R= α

∴ α = = =a

R

857

1
857 2.
. rad /s Ans.

V Example 6 Repeat all parts of above problem for F N=40 .

Solution (a) and (b): We have already calculated that, requirement of friction for pure rolling

is

f F= 3

7

For, F =40 N ⇒ f = 120

7
N
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Now, this value of f is more than µsN , so backward slip ( )a R< α will take place because f is

positive so kinetic friction or 10 N will act in forward direction.

(c) The actual forces acting on the sphere are as under :

a
F

m
= = + =net m/s

40 10

5
10 2

Ans.

α ≠ a

R

But α τ= = −net

I

FR fR

mR
2

5

2

= − = −25 25 40 10

5 1

. ( ) . ( )

( ) ( )

F f

mR

= 15 2rad/s . Ans.

Note We can see that a R< α.

Type 6. Based on conservation of mechanical energy and no change in rotational kinetic energy.

Concept

If a body is kept in translational plus rotational motion
condition over a smooth inclined plane then two forces acting
on the body (weight and normal reaction) pass through centre
of mass. So, they cannot provide the torque and therefore
angular acceleration. Therefore, its angular speed and
rotational kinetic energy remains constant. Same is the case,
when the body moves freely under gravity. Here, the only force acting on the body is ‘mg’
which also passes through centre of mass. When the body moves up, its translational
kinetic energy decreases and gravitational potential energy increases but rotational
kinetic energy remains constant. Opposite is the case when the body moves down.

Further, in case of accelerated pure rolling over a stationary rough ground, work done by
friction is zero. Hence, mechanical energy will remain constant. In this case,

K

K

R

T

=1for ring = 1

2
for disc

= 2

5
for solid sphere etc.

Thus, total mechanical energy ( )K K mghR T+ ± remains constant in case of accelerated
pure rolling, over a smooth ground or under gravity.
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V Example 7 A solid cylinder of mass m and radius r starts rolling down an

inclined plane of inclination θ. Friction is enough to prevent slipping. Find the

speed of its centre of mass when its centre of mass has fallen a height h.

Solution Considering the two shown positions of the cylinder.

As it does not slip hence total mechanical energy will be

conserved.

Energy at position 1 is E mgh1 =

Energy at position 2 is E mv I2
2 21

2

1

2
= +COM COM ω

v

r

COM = ω and I
mr

COM =
2

2

⇒ E mv2

3

4
= COM

2

From conservation of energy, E E1 2= or mgh mv= 3

4

2
COM

⇒ v ghCOM = 4

3
Ans.

V Example 8 A small solid cylinder of radius r is released

coaxially from point A inside the fixed large cylindrical bowl of

radius R as shown in figure. If the friction between the small and

the large cylinder is sufficient enough to prevent any slipping,

then find :

(a) What fractions of the total energy are translational and rotational, when the small

cylinder reaches the bottom of the larger one?

(b) The normal force exerted by the small cylinder on the larger one when it is at the

bottom.

Solution (a) K mvtrans = 1

2

2

K I mr
v

r
mvrot = = 









 =1

2

1

2

1

2

1

4

2 2
2

2ω

K K K= +trans rot = 3

4

2mv

∴ K

K

trans = 2

3
⇒ K

K

rot = 1

3

(b) From conservation of energy,

mg R r mv( )− = 3

4

2

∴ mv

R r
mg

2 4

3−
=

Now, N mg
mv

R r
− =

−

2

= centripetal force = 4

3
mg

∴ N mg= 7

3
Ans.

152 � Mechanics - II

h

1

2

q

R

A

R r–

N

mg

O

v



V Example 9 A small object of uniform density rolls up a curved surface with an

initial velocity v. It reaches up to a maximum height of
3

4

2v

g
with respect to the

initial position. The object is (JEE 2007)

(a) ring (b) solid sphere (c) hollow sphere (d) disc

Solution
1

2

1

2

3

4

2
2 2

mv I
v

R
mg

v

g
+ 



 =









∴ I mR= 1

2

2

∴ Body is disc. The correct option is (d).

V Example 10 A solid ball rolls down a parabolic path

ABC from a height h as shown in figure. Portion AB of

the path is rough while BC is smooth. How high will the

ball climb in BC ?

Solution At B, total kinetic energy = mgh

Here, m = mass of ball

The ratio of rotational to translational kinetic energy would be,

K

K

R

T

= 2

5
⇒ ∴ K mghR = 2

7
and K mghT = 5

7

In portion BC, friction is absent. Therefore, rotational kinetic energy will remain constant and

translational kinetic energy will convert into potential energy. Hence, if H be the height to

which ball climbs in BC, then

mgH KT= or mgH mgh= 5

7
or H h= 5

7

V Example 11 A ball moves over a fixed track as

shown in the figure. From A to B the ball rolls without

slipping. If surface BC is frictionless and K KA B, and

KC are kinetic energies of the ball at A, B and C

respectively, then (JEE 2006)

(a) h h K KA C B C> >; (b) h h K KA C C A> >;

(c) h h K KA C B C= =; (d) h h K KA C B C< >;

Solution On smooth part BC, due to zero torque, angular velocity and hence the rotational

kinetic energy remains constant. While moving from B to C translational kinetic energy

converts into gravitational potential energy.

∴ The correct option is (a)
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V Example 12 A small solid sphere of mass ‘m’ is released from point A. Portion

AB is sufficiently rough (to provide accelerated pure rolling), BC is smooth and

after C, the ball moves freely under gravity. Find gravitational potential energy

(U), rotational kinetic energy ( )KR and translational kinetic energy ( )KT at points

A, B C, D and E.

Solution AB is sufficiently rough BC is smooth and after C motion is under gravity. So, total

mechanical energy ( )U K KR T+ + is always constant. On AB:

K

K

R

T

= 2

5
(for solid sphere)

as accelerated pure rolling is taking place.

After B, rotational kinetic energy will become constant. After C, centre of mass of the ball will

follow a projectile motion.

∴ v v
v

D C
C= ° =cos60
2

= half of vC

∴ ( ) ( )K KT D T C= 1

4

At point A

U mgh=3

KR =0 ⇒ KT =0

∴ Total mechanical energy E mgh=3 = constant.

At point B

U =0 ⇒ E mgh=3

∴ K E mgh= =3 (K = total K.E)

But
K

K

R

T

= 2

5

∴ K K mghR = =2

7

6

7

K K mghT = =5

7

15

7

At point C

U mgh=

K K mghR R B= =( )
6

7

∴ K E U KT R= − −

= − −3
6

7
mgh mgh mgh = 8

7
mgh
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At point D K K mghR R B= =( )
6

7

K K mghT T C= =1

4

2

7
( )

∴ U E K KR T= − −

= − −3
6

7

2

7
mgh mgh mgh

= 13

7
mgh

At point E U =0

K K mghR R B= =( )
6

7

∴ K E K UT R= − −

= − −3
6

7
0mgh mgh = 15

7
mgh

Type 7. Based on instantaneous axis of rotation (IAOR).

Concept

We have seen that in case of pure of rolling ( )v R= ω over a stationary ground IAOR passes
through the bottommost point of the rigid body. Following are three more cases where we
can locate the position of IAOR. In the following cases IAOR is  written as IC.

(i) Given the velocity of a point (normally the centre of mass) on the body and

the angular velocity of the body

If v and ω are known, the IC is located along the line drawn perpendicular to v at P,

such that the distance from P to IC is, r
v=
ω

. Note that IC lie on that side of P which

causes rotation about the IC, which is consistent with the direction of motion caused by
ω and v.

(ii) Given the lines of action of two non-parallel velocities

Consider the body shown in figure where the line of action of

the velocities v A and v B are known. Draw perpendiculars at A

and B to these lines of action. The point of intersection of these

perpendiculars as shown locates the IC at the instant

considered.
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(iii) Given the magnitude and direction of two parallel velocities

When the velocities of points A and B are parallel and have known magnitudes vA and
vB then the location of the IC is determined by proportional triangles as shown in
figure.

In both the cases, r
v

A IC
A

, =
ω

and r
v

B IC
B

, =
ω

In Fig. (a) r r dA IC B IC, ,+ =
and in Fig. (b) r r dB IC A IC, ,− =
As a special case, if the body is translating, v vA B= and the IC would be located at
infinity, in which case ω = 0.

V Example 13 A rotating disc moves in the positive direction of the x-axis. Find

the equation y x( ) describing the position of the instantaneous axis of rotation if at

the initial moment the centre c of the disc was located at the point O after which

it moved with constant velocity v while the disc started rotating counterclockwise

with a constant angular acceleration α. The initial angular velocity is equal to

zero.

Solution t
x

v
= and ω α α= =t

x

v

The position of IC will be at a distance

y
v=
ω

or y
v

x

v

= α

or y
v

x
=

2

α
or xy

v= =
2

α
constant

This is the desired x-y equation. This equation represents a rectangular hyperbola.

156 � Mechanics - II

A

B

IC

vA

vB

d A

B

IC

vA

vB

d

(a) (b)

c v

y

O x

y

c v

ω

y

O x

x

IC



V Example 14 A uniform thin rod of mass m and length l is standing on a smooth

horizontal surface. A slight disturbance causes the lower end to slip on the smooth

surface and the rod starts falling. Find the velocity of centre of mass of the rod at

the instant when it makes an angle θ with horizontal.

Solution As the floor is smooth, mechanical

energy of the rod will remain conserved. Further, no

horizontal force acts on the rod, hence the centre of

mass moves vertically downwards in a straight line.

Thus velocities of COM and the lower end B are in

the directions shown in figure. The location of IC at

this instant can be found by drawing perpendiculars

to vC and vB at respective points. Now, the rod may

be assumed to be in pure rotational motion about

IAOR passing through IC with angular speed ω.

Applying conservation of mechanical energy.

Decrease in gravitational potential energy of the rod

= increase in rotational kinetic energy about IC

∴ mgh IIC= 1

2

2ω

or mg
l ml ml

2
1

1

2 12 4

2 2
2 2( sin ) cos− = +







θ θ ω

Solving this equation, we get

ω θ
θ

= −
+

12 1

1 3 2

g

l

( sin )

( cos )

Now, | | cosvC

l= 



2

θ ω

= −
+

3 1

1 3

2

2

gl( sin ) cos

( cos )

θ θ
θ

Ans.

Type 8. Based on rotational pulleys.

Concept

If the pulley is not massless and is sufficiently rough then tension on a string passing over
it on its both sides will be different. In this case, the string does not slip over the pulley but
the pulley also rotates.
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In the above figure, pulley is massless, smooth and stationary. String slips over the pulley.

In this figure, pulley is neither massless nor smooth. It rotates with the string. If there is no
slip then, a R= α.

V Example 15 In the arrangement shown in figure the mass of the uniform solid

cylindrical pulley of radius R is equal to m and the masses of two bodies are

equal to m1 and m2 . The thread slipping and the friction in the axle of the pulley

are supposed to be absent. Find the angular acceleration of the cylinder and the

ratio of tensions
T

T

1

2

of the vertical sections of the thread in the process of motion.

Solution Let α = angular acceleration of the pulley and a = linear acceleration of two bodies

Equations of motion are

For mass m1 , T m g m a1 1 1− = …(i)

For mass m2, m g T m a2 2 2− = …(ii)

For pulley, α = −( )T T R

mR

2 1

21

2

…(iii)

For no slipping condition a R= α …(iv)

Solving these equations, we get α = −
+ +

2

2 2

2 1

1 2

( )

( )

m m g

m m m R
Ans.

and
T

T

m m m

m m m

1

2

1 2

2 1

4

4
= +

+
( )

( )
Ans.
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Type 9. When friction converts forward or backward slip into pure rolling.

Concept

If a body is kept in forward or backward slip condition ( )v R≠ ω over a rough horizontal
ground, then kinetic friction will act in the opposite direction of slip. This friction provides
both linear acceleration ‘a’ and angular acceleration ‘α’. They are in the directions so as the
equation v R= ω (with proper sense of rotation) is satisfied so that pure rolling may start.
For example, if initially v r> ω, then ‘a’ is in the opposite direction of ‘v’ (to decrease it) and ‘α’
is in the direction of ‘ω’ (to increase it).

Once pure rolling starts, relative motion (or slipping) is stopped and friction becomes zero.

During slip, mechanical energy is not conserved. But, some part of mechanical energy is
used up in doing work against friction. Once pure rolling starts, mechanical energy
becomes constant.

If only one coefficient of friction orµ is given in the question then, instead of kinetic friction,
apply µN during the slip.

V Example 16 A solid sphere of radius r is gently placed on

a rough horizontal ground with an initial angular speed ω0

and no linear velocity. If the coefficient of friction is µ, find

the time t when the slipping stops. In addition, state the

linear velocity v and angular velocity ω at the end of

slipping.

Solution Let m be the mass of the sphere.

Since, it is a case of backward slipping, force of friction is in forward direction. Limiting friction

will act in this case.

Linear acceleration a
f

m

mg

m
g= = =µ µ

Angular retardation α τ µ= = ⋅ =
I

f r

mr

g

r2

5

5

22

Slipping is ceased when v r= ω
or ( ) ( )at r t= −ω α0

or µ ω µ
gt r

gt

r
= −



0

5

2
or

7

2
0µ ωgt r=

∴ t
r

g
= 2

7

0ω
µ

Ans.

v at gt r= = =µ ω2

7
0 Ans.

and ω ω= =v

r

2

7
0 Ans.
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Alternate Solution

Net torque on the sphere about the bottommost point is zero as friction is passing through that

point. Therefore, angular momentum of the sphere will remain conserved about the bottommost

point.

L Li f=
∴ I I mrvω ω0 = +

or
2

5

2

5

2
0

2mr mr mr rω ω ω= + ( )

∴ ω ω= 2

7
0 and v r r= =ω ω2

7
0 Ans.

V Example 17 A billiard ball, initially at rest, is given a

sharp impulse by a cue. The cue is held horizontally a

distance h above the centre line as shown in figure. The ball

leaves the cue with a speed v0 and because of its forward

english (backward slipping) eventually acquires a final

speed
9

7
0v . Show that h R=

4

5

where R is the radius of the ball.

Solution Let ω0 be the angular speed of the ball just after it leaves the cue. The maximum

friction acts in forward direction till the slipping continues. Let v be the linear speed and ω the

angular speed when slipping is ceased.

∴ v R= ω or ω = v

R

Given, v v= 9

7
0 …(i)

∴ ω = 9

7

0v

R
…(ii)

Applying, Linear impulse = change in linear momentum

∴ F dt mv= 0 …(iii)

Angular impulse = change in angular momentum

∴ τ ωdt I= 0 or ( )Fh dt mR= 2

5

2
0ω …(iv)

During the slip, angular momentum about bottommost point will remain conserved.

i.e. L Li f=
or I mRv I mRvω ω0 0+ = +

∴ 2

5

2

5

9

7

9

7

2
0

2 0
0mR mRv mR

v

R
mRvω0 + = 



 + …(v)

Solving Eqs. (iii), (iv) and (v), we get h R= 4

5
Proved.
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Type 10. Based on critical value of µ.

Concept

If a force is applied on a block as shown in figure and the force is increased then in some
cases the block slides before toppling and in other cases it topples before sliding. It mainly
depends on:

(i) base length a

(ii) height of point of application of force h

(iii) coefficient of friction µ.

For example, ifµ is small then chances of sliding are more. If a
is small then chances of toppling are more.

For given values of a and h it only depends on the value ofµ. In
such problems, there is a critical value µ

cr
. If given value of µ µ>

cr
, then the block topples

before sliding and if µ <µ
cr

then the block slides before toppling.

How to Solve?
l Make two conditions:

l Condition of sliding

l Condition of toppling, when the normal reaction (just before toppling) shifts to the right side edge).

l From these, two conditions we can find µ
cr

.

V Example 18 For the given dimensions shown in figure, find critical value of

coefficient of friction µ.

Solution Condition of sliding

The block will slide if,

F N>µ
but N mg= (m = mass of the block)

∴ F mg>µ …(i)

Condition of toppling
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Block will topple about an axis passing through O and perpendicular to plane of paper if:

clockwise torque of F > anticlockwise torque of mg

∴ F a mg a( ) ( )( )2 >

or F mg> 1

2
…(ii)

From Eqs. (i) and (ii), we can see that,

µcr = 1

2
Ans.

If given value of µ is less than µcr (say it is
1

4
) then Eq. (i) is,

F mg> 1

4

So, Eq. (i) is satisfied before Eq. (ii). Therefore, the block will slide before toppling.

If given value of µ is greater than µcr(say it is
3

4
) then Eq. (i) is,

F mg> 3

4

So, Eq. (ii) is satisfied before Eq. (i). Hence, the block will topple before sliding.

Type 11. When pure translational motion of a rigid body converts into pure rotational motion by a
jerk (or linear impulse).

Concept

A block in pure translational motion (with linear velocity v) meets an obstacle at O. A linear
impulse will act on the block at point O. Just after the impact, the block starts rotating
about point O (with an angular speed say ω). The value of this ‘ω’ can be found by
conservation of angular momentum about O because during the impact, the angular
impulse of the linear impulse about point O will be zero (as r⊥ = 0). Just before impact
motion is pure translational. So, angular momentum is m vr sinθ or mvr⊥ . Here, v is the
velocity of centre of mass. Just after impact motion is pure rotational. So, angular
momentum is Iω, where, I is the moment of inertia passing through O and perpendicular to
plane of paper.

Furthermore, there will be loss of mechanical energy during impact

= − = −





E E mv Ii f

1

2

1

2

2 2ω . But after impact, the mechanical energy remains constant. As

the block moves up, its potential energy increases and rotational kinetic energy decreases.

V Example 19 In the figure shown in the text, if the block is a cube of side ‘a’.

Find
(a) ω just after impact

(b) loss of mechanical energy during impact

(c) minimum value of v so as the block overcomes the obstacle and does not turn back.
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v
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Solution

(a) From conservation of angular momentum about O,

L Li f=
mv r I I mrc o c⊥ = = +ω ω( )2

⇒ mv
a ma

m
a

2 6 2

2 2




 = + 
















ω

⇒ ω = 





3

4

v

a
Ans.

(b) Loss of mechanical energy,

= −E Ei f

= −11

2 2

2 2mv Ioω

= − + 























1

2

1

2 6 2

3

4

2
2 2 2

mv
ma

m
a v

a

= 5

16

2mv Ans.

(c)

Block overcomes the  obstacle at O if centre of mass rises upto a height
a

2
as shown in

figure (from the initial height
a

2
).

Because after that torque of ‘mg’ about O will itself rotate the block on other side as shown

in figure.

∴ Decrease in rotational kinetic energy = increase in gravitational potential energy

∴ 1

2 2 2

2I mg
a a

oω = −





or
1

2 6 2

2 2
ma

m
a+ 

















3

4

2
v

a
mg







= a a

2 2
−





∴ v g a= 11. Ans.
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Type 12. To identify number of unknowns and then make equations corresponding to that.

Concept

A disc and block system are released from rest as
shown in figure. Ground is sufficiently rough, so that
there is no slip anywhere. We have to find
accelerations of both, tension in the string and force
of friction.

In such problems, first of all find the number of
unknowns:

(i) Block can have only translational motion. So, it
has some linear acceleration say a1

(ii) Disc can have translational as well as rotational motion. So, it has linear acceleration
a2 and angular acceleration ‘α’.

(iii) Ground is rough. So, there is one unknown friction ‘f ’

(iv) One more unknown is tension in the string T.

Therefore, there are total five unknowns in this problem, a1, a2, α, T and f .

How to Solve?
l We will make three acceleration equations for a1,a2 and α by using the equations

l a
F

m
= net and α τ= net

I

l There are two contact equations at c1 and c2.

l At c1, disc is in contact with ground and at c2 with string. At the other end string is connected to the block.

So, there should not be any slip at c1 between disc and ground and at c2 between disc and string.

Following two examples illustrate the method of making these equations.

V Example 20 Consider the arrangement shown in

figure. The string is wrapped around a uniform cylinder

which rolls without slipping. The other end of the string

is passed over a massless, frictionless pulley to a falling

weight. Determine the acceleration of the falling mass m

in terms of only the mass of the cylinder M, the mass m

and g.

Solution Let T be the tension in the string and f
the force of (static) friction, between the cylinder and

the surface.

a1 = acceleration of centre of mass of cylinder

towards right

a2 = downward acceleration of block m

α = angular acceleration of cylinder (clockwise)

Acceleration equations

For block, mg T ma− = 2 …(i)
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a1

T
c1 f

a2

Tc2

α

m

M

α T

f

a1

T

a2

mg



For cylinder, T f Ma+ = 1 …(ii)

α = −( )T f R

MR
1

2

2

…(iii)

Contact equations

The string is attached to the mass m at the highest point of the cylinder, hence

v v Rm = +COM ω
Differentiating, we get a a R2 1= + α …(iv)

We also have (for rolling without slipping)

a R1 = α …(v)

Solving these equations, we get a
mg

M m
2

8

3 8
=

+
Ans.

Alternate Solution (Energy Method)

Since, there is no slipping at all contacts mechanical energy of the system will remain

conserved.

∴ Decrease in gravitational potential energy of block m in time t = increase in translational

kinetic energy of block + increase in rotational as well as translational kinetic energy of

cylinder.

∴ mgh mv I Mv= + +1

2

1

2

1

2
2
2 2

1
2ω

or mg a t m a t MR t M a
1

2

1

2

1

2

1

2

1

2
2

2
2

2 2 2
1





 = + 



 +( ) ( ) (α t)2 …(vi)

Solving Eqs. (iv), (v) and (vi), we get the same result.

V Example 21 A thin massless thread is wound on a reel

of mass 3 kg and moment of inertia 0.6 kg-m2 . The hub

radius is R cm= 10 and peripheral radius is 2 20R cm= .

The reel is placed on a rough table and the friction is

enough to prevent slipping. Find the acceleration of the

centre of reel and of hanging mass of 1 kg.

Solution Here, number of unknowns are five:

a1 = acceleration of centre of mass of reel

a2 = acceleration of 1 kg block

α = angular acceleration of reel (clockwise)

T = tension in the string

and f = force of friction

Acceleration equations :

Free body diagram of reel is as shown in figure: (only horizontal forces are shown).

Equations of motion are

T f a− =3 1 …(i)

α τ= = − = − = −
I

f R T R

I

f T f T( ) . .2 01

3 6

0.2

0.6
…(ii)
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R

a1

T

α

f



Free body diagram of mass is,

Equation of motion is,

10 2− =T a …(iii)

Contact equations :

For no slipping condition,

a R1 2= α or a1 = 0.2 α …(iv)

and a a R2 1= − α or a a2 1= −0.1 α …(v)

Solving the above five equations, we get

a1
2= 0.27 m/s and a2

2= 0.135 m/s Ans.

Type 13. Energy method of solving problems of accelerated pure rolling.

Concept

In accelerated pure rolling over a stationary ground work done by friction is zero. So,
mechanical energy remains constant. Therefore, some problems of accelerated pure rolling
can also be solved by using energy conservation principle.

V Example 22 A body of mass m, radius R and moment of

inertia I (about an axis passing through the centre of mass

and perpendicular to plane of motion) is released from rest

over a sufficiently rough ground (to provide accelerated

pure rolling). Find linear acceleration of the body.

Solution Let linear acceleration is ‘a’ and angular acceleration ‘α ’.

For accelerated pure rolling,

α = a

R

After time t, displacement of centre of mass along the plane, s at= 1

2

2

∴ Height fallen by centre of mass

h s at= =( )(sin ) sinθ θ1

2

2

linear velocity v at=

angular velocity ω α= =t
at

R
From energy conservation principle, decrease in potential energy = increase in translational
and rotational kinetic energy.

or mgh mv I= +1

2

1

2

2 2ω

Substituting the value we have,

mg at m at I
at

R

1

2

1

2

1

2

2 2
2

sin ( )θ



 = + 





Solving this equation we get, a
g

I

mR

=
+

sin θ

1
2

Ans.
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Type 14. Problems of accelerated pure rolling by finding angular acceleration ‘α ’ about the
bottommost axis.

Concept

We have discussed in final touch points that :

α
τ

= ext

I

can be applied from an inertial frame or about an axis passing through centre of mass
(even if it is accelerated).

Same is the case about an axis passing through bottommost axis if accelerated pure rolling
is taking place on a stationary ground.

Although the bottommost point is accelerated (= Rω2, towards centre), yet for symmetrical
bodies net torque of pseudo forces on all particles of the rigid body about bottommost axis is
zero. So,

α
τ

= ext

I

can be applied about this axis also.

V Example 23 In example 22, find linear acceleration ‘a’ of the body by

calculating α about bottommost axis.

Solution α τ θ= =
+

0

0
2I

mg R

I MRc

( sin )

( )

But I Ic =

∴ α θ=
+

mg R

I mR

sin
2

Now, ac or a R
mg R

I mR
=

+
α = θ2

2

sin

or a
g

I

mR

=
+

sin θ

1
2

Ans.

Type 15. Based on hinge force.

Concept

A rod OA is hinged at O. It is released from the horizontal
position as shown in figure. We have to find hinge force acting on
the rod at a general angle θ.

We can see that motion of the rod is pure rotational about an
axis passing through O. As the rod rotates downwards, its
gravitational potential energy decreases and rotational kinetic
energy increases. If the hinge is smooth, then we can apply the
equation.
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θ

f

O
αmg sin

θ

C
R

f = friction

O

θ
ω

C

C
A

A

α



mgh I= 1

2

2ω …(i)

Here, h = height fallen by centre of mass C of the rod.

and I I= 0

From here we can find ω2.

At the same time, we can see that ω is increasing. So, there is an angular acceleration ‘α’
about O. Only two forces are acting on the rod, hinge force and weight.

Torque of hinge force about O is zero. Therefore, torque of ‘mg’ will only provide ‘α’. Thus,

α
τ

= mg

I
…(ii)

Now, only two forces are acting on the rod, hinge force (say F) and weight ( )mg .

∴ F g a+ =m m
COM

or ma
C

or F a g= −m m
c

…(iii)

By finding a
c

we can find the hinge force F from Eq. (iii).

How to Solve ac?

l In the figure, we can see that C is rotating in a circle with centre at O and radius r OC
l= =
2

, where l is the

length of rod. In a circular motion, acceleration of a particle has two components.

l (i) radial a rr = ω2

l (ii) tangential a rt = α
l ω2 can be obtained from Eq. (i),α can be obtained from Eq. (ii). Writing all vector quantities in proper vector

notations and then substituting in Eq.(iii) we can find the hinge force F.
.

V Example 24 In the figure given in the text if mass of the rod is ‘m’ then find

hinge force.

(a) Just after the rod is released from the horizontal position.

(b) When the rod becomes vertical.

Solution (a)

Just after the release, ω =0

∴ a rr = =ω2 0

α
τ

= mg

I
(about O)

= ⊥( ) ( )mg r

I0

=





( )

( / )

mg
l

ml

2

32
= 3

2

g

l

∴ a r
l g

l
gt = = 









 =α

2

3

2

3

4
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From Eq. (iii), the hinge force is

F a g= −m c( )

= − − −m a gt[ ( $) ( $)]j j

= − +





m g g
3

4
$ $
j j

= mg

4
$
j Ans.

Therefore, hinge force is
mg

4
, in vertically upward direction.

(b)

When the rod becomes vertical height fallen by centre of mass is h
l=
2

Therefore, from Eq. (i),

ω2 2= mgh

I
I I

ml= =






0

2

3

=







= 





2
2

3

3
2

mg
l

ml

g

l( / )

∴ a r
l g

l
r = = 









ω2

2

3 = 3

2
g (towards O)

At this moment 'mg' also passes through O. Therefore, its torque about O is also zero. So,

from Eq. (ii),

α = 0 ⇒ a rt = =α 0

Now, substituting proper values in Eq. (iii), the hinge force is,

F a g= −m c( )

= − −m a gr[ $ ( $)]j j

= 



 +





m g g
3

2
$ ( )$j j

= 





5

2
mg $

j Ans.

Therefore, hinge force is
5

2
mg in vertically upward direction.
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Type 16. Collision Problems.

Concept

There are mainly three types of collisions.

Type 1.

A ball of mass M is suspended by a light string of length ‘l’. A bullet of mass ‘m’ strikes the
ball with velocity u and sticks. This type of collision we have already discussed in the
previous chapter.

The three important points in this collision are

(i) Velocity of combined mass after collision (say v) can be obtained by conservation of
linear momentum or

p pf i=
⇒ ( )M m v mu+ =

or v
mu

M m
=

+
(ii) Mechanical energy is lost only during collision. This loss is given by

E Ei f− (E =mechanical energy)

= − +1

2

1

2

2 2mu M m v( )

(iii) After collision now the mechanical energy remains constant and the combined mass
executes vertical circular motion. If v gl≥ 5 circle is completed. If 2 5gl v gl< < ,
string slacks in upper half of the circle and if 0 2< ≤v gl, combined mass oscillates in
lower half of the circle.

Type 2.

A rod of mass M and length L is hinged at point O. A bullet of mass m moving with velocity
u strikes the rod at its bottommost point and sticks. Just after collision the combined
system (rod + bullet) starts rotating about the hinge point O with an angular speed ω.
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M

O

l

m

u

⇒

M m+

O

v

O

⇒
M
L

m
u

O

M

ω

m



So, the translational motion converts into rotational motion. The three important points in
this collision are

(i) At the time of collision, a linear impulse acts on the system at point O from the hinge.
Angular impulse of this linear impulse about O is zero (as r⊥ = 0). Therefore, angular
momentum of the system about O remains constant or

L Li f=
∴ mur I⊥ = ω
or mu L I I= +( )rod Bullet ω

= +








ML

mL
2

2

3
ω

From this equation, we can find ‘ω’.

(ii) Mechanical energy is lost only during collision (not after that) and this loss is

E E mu Ii f− = −1

2

1

2

2 2ω

(iii) After the collision, as the system moves upwards its gravitational potential energy
increases and rotational kinetic energy decreases. So, we can write :

decrease in rotational kinetic energy = increase in gravitational potential energy.

Type 3.

A rod of mass M and length L is lying on a smooth table. A bullet of mass ‘m’ and speed ‘u’
strikes the rod at A and sticks. C1 is the centre of rod and C2 is the centre of mass of system
(rod + bullet).

Just after collision motion of the combined system is rotation (with angular velocity ω) and
translation (with linear velocity v).

Thus, by the collision, translation motion converts into rotation plus translation motion.
The three important points in this type of collision are:

(i) System is kept over a smooth horizontal table. So, net linear impulse on the system is
zero. Therefore, v can be obtained by conservation of linear momentum or,

p pf i=
⇒ ( )M m v mu+ =

∴ v
mu

M m
=

+
Since, net linear impulse on the system is zero. Therefore, angular impulse about any
point is also zero. Hence, angular momentum of the system can be conserved about any
point andωcan be obtained. But normally, we conserve it about point of impact (or A).
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⇒

M L,

m u

C1

B B

C1

C2 v

A

ω

A



∴ L Lf i= (about A)

or ( )m M vr I+ ± =⊥ ω 0 ⇒ L muri = ⊥

Here, = 0 (asr⊥ = 0from A)

I I I= +
rod Bullet

To find r⊥ of v from A first we will have to find position of COM or C2 of the combined
system.

(ii) Mechanical energy is lost only during collision (not after that) and this loss is:

E E mu M m v Ii f− = 





− + +





1

2

1

2

1

2

2 2 2( ) ω

(iii) Since, the system is kept over a smooth table, v and ω remain constant after the
collision.

V Example 25 Two uniform rods A and B of length 0.6 m each and of

masses 0.01 kg and 0.02 kg respectively are rigidly joined end to end.

The combination is pivoted at the lighter end, P as shown in figure.

Such that it can freely rotate about point P in a vertical plane.

A small object of mass 0.05 kg, moving horizontally, hits the lower

end of the combination and sticks to it. What should be the velocity of

the object, so that the system could just be raised to the horizontal

position? (JEE 1994)

Solution System is free to rotate but not free to translate. During collision, net torque

on the system (rod A B m+ +rod mass ) about point P is zero.

Therefore, angular momentum of system before collision

= angular momentum of system just after collision (about P).

Let ω be the angular velocity of system just after collision, then

L Li f= ⇒ mv l I( )2 = ω …(i)

Here, I = moment of inertia of system about P

= + + + +













m l m l m

l l
lA B( ) ( / )2 3

12 2

2 2
2 2

Given, l = 0.6 m, m = 0.05 kg, mA = 0.01 kg and mB= 0.02  kg.
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B

A

m

P

v

B

v

l

A

P

l

ω

ω

ω = 0



Substituting the values, we get

I = 0.09 kg- m2

Therefore, from Eq. (i)

ω = =2 2 005 06

009

mvl

I

v( ) ( . ) ( )( . )

.

ω =067. v …(ii)

Now, after collision, mechanical energy will be conserved.

Therefore, decrease in rotational KE = increase in gravitational PE

or
1

2
2

2 2

2I mg l m g
l

m g l
l

A Bω = + 



 + +( ) ( )

or ω2 4 3= + +gl m m m

I

A B( )

= × + + ×( . ) ( . ) ( . . . )

.

98 06 4 005 001 3 002

009

= 17.64 rad/s)( 2

∴ ω = 4.2 rad/s …(iii)

Equating Eqs. (ii)  and (iii), we get

v = 4.2

0.67
m/s or v = 6.3 m/s Ans.

V Example 26 A rod AB of mass M and length L is lying on a horizontal

frictionless surface. A particle of mass m travelling along the surface hits the end

A of the rod with a velocity v0 in a direction perpendicular to AB. The collision is

elastic. After the collision the particle comes to rest. (JEE 2000)

(a) Find the ratio m M/ .

(b) A point P on the rod is at rest immediately after collision. Find the distance AP.

(c) Find the linear speed of the point P a time πL v/ 3 0 after the collision.

Solution (a) Suppose velocity of COM of the rod just after collision is v and angular velocity

about COM is ω . Applying following three laws:

(1) External force on the system (rod + mass) in horizontal plane along x-axis is zero .

∴ Applying conservation of linear momentum in x-direction.

mv Mv0 = …(i)

(2) Net torque on the system about COM of rod is zero.
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COM

L
2

L
2

Before collision

m
v0

COM

After collision

m

v x
ω



∴ Applying conservation of angular momentum about COM  of rod, we get mv
L

I0
2





 = ω

or mv
L ML

0

2

2 12
= ω

or mv
ML

0
6

= ω
...(ii)

(3) Since, the collision is elastic, kinetic energy is also conserved.

∴ 1 = +
2

1

2

1

2
0
2 2 2mv Mv Iω

or mv Mv
ML

0
2 2

2
2

12
= + ω …(iii)

From Eqs. (i), (ii) and (iii), we get the following results

m

M
= 1

4
Ans.

v
mv

M
= 0 and ω = 6 0mv

ML

(b) Point P will be at rest if x vω =

or x
v mv M

mv ML
= =

ω
0

06

/

/
or x L= /6

∴ AP
L L= +
2 6

or AP L= 2

3
Ans.

(c) After time t
L

v
= π

3 0

angle rotated by rod, θ ω π= =t
mv

ML

L

v

6

3

0

0

.

= 



2π m

M
= 



2

1

4
π

∴ θ π=
2

Therefore, situation is as shown in figure.

∴ Resultant velocity of point P will be

| |vP v= 2 = 



2 0

m

M
v

= 2

4
0v = v0

2 2

or | |vP

v= 0

2 2
Ans.
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V Example 27 A thread is wound around two discs on either sides.

The pulley and the two discs have the same mass and radius. There is

no slipping at the pulley and no friction at the hinge. Find out the

accelerations of the two discs and the angular acceleration of the

pulley.

Solution Let R be the radius of the discs and T1 and T2 be the tensions in the left

and right segments of the rope.

Acceleration of disc 1,

a
mg T

m
1

1= −
…(i)

Acceleration of disc 2,

a
mg T

m
2

2= −
…(ii)

Angular acceleration of disc 1, α τ
1

1

2

1

1

2

2= = =
I

T R

mR

T

mR
…(iii)

Similarly, angular acceleration of disc 2, α 2
22= T

mR
…(iv)

Both α1 and α 2 are clockwise.

Angular acceleration of pulley,

α = − = −( ) ( )T T R

mR

T T

mR

2 1

2

2 1

1

2

2
…(v)

For no slipping, R a a R Rα α α1 1 2 2– = − = …(vi)

Solving these equations, we get

α = 0 and a a
g

1 2

2

3
= = Ans.

Alternate Solution

As both the discs are in identical situation, T T1 2= and α = 0. i.e. each of the discs

falls independently and identically. Therefore, this is exactly similar to the problem

shown in figure.

1 2

a1 mg

T1

α1

a2mg

T2

α2

T2

α

T1

Miscellaneous Examples



V Example 28 Determine the maximum horizontal force F that may be applied to

the plank of mass m for which the solid sphere does not slip as it begins to roll on

the plank. The sphere has a mass M and radius R. The coefficient of static and

kinetic friction between the sphere and the plank are µ s and µ k respectively.

Solution The free body diagrams of the sphere and the plank are as shown below:

Writing equations of motion

For sphere Linear acceleration a
Mg

M
gs

s1 = =µ µ …(i)

Angular acceleration α µ= ( )sMg R

MR
2

5

2

= 5

2

µsg

R
…(ii)

For plank Linear acceleration

a
F Mg

m

s
2 = − µ

…(iii)

For no slipping

a a R2 1= + α …(iv)

Solving the above four equations, we get

F g M ms= +



µ 7

2

Thus, maximum value of F can be

µsg M m+





7

2
Ans.

V Example 29 A uniform disc of radius r0 lies on a smooth horizontal plane. A

similar disc spinning with the angular velocity ω0 is carefully lowered onto the

first disc. How soon do both discs spin with the same angular-velocity if the

friction coefficient between them is equal to µ?

Solution From the law of conservation of angular momentum.

I Iω ω0 = 2
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Here, I = moment of inertia of each disc relative to common rotation axis

∴ ω ω= =0

2
steady state angular velocity

The angular velocity of each disc varies due to the torque τ of the friction forces. To calculate τ,

let us take an elementary ring with radii r and r dr+ . The torque of the friction forces acting on

the given ring is equal to

dτ = (friction force) ( ) [ ( ) ]( )r dm g r⊥ = µ

=






µ

π
πmg

r
rdr r

0
2

2( )

=








2

0
2

2µmg

r
r dr

where, m is the mass of each disc. Integrating this with respect to r between 0 and r0, we get

τ µ= =2

3
0mgr constant

∴ α µ= τ =
I

mgr

mr

( / )

( / )

2 3

2

0

0
2

= =4

3 0

µg

r
constant

Now, angular speed of lower disc increases with this α from O to
ω0

2
and α is constant.

∴ ω α0

2
= t

or t
r

g
= =ω

α
ω
µ

0 0 0

2

3

8
Ans.
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LEVEL 1
Assertion and Reason

Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : Moment of inertia of a rigid body about any axis passing through its centre of mass
is minimum.

Reason : From theorem of parallel axis,

I I Mrcm= + 2

2. Assertion : A ball is released on a rough ground in the condition shown in
figure. It will start pure rolling after some time towards left side.

Reason : Friction will convert the pure rotational motion of the ball into pure
rolling.

3. Assertion : A solid sphere and a hollow sphere are rolling on ground with same total kinetic

energies. If translational kinetic energy of solid sphere is K , then translational kinetic energy

of hollow sphere should be greater than K .

Reason : In case of hollow sphere rotational kinetic energy is less than its translational kinetic
energy.

4. Assertion : A small ball is released from rest from point A as shown. If

bowl is smooth, than ball will exert more pressure at point B, compared to

the situation if bowl is rough.

Reason : Linear velocity and hence, centripetal force in smooth situation is
more.

5. Assertion : A cubical block is moving on a rough ground with velocity v0.
During motion net normal reaction on the block from ground will not
pass through centre of cube. It will shift towards right.

Reason : It is to keep the block in rotational equilibrium.

6. Assertion : A ring is rolling without slipping on a rough ground. It strikes

elastically with a smooth wall as shown in figure. Ring will stop after some

time while travelling in opposite direction.

Reason : After impact net angular momentum about an axis passing

through bottommost point and perpendicular to plane of paper is zero.

B

A

v0

Exercises



7. Assertion : There is a thin rod AB and a dotted line CD. All the axes we are talking about are

perpendicular to plane of paper. As we take different axes moving from A to D, moment of

inertia of the rod may first decrease then increase.

Reason : Theorem of perpendicular axis cannot be applied here.

8. Assertion : If linear momentum of a particle is constant, then its angular momentum about

any point will also remain constant.

Reason : Linear momentum remains constant, if Fnet = 0 and angular momentum remains

constant if τ net = 0.

9. Assertion : In the figure shown, A B, and C are three points on the circumference of a disc. Let

v vA B, and vC are speeds of these three points, then

v v vC B A> >

Reason : In case of rotational plus translational motion of a rigid body, net speed of any point

(other than centre of mass) is greater than, less than or equal to the speed of centre of mass.

10. Assertion : There is a triangular plate as shown. A dotted axis is lying in the plane of slab. As

the axis is moved downwards, moment of inertia of slab will first decrease then increase.

Reason : Axis is first moving towards its centre of mass and then it is receding from it.

11. Assertion : A horizontal force F is applied at the centre of solid sphere placed over a plank. The

minimum coefficient of friction between plank and sphere required for pure rolling is µ1 when

plank is kept at rest and µ 2 when plank can move, then µ µ2 1< .

Reason : Work done by frictional force on the sphere in both cases is zero.
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Objective Questions
Single Correct Option

1. The moment of inertia of a body does not depend on

(a) mass of the body

(b) the distribution of the mass in the body

(c) the axis of rotation of the body

(d) None of the above

2. The radius of gyration of a disc of radius 25 cm about a centroidal axis perpendicular to disc is

(a) 18 cm (b) 12.5 cm (c) 36 cm (d) 50 cm

3. A shaft initially rotating at 1725 rpm is brought to rest uniformly in 20s. The number of
revolutions that the shaft will make during this time is

(a) 1680 (b) 575 (c) 287 (d) 627

4. A man standing on a platform holds weights in his outstretched arms. The system is rotated
about a central vertical axis. If the man now pulls the weights inwards close to his body, then

(a) the angular velocity of the system will increase

(b) the angular momentum of the system will remain constant

(c) the kinetic energy of the system will increase

(d) All of the above

5. The moment of inertia of a uniform semicircular disc of mass M and radius r about a line
perpendicular to the plane of the disc through the centre is

(a) Mr2 (b)
1

2

2Mr (c)
1

4

2Mr (d)
2

5

2Mr

6. Two bodies A Band made of same material have the moment of inertial in the ratio
I IA B: := 16 18 . The ratio of the masses m mA B: is given by

(a) cannot be obtained (b) 2 : 3

(c) 1 : 1 (d) 4 : 9

7. When a sphere rolls down an inclined plane, then identity the correct statement related to the
work done by friction force

(a) The friction force does positive translational work

(b) The friction force does negative rotational work

(c) The net work done by friction is zero

(d) All of the above

8. A circular table rotates about a vertical axis with a constant angular speed ω. A circular pan
rests on the turn table (with the centre coinciding with centre of table) and rotates with the
table. The bottom of the pan is covered with a uniform small thick layer of ice placed at centre of
pan. The ice starts melting. The angular speed of the turn table

(a) remains the same

(b) decreases

(c) increases

(d) may increase or decrease depending on the thickness of ice layer

9. If R is the radius of gyration of a body of mass M and radius r, then the ratio of its rotational to
translational kinetic energy in the rolling condition is

(a)
R

R r

2

2 2+
(b)

R

r

2

2
(c)

r

R

2

2
(d) 1
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10. A solid sphere rolls down two different inclined planes of the same height but of different
inclinations

(a) in both cases the speeds and time of descend will be same

(b) the speeds will be same but time of descend will be different

(c) the speeds will be different but time of descend will be same

(d) speeds and time of descend both will be different

11. For the same total mass, which of the following will have the largest moment of inertia about an
axis passing through the centre of mass and perpendicular to the plane of the body

(a) a disc of radius R (b) a ring of radius R

(c) a square lamina of side 2R (d) four rods forming a square of side 2R

12. A disc and a solid sphere of same mass and radius roll down an inclined plane. The ratio of the
friction force acting on the disc and sphere is

(a)
7

6
(b)

5

4

(c)
3

2
(d) depends on angle of inclination

13. A horizontal disc rotates freely with angular velocityω about a vertical axes through its centre.
A ring, having the same mass and radius as the disc, is now gently placed coaxially on the disc.
After some time, the two rotate with a common angular velocity. Then

(a) no friction exists between the disc and the ring

(b) the angular momentum of the system is conserved

(c) the final common angular velocity is
1

2
ω

(d) All of the above

14. A solid homogeneous sphere is moving on a rough horizontal surface, partly rolling and partly
sliding. During this kind of motion of the sphere

(a) total kinetic energy of the sphere is conserved

(b) angular momentum of the sphere about any point on the horizontal surface is conserved

(c) only the rotational kinetic energy about the centre of mass is conserved

(d) None of the above

15. A particle of mass m = 3 kg moves along a straight line 4 3 2y x− = where x and y are in metre,

with constant velocity v = −5 1ms . The magnitude of angular momentum about the origin is

(a) 12 1kgm s2 − (b) 6.0 kgm s2 −1 (c) 4.5 kgm s2 −1 (d) 8.0 kgm s2 −1

16. A solid sphere rolls without slipping on a rough horizontal floor, moving with a speed v. It
makes an elastic collision with a smooth vertical wall. After impact,

(a) it will move with a speed v initially

(b) its motion will be rolling with slipping initially and its rotational motion will stop momentarily

at some instant

(c) its motion will be rolling without slipping only after some time

(d) All of the above

17. The figure shows a square plate of uniform mass distribution. AA′
and BB′ are the two axes lying in the plane of the plate and passing
through its centre of mass. If I0 is the moment of inertia of the plate
about AA′ then its moment of inertia about the axis BB′ is

(a) I0 (b) I0 cos θ
(c) I0

2cos θ (d) None of these
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18. A spool is pulled horizontally on rough surface by two equal and
opposite forces as shown in the figure. Which of the following
statements are correct?

(a) The centre of mass moves towards left

(b) The centre of mass moves towards right

(c) The centre of mass remains stationary

(d) The net torque about the centre of mass of the spool is zero

19. Two identical discs are positioned on a vertical axis as shown in the figure. The
bottom disc is rotating at angular velocity ω0 and has rotational kinetic energy K 0.
The top disc is initially at rest. It then falls and sticks to the bottom disc. The
change in the rotational kinetic energy of the system is

(a) K 0 2/ (b) − K 0 2/

(c) − K 0 4/ (d) K 0 4/

20. The moment of inertia of hollow sphere (mass M) of inner radius R and outer radius
2R, having material of uniform density, about a diametric axis is

(a) 31 702MR / (b) 43 902MR /

(c) 19 802MR / (d) None of these

21. A rod of uniform cross-section of mass M and length L is hinged about an end to swing freely in
a vertical plane. However, its density is non uniform and varies linearly from hinged end to the
free end doubling its value. The moment of inertia of the rod, about the rotation axis passing
through the hinge point is

(a)
2

9

2ML
(b)

3

16

2ML
(c)

7

18

2ML
(d) None of these

22. Let I I1 2and be the moment of inertia of a uniform square plate about axes
shown in the figure. Then, the ratio I I1 2: is

(a) 1
1

7
: (b) 1

12

7
:

(c) 1
7

12
: (d) 1 7:

23. Moment of inertia of a uniform rod of length L and mass M, about an axis passing through L/ 4
from one end and perpendicular to its length is

(a)
7

36

2ML (b)
7

48

2ML (c)
11

48

2ML (d)
ML2

12

24. A uniform rod of length L is free to rotate in a vertical plane about a fixed
horizontal axis through B. The rod begins rotating from rest. The angular
velocity ω at angle θ is given as

(a)
6

2

g

L





 sin

θ
(b)

6

2

g

L





 cos

θ

(c)
6g

L





 sin θ (d)

6g

L





 cos θ

25. Two particles of masses 1 kg and 2 kg are placed at a distance of 3m. Moment of inertia of the
particles about an axis passing through their centre of mass and perpendicular to the line

joining them is (in kg-m2).

(a) 6 (b) 9

(c) 8 (d) 12
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26. Find moment of inertia of a thin sheet of mass M in the shape of an
equilateral triangle about an axis as shown in figure. The length of each
side is L

(a) ML2 8/ (b) 3 3 82ML /

(c) 7 82ML / (d) None of these

27. A square is made by joining four rods each of mass M and length L. Its moment of
inertia about an axis PQ, in its plane and passing through one of its corner is

(a) 6 2ML (b)
4

3

2ML

(c)
8

3

2ML (d)
10

3

2ML

28. A thin rod of length 4l, mass 4 m is bent at the points as shown in the

figure. What is the moment of inertia of the rod about the axis passing

through O and perpendicular to the plane of the paper?

(a)
ml2

3
(b)

10

3

2ml

(c)
ml2

12
(d)

ml2

24

29. The figure shows two cones A Band with the conditions : h hA B< ; ρ ρA B> ;
R RA B= m mA B= . Identify the correct statement about their axis of symmetry.

(a) Both have same moment of inertia

(b) A has greater moment of inertia

(c) B has greater moment of inertia

(d) Nothing can be said

30. Linear mass density of the two rods system, AC and CB is x. Moment of
inertia of two rods about an axis passing through AB is

(a)
xl3

4 3
(b)

xl3

2

(c)
xl3

4
(d)

xl3

6 2

Subjective Questions
1. If radius of the earth contracts to half of its present value without change in its mass, what will

be the new duration of the day?

2. The radius of gyration of a uniform disc about a line perpendicular to the disc equals its radius
R. Find the distance of the line from the centre.

3. Find the moment of inertia of a uniform square plate of mass M and edge a about one of its
diagonals.

4. Moment of inertia of a uniform rod of mass m and length l is
7

12

2ml about a line perpendicular

to the rod. Find the distance of this line from the middle point of the rod.
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5. Two point masses m1 and m2 are joined by a weightless rod of length r. Calculate the moment of
inertia of the system about an axis passing through its centre of mass and perpendicular to the
rod.

6. Radius of gyration of a body about an axis at a distance 6 cm from its centre of mass is 10 cm.
Find its radius of gyration about a parallel axis through its centre of mass.

7. A wheel rotates around a stationary axis so that the rotation angle θ varies with time as θ = at2 ,

where a = 0.2 rad/s2. Find the magnitude of net acceleration of the point A at the rim at the

moment t s= 2.5 if the linear velocity of the point A at this moment is v = 0.65 m/s.

8. Particle P shown in figure is moving in a circle of radius R = 10 cm with linear speed v = 2 m/s.
Find the angular speed of particle about point O.

9. A particle of mass m is projected with velocity v at an angle θ with the horizontal. Find its
angular momentum about the point of projection when it is at the highest point of its trajectory.

10. Linear mass density (mass/length) of a rod depends on the distance from one end (say A) as
λ α βx x= +( ). Here, α and β are constants. Find the moment of inertia of this rod about an axis
passing through A and perpendicular to the rod. Length of the rod is l.

11. When a body rolls, on a stationary ground, the acceleration of the point of contact is always
zero. Is this statement true or false?

12. A solid sphere of mass m rolls down an inclined plane a height h. Find rotational kinetic energy
of the sphere.

13. The topmost and bottommost velocities of a disc are v1 and v2 ( )< v1 in the same direction. The
radius is R. Find the value of angular velocity ω.

14. A circular lamina of radius a and centre O has a mass per unit area of kx2, where x is the
distance from O and k is a constant. If the mass of the lamina is M, find in terms of M and a, the
moment of inertia of the lamina about an axis through O and perpendicular to the lamina.

15. A solid body starts rotating about a stationary axis with an angular acceleration

α = × −( )2.0 rad/ s10 2 2t , here, t is in seconds. How soon after the beginning of rotation will the

total acceleration vector of an arbitrary point of the body form an angle θ = °60 with its velocity

vector?

16. A ring of radius R rolls on a horizontal ground with linear speed v and angular speed ω.For
what value of θ the velocity of point P is in vertical direction. ( )v R< ω
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17. Two forces F1 and F2 are applied on a spool of mass M and moment of
inertia I about an axis passing through its centre of mass. Find the ratio
F

F

1

2

, so that the force of friction is zero. Given that I Mr< 2 2.

18. A disc is placed on the ground. Friction coefficient is µ. What is the
minimum force required to move the disc if it is applied at the topmost point?

19. A cube is resting on an inclined plane. If the angle of inclination is gradually increased, what
must be the coefficient of friction between the cube and plane so that,

(a) cube slides before toppling? (b) cube topples before sliding?

20. A uniform disc of mass 20 kg and radius 0.5 m can turn about a smooth axis through its centre
and perpendicular to the disc. A constant torque is applied to the disc for 3 s from rest and the

angular velocity at the end of that time is
240

π
rev/min. Find the magnitude of the torque. If the

torque is then removed and the disc is brought to rest in t seconds by a constant force of 10 N
applied tangentially at a point on the rim of the disc, find t.

21. A uniform disc of mass m and radius R is rotated about an axis passing through its centre and
perpendicular to its plane with an angular velocity ω0. It is placed on a rough horizontal plane
with the axis of the disc keeping vertical. Coefficient of friction between the disc and the surface
is µ. Find

(a) the time when disc stops rotating,

(b) the angle rotated by the disc before stopping.

22. A solid body rotates about a stationary axis according to the law θ = −at bt3 , where a = 6 rad/s

and b = 2 rad /s3. Find the mean values of the angular velocity and acceleration over the time

interval between t = 0 and the time, when the body comes to rest.

23. A rod of mass m and length 2R is fixed along the diameter of a ring of same mass m and radius R
as shown in figure. The combined body is rolling without slipping along x-axis. Find the angular
momentum about z-axis.

24. The figure shows a thin ring of mass M = 1 kg and radius R = 0 4. m spinning

about a vertical diameter. (Take I MR= 1

2

2). A small bead of mass m = 0.2kg can

slide without friction along the ring. When the bead is at the top of the ring, the
angular velocity is 5 rad/s. What is the angular velocity when the bead slips
halfway to θ = °45 ?

25. A horizontal disc rotating freely about a vertical axis makes 100 rpm. A small piece of wax of
mass 10 g falls vertically on the disc and adheres to it at a distance of 9 cm from the axis. If the
number of revolutions per minute is thereby reduced to 90. Calculate the moment of inertia of
disc.
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26. A man stands at the centre of a circular platform holding his arms extended horizontally with
4 kg block in each hand. He is set rotating about a vertical axis at 0.5 rev/s. The moment of

inertia of the man plus platform is 1.6 kg-m2, assumed constant. The blocks are 90 cm from the
axis of rotation. He now pulls the blocks in toward his body until they are 15 cm from the axis of
rotation. Find (a)  his new angular velocity and (b)  the initial and final kinetic energy of the
man and platform. (c)  how much work must the man do to pull in the blocks ?

27. A horizontally oriented uniform disc of mass M and radius R rotates freely about a stationary

vertical axis passing through its centre. The disc has a radial guide along which can slide

without friction a small body of mass m. A light thread running down through the hollow axle of

the disc is tied to the body. Initially the body was located at the edge of the disc and the whole

system rotated with an angular velocityω0. Then, by means of a force F applied to the lower end

of the thread the body was slowly pulled to the rotation axis. Find :

(a) the angular velocity of the system in its final state,

(b) the work performed by the force F.

28. Consider a cylinder of mass M and radius R lying on a rough horizontal

plane. It has a plank lying on its top as shown in figure. A force F is

applied on the plank such that the plank moves and causes the cylinder

to roll. The plank always remains horizontal. There is no slipping at any

point of contact. Calculate the acceleration of the cylinder and the

frictional forces at the two contacts.

29. Find the acceleration of the cylinder of mass m and radius R and that of plank of mass M placed
on smooth surface if pulled with a force F as shown in figure. Given that sufficient friction is
present between cylinder and the plank surface to prevent sliding of cylinder.

30. A uniform rod AB of length 2l and mass m is rotating in a horizontal plane about a vertical axis
through A, with angular velocity ω, when the mid-point of the rod strikes a fixed nail and is
brought immediately to rest. Find the impulse exerted by the nail.

31. A uniform rod of length L rests on a frictionless horizontal surface. The rod is pivoted about a
fixed frictionless axis at one end. The rod is initially at rest. A bullet travelling parallel to the
horizontal surface and perpendicular to the rod with speed v strikes the rod at its centre and
becomes embedded in it. The mass of the bullet is one-sixth the mass of the rod.

(a) What is the final angular velocity of the rod ?

(b) What is the ratio of the kinetic energy of the system after the collision to the kinetic energy of the

bullet before the collision ?

32. A uniform rod AB of mass 3m and length 2l is lying at rest on a smooth horizontal table with a
smooth vertical axis through the end A. A particle of mass 2m moves with speed 2u across the
table and strikes the rod at its mid-point C. If the impact is perfectly elastic. Find the speed of
the particle after impact if

(a) it strikes the rod normally, (b) its path before impact was inclined at 60° to AC.
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LEVEL 2

Objective Questions
Single Correct Option

1. In the given figure a ring of mass m is kept on a horizontal surface
while a body of equal mass m is attached through a string, which is
wounded on the ring. When the system is released, the ring rolls
without slipping. Consider the following statement and choose the
correct option.

(i) acceleration of the centre of mass of ring is
2

3

g

(ii) acceleration of hanging particle is
4

3

g

(iii) frictional force (on the ring) acts in forward direction

(iv) frictional force (on the ring) acts in backward direction

(a) only statements (i) and (ii) are correct (b) only statements (ii) and (iii) are correct

(c) only statements (iii) and (iv) are correct (d) None of these

2. A solid sphere of mass 10 kg is placed on a rough surface having

coefficient of friction µ = 0.1. A constant force F = 7 N is applied along a

line passing through the centre of the sphere as shown in the figure. The

value of frictional force on the sphere is

(a) 1 N (b) 2 N

(c) 3 N (d) 7 N

3. From a uniform square plate of side a and mass m, a square portion DEFG of

side
a

2
is removed. Then, the moment of inertia of remaining portion about the

axis AB is

(a)
7

16

2ma
(b)

3

16

2ma

(c)
3

4

2ma
(d)

9

16

2ma

4. A small solid sphere of mass m and radius r starting from rest from the rim

of a fixed hemispherical bowl of radius R r( )> > rolls inside it without

sliding. The normal reaction exerted by the sphere on the hemisphere when

it reaches the bottom of hemisphere is

(a) ( / )3 7 mg (b) ( / )9 7 mg (c) ( / )13 7 mg (d) ( / )17 7 mg

5. A uniform solid cylinder of mass m and radius R is placed on a rough

horizontal surface. A horizontal constant force F is applied at the top point

P of the cylinder so that it starts pure rolling. The acceleration of the

cylinder is

(a) F m/3 (b) 2 3F m/

(c) 4 3F m/ (d) 5 3F m/

m

F = 7N

µ = 0.1

BA

F
E

G CD

PF



6. In the above question, the frictional force on the cylinder is

(a) F /3 towards right (b) F /3 towards left

(c) 2 3F / towards right (d) 2 3F / towards left

7. A small pulley of radius 20 cm and moment of inertia 0.32 kg-m2 is used to hang a 2 kg

mass with the help of massless string. If the block is released, for no slipping condition

acceleration of the block will be

(a) 2 m/s2 (b) 4 m/s2

(c) 1 m/s2 (d) 3 m/s2

8. A uniform circular disc of radius R is placed on a smooth horizontal surface

with its plane horizontal and hinged at circumference through point O as

shown. An impulse P is applied at a perpendicular distance h from its centre

C. The value of h so that the impulse due to hinge is zero, is

(a) R (b) R/2

(c) R/3 (d) R/4

9. A rod is supported horizontally by means of two strings of equal
length as shown in figure. If one of the string is cut. Then tension in
other string at the same instant will

(a) remain unaffected

(b) increase

(c) decrease

(d) become equal to weight of the rod

10. The figure represents two cases. In first case a block of mass M is

attached to a string which is tightly wound on a disc of mass M and

radius R. In second case F Mg= . Initially, the disc is stationary in each

case. If the same length of string is unwound from the disc, then

(a) same amount of work is done on both discs

(b) angular velocities of both the discs are equal

(c) both the discs have unequal angular accelerations

(d) All of the above

11. A uniform cylinder of mass M and radius R is released from rest on a

rough inclined surface of inclination θ with the horizontal as shown in

figure. As the cylinder rolls down the inclined surface, the maximum

elongation in the spring of stiffness k is

(a)
3

4

Mg

k

sin θ
(b)

2 Mg

k

sin θ

(c)
Mg

k

sin θ
(d) None of these

12. A uniform rod of mass m and length l rotates in a horizontal plane with an angular velocity ω
about a vertical axis passing through one end. The tension in the rod at a distance x from the
axis is

(a)
1

2

2m xω (b)
1

2
12

2

m
x

l
ω −







 (c)

1

2
12

2

2
m l

x

l
ω −







 (d)

1

2
12m l

x

l
ω −
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13. A rod of length 1 m rotates in the xy plane about the fixed point O in

the anticlockwise sense, as shown in figure with velocity ω = +a bt

where a = 10rad s−1 and b = −5 2rad s . The velocity and acceleration of

the point A at t = 0 is

(a) + +− −10 51 2$ and $i ims ms (b) + − +− −10 100 51 2$ and ( $ $)j i jms ms

(c) − −10 1$j ms and ( $ $)100 5 2
i j+ −ms (d) − −10 1$j ms and − −5 2$j ms

14. A ring of radius R rolls on a horizontal surface with constant acceleration a

of the centre of mass as shown in figure. If ω is the instantaneous angular

velocity of the ring, then the net acceleration of the point of contact of the

ring with ground is

(a) zero (b) ω2R

(c) a (d) a R2 2 2+ ( )ω

15. The density of a rod AB increases linearly from A to B. Its midpoint is O and its centre of

mass is at C. Four axes pass through A B O, , and C, all perpendicular to the length of the

rod. The moments of inertia of the rod about these axes are I I IA B O, , and IC respectively.

Then

(a) I IA B> (b) I IC B< (c) I IO C> (d) All of these

16. The figure shows a spool placed at rest on a horizontal rough surface. A tightly

wound string on the inner cylinder is pulled horizontally with a force F. Identify

the correct alternative related to the friction force f acting on the spool

(a) f acts leftwards with f F<
(b) f acts leftwards but nothing can be said about its magnitude

(c) f F< but nothing can be said about its magnitude

(d) None of the above

17. A circular ring of mass m and radius R rests flat on a horizontal smooth

surface as shown in figure. A particle of mass m, and moving with a

velocity v, collides inelastically ( )e = 0 with the ring. The angular velocity

with which the system rotates after the particle strikes the ring is

(a)
v

R2
(b)

v

R3
(c)

2

3

v

R
(d)

3

4

v

R

18. A stationary uniform rod in the upright position is allowed to fall on a smooth

horizontal surface. The figure shows the instantaneous position of the rod. Identify

the correct statement.

(a) normal reaction N is equal to Mg

(b) N does positive rotational work about the centre of mass

(c) a couple of equal and opposite forces acts on the rod

(d) All of the above

19. A thin uniform rod of mass m and length l is free to rotate about its upper end. When it is at

rest. It receives an impulse J at its lowest point, normal to its length. Immediately after

impact

(a) the angular momentum of the rod is Jl

(b) the angular velocity of the rod is 3J ml/

(c) the kinetic energy of the rod is 3 22J m/

(d) All of the above
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20. A rectangular block of size ( )b h× moving with velocity vo enters on a rough

surface where the coefficient of friction is µ as shown in figure. Identify the

correct statement.

(a) The net torque acting on the block about its COM is µ mg
h

2
(clockwise)

(b) The net torque acting on the block about its COM is zero

(c) The net torque acting on the block about its COM is in the anticlockwise sense

(d) None of the above

21. A uniform rod of length L and mass m is free to rotate about a frictionless

pivot at one end as shown in figure. The rod is held at rest in the horizontal

position and a coin of mass m is placed at the free end. Now the rod is released.

The reaction on the coin immediately after the rod starts falling is

(a)
3

2

mg
(b) 2 mg

(c) zero (d)
mg

2

22. A spool is pulled at an angle θ with the horizontal on a rough

horizontal surface as shown in the figure. If the spool remains at

rest, the angle θ is equal to

(a) cos− 





1 R

r
(b) sin− −













1
2

2
1

r

R

(c) π − 





−cos 1 r

R
(d) sin− 





1 r

R

23. Uniform rod AB is hinged at end A in horizontal position as shown in the

figure. The other end is connected to a block through a massless string as

shown. The pulley is smooth and massless. Mass of block and rod is same

and is equal to m. Then acceleration of block just after release from this

position is

(a) 6 13g/ (b) g/4

(c) 3 8g/ (d) None of these

24. A cylinder having radius 0.4 m, initially rotating (at t = 0) with ω0 54= rad /s is

placed on a rough inclined plane with θ = °37 having friction coefficient µ = 0.5.

The time taken by the cylinder to start pure rolling is ( )g = 10 2m/s

(a) 5.4 s (b) 2.4 s

(c) 1.4 s (d) None of these

25. A disc of mass M and radius R is rolling purely with center’s velocity v0 on a flat horizontal floor
when it hits a step in the floor of height R/ 4. The corner of the step is sufficiently rough to
prevent any slipping of the disc against itself. What is the velocity of the centre of the disc just
after impact?

(a) 4 50v / (b) 4 70v /

(c) 5 60v / (d) None of these
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26. A solid sphere is rolling purely on a rough horizontal surface (coefficient
of kinetic friction = µ) with speed of centre = u. It collides inelastically
with a smooth vertical wall at a certain moment, the coefficient of

restitution being
1

2
. The sphere will begin pure rolling after a time

(a)
3

7

u

gµ
(b)

2

7

u

gµ
(c)

3

5

u

gµ
(d)

2

5

u

gµ

27. A thin hollow sphere of mass m is completely filled with non viscous liquid of mass m.When the
sphere roll-on horizontal ground such that centre moves with velocity v, kinetic energy of the
system is equal to

(a) mv2 (b)
4

3

2mv (c)
4

5

2mv (d) None of these

28. A solid uniform disc of mass m rolls without slipping down a fixed inclined plank with an
acceleration a. The frictional force on the disc due to surface of the plane is

(a)
1

4
ma (b)

3

2
ma (c) ma (d)

1

2
ma

29. A uniform slender rod of mass m and length L is released from rest, with its lower end touching
a frictionless horizontal floor. At the initial moment, the rod is inclined at an angle θ = °30 with
the vertical. Then the value of normal reaction from the floor just after release will be

(a) 4 7mg/ (b) 5 9mg/

(c) 2 5mg/ (d) None of these

30. In the above problem, the initial acceleration of the lower end of the rod will be

(a) g 3 4/ (b) g 3 5/

(c) 3 3 7g / (d) None of these

31. A disc of radius R is rolling purely on a flat horizontal surface, with a constant
angular velocity. The angle between the velocity and acceleration vectors of point P
is

(a) zero (b) 45°

(c) tan ( )−1 2 (d) tan ( / )−1 1 2

32. A straight rod AB of mass M and length L is placed on a frictionless horizontal surface. A force
having constant magnitude F and a fixed direction starts acting at the end A. The rod is
initially perpendicular to the force. The initial acceleration of end B is

(a) zero (b) 2 F M/

(c) 4 F M/ (d) None of these

33. A particle moves parallel to x-axis with constant velocity v as shown in
the figure. The angular velocity of the particle about the origin O

(a) remains constant

(b) continuously increases

(c) continuously decreases

(d) oscillates

34. A thin uniform rod of mass M and length L is hinged at its upper end, and released from rest
from a horizontal position. The tension at a point located at a distance L/ 3 from the hinge point,
when the rod becomes vertical, will be

(a) 22 Mg/27 (b) 11 Mg/13

(c) 6 Mg/11 (d) 2 Mg
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35. A uniform rod AB of length L and mass m is suspended freely at A and hangs
vertically at rest when a particle of same mass m is fired horizontally with speed v to
strike the rod at its mid point. If the particle is brought to rest after the impact. Then
the impulsive reaction at A in horizontal direction is

(a) mv/4 (b) mv/2

(c) mv (d) 2 mv

36. A child with mass m is standing at the edge of a merry go round having moment
of inertia I , radius R and initial angular velocity ω as shown in the figure. The
child jumps off the edge of the merry go round with tangential velocity v with
respect to the ground. The new angular velocity of the merry go round is

(a)
I mv

I

ω2 2−
(b)

( )I mR mv

I

+ −2 2 2ω

(c)
I mvR

I

ω −
(d)

( )I mR mvR

I

+ −2 ω

37. A disc of radius R is spun to an angular speed ω0 about its axis and then

imparted a horizontal velocity of magnitude
ω0

4

R
. The coefficient of

friction is µ. The sense of rotation and direction of linear velocity are
shown in the figure. The disc will return to its initial position

(a) if the value of µ < 0.5

(b) irrespective of the value of µ
(c) if the value of 0.5 < µ < 1

(d) if µ > 1

38. A racing car is travelling along a straight track at a constant velocity of
40 m/s. A fixed TV camera is recording the event as shown in figure. In
order to keep the car in view, in the position shown, the angular velocity of
camera should be

(a) 3 rad/s (b) 2 rad/s

(c) 4 rad/s (d) 1 rad/s

39. A uniform rod OA of length l, resting on smooth surface is slightly
distributed from its vertical position. P is a point on the rod whose locus is a
circle during the subsequent motion of the rod. Then the distanceOP is equal to

(a) l/2

(b) l/3

(c) l/4

(d) there is no such point

40. In the above question, the velocity of end O when end A hits the ground is

(a) zero

(b) along the horizontal

(c) along the vertical

(d) at some inclination to the ground ( )≠ °90

41. In the above question, the velocity of end A at the instant it hits the ground is

(a) 3gl (b) 12gl

(c) 6gl (d) None of these
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42. A solid sphere of mass m and radius R is gently placed on a conveyer belt moving with constant
velocity v0. If coefficient of friction between belt and sphere is 2/7, the distance traveled by the
centre of the sphere before it starts pure rolling is

(a)
v

g

0
2

7
(b)

2

49

0
2v

g

(c)
2

5

0
2v

g
(d)

2

7

0
2v

g

More than One Correct Options

1. A mass m of radius r is rolling horizontally without any slip with a linear speed v. It then rolls

up to a height given by
3

4

2v

g

(a) the body is identified to be a disc or a solid cylinder

(b) the body is a solid sphere

(c) moment of inertia of the body about instantaneous axis of rotation is
3

2

2mr

(d) moment of inertia of the body about instantaneous axis of rotation is
7

5

2mr

2. Four identical rods each of mass m and length l are joined to form a rigid square frame. The
frame lies in the xy plane, with its centre at the origin and the sides parallel to the x and y axes.
Its moment of inertia about

(a) the x-axis is
2

3

2ml

(b) the z-axis is
4

3

2ml

(c) an axis parallel to the z-axis and passing through a corner is
10

3

2ml

(d) one side is
5

3

2ml

3. A uniform circular ring rolls without slipping on a horizontal surface. At
any instant, its position is as shown in the figure. Then

(a) section ABC has greater kinetic energy than section ADC

(b) section BC has greater kinetic energy than section CD

(c) section BC has the same kinetic energy as section DA

(d) the sections CD and DA have the same kinetic energy

4. A cylinder of radius R is to roll without slipping between two planks as

shown in the figure. Then

(a) angular velocity of the cylinder is
v

R
counter clockwise

(b) angular velocity of the cylinder is
2v

R
clockwise

(c) velocity of centre of mass of the cylinder is v towards left

(d) velocity of centre of mass of the cylinder is 2v towards right
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5. A uniform rod of mass m = 2 kg and length l = 0.5 m is sliding along
two mutually perpendicular smooth walls with the two ends P Qand
having velocities vP = 4 m/ s and vQ = 3 m/ s as shown. Then

(a) The angular velocity of rod, ω =10 rad/s, counter clockwise

(b) The angular velocity of rod, ω =5.0 rad/s, counter clockwise

(c) The velocity of centre of mass of rod, vcm 2.5 m/s=

(d) The total kinetic energy of rod, K = 25

3
joule

6. A wheel is rolling without slipping on a horizontal plane with velocity v and

acceleration a of centre of mass as shown in figure. Acceleration at

(a) A is vertically upwards

(b) B may be vertically downwards

(c) C cannot be horizontal

(d) a point on the rim may be horizontal leftwards

7. A uniform rod of length l and mass 2 m rests on a smooth horizontal table. A point mass m
moving horizontally at right angles to the rod with velocity v collides with one end of the rod and
sticks it. Then

(a) angular velocity of the system after collision is
2

5

v

l

(b) angular velocity of the system after collision is
v

l2

(c) the loss in kinetic energy of the system as a whole as a result of the collision is
3

10

2mv

(d) the loss in kinetic energy of the system as a whole as a result of the collision is
7

24

2mv

8. A non-uniform ball of radius R and radius of gyration about geometric centre = R/ ,2 is kept on a
frictionless surface. The geometric centre coincides with the centre of mass. The ball is struck
horizontally with a sharp impulse = J . The point of application of the impulse is at a height h
above the surface. Then

(a) the ball with slip on surface for all cases

(b) the ball will roll purely if h R= 5 4/

(c) the ball will roll purely if h R= 3 2/

(d) there will be no rotation if h R=

9. A hollow spherical ball is given an initial push, up an incline of inclination angle α. The ball
rolls purely. Coefficient of static friction between ball and incline = µ. During its upwards
journey

(a) friction acts up along the incline (b) µ α)min ( tan /= 2 5

(c) friction acts down along the incline (d) µ αmin ( tan )/= 2 7

10. A uniform disc of mass m and radius R rotates about a fixed vertical axis passing through its
centre with angular velocity ω.A particle of same mass m and having velocity of 2ωR towards
centre of the disc collides with the disc moving horizontally and sticks to its rim. Then,

(a) the angular velocity of the disc will become ω/3

(b) the angular velocity of the disc will become 5 3ω/

(c) the impulse on the particle due to disc is
37

3
m Rω

(d) the impulse on the particle due to disc is 2m Rω
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11. The end Bof the rod ABwhich makes angle θwith the floor is being pulled
with a constant velocity v0 as shown. The length of the rod is l.

(a) At θ = °37 velocity of end A is
4

3
0v downwards

(b) At θ = °37 angular velocity of rod is
5

3

0v

l

(c) Angular velocity of rod is constant

(d) Velocity of end A is constant

Comprehension Based Questions
Passage 1 (Q. Nos. 1 to 4)

A uniform rod of mass m and length l is pivoted at point O. The rod is
initially in vertical position and touching a block of mass M which is
at rest on a horizontal surface. The rod is given a slight jerk and it
starts rotating about point O. This causes the block to move forward
as shown. The rod loses contact with the block at θ = °30 . All surfaces
are smooth. Now answer the following questions.

1. The value of ratio M/m is

(a) 2 : 3 (b) 3 : 2 (c) 4 : 3 (d) 3 : 4

2. The velocity of block when the rod loses contact with the block is

(a)
3

4

gl
(b)

5

4

gl
(c)

6

4

gl
(d)

7

4

gl

3. The acceleration of centre of mass of rod, when it loses contact with the block is

(a) 5 4g/ (b) 5 2g/ (c) 3 2g/ (d) 3 4g/

4. The hinge reaction at O on the rod when it loses contact with the block  is

(a)
3

4

mg
($ $)i j+ (b)

mg

4







$j (c)
mg

4







$
i (d)

mg

4
($ $)i j+

Passage 2 (Q. Nos. 5 to 7)

Consider a uniform disc of mass m, radius r, rolling without slipping
on a rough surface with linear acceleration ‘a’ and angular
acceleration α due to an external force F as shown in the figure.
Coefficient of friction is µ

5. The work done by the frictional force at the instant of pure rolling is

(a)
µmgat2

2
(b) µmgat2 (c) µ

α
mg

at2

(d) zero

6. The magnitude of frictional force acting on the disc is

(a) ma (b) µmg (c)
ma

2
(d) zero

7. Angular momentum of the disc will be conserved about

(a) centre of mass

(b) point of contact

(c) a point at a distance 3 2R/ vertically above the point of contact

(d) a point at a distance 4 3R/ vertically above the point of contact
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Passage 3 (Q. No. 8 to 10)

A tennis ball, starting from rest, rolls down the hill in the drawing. At the end of the hill the ball
becomes airborne, leaving at an angle of 37° with respect to the ground. Treat the ball as a
thin-walled spherical shell.

8. The velocity of projection v is

(a) 2gh (b)
10

7
gh (c)

5

7
gh (d)

6

5
gh

9. Maximum height reached by ball H above ground is

(a)
9

35

h
(b)

18

35

h
(c)

18

25

h
(d)

27

125

h

10. Range x of the ball is

(a)
144

125
h (b)

48

25
h (c)

48

35
h (d)

24

7
h

Match the Columns
1. A solid sphere, a hollow sphere and a disc of same mass and same radius are released from a

rough inclined plane. All of them rolls down without slipping. On reaching the bottom of the

plane, match the two columns.

Column I Column II

(a) time taken to reach the bottom (p) maximum for solid sphere

(b) total kinetic energy (q) maximum for hollow sphere

(c) rotational kinetic energy (r) maximum for disc

(d) translational kinetic energy (s) same for all

2. A solid sphere is placed on a rough ground as shown. E is the centre of sphere and DE EF> . We
have to apply a linear impulse either at point A B, or C. Match the following two columns.

Column I Column II

(a) Sphere will acquire maximum angular

speed it impulse is applied at

(p) A

(b) Sphere will acquire maximum linear

speed it impulse is applied at

(q) B

(c) Sphere can roll without slipping if

impulse is applied at

(r) C

(d) Sphere can roll with forward slipping if

impulse is applied at

(s) at any point A, B or C
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3. The inclined surfaces shown in Column I are sufficiently rough. In Column II direction and
magnitudes of frictional forces are mentioned. Match the two columns.

Column I Column II

(a)

Rolling upwards

(p) upwards

(b)

Kept in rotating position

(q) downwards

(c)

Kept in translational

position

(r) maximum friction will act

(d)

Kept in translational

position

(s) required value of friction will

act

4. A rectangular slab ABCD have dimensions a a× 2 as shown in figure. Match the following two
columns.

Column I Column II

(a) Radius of gyration about axis-1 (p)
a

12

(b) Radius of gyration about axis-2 (q)
2

3

a

(c) Radius of gyration about axis-3 (r)
a

3

(d) Radius of gyration about axis-4 (s) None
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5. A small solid ball rolls down along sufficiently rough surface from 1 to 3 as shown in figure.
From point-3 onwards it moves under gravity. Match the following two columns.

Column I Column II

(a) Rotational kinetic energy of ball at point-2 (p)
1

7
mgh

(b) Translational kinetic energy of ball at point-3 (q)
2

7
mgh

(c) Rotational kinetic energy of ball at point-4 (r)
5

7
mgh

(d) Translational kinetic energy of ball at point-4 (s) None

6. A uniform disc of mass 10 kg, radius 1 m is placed on a rough horizontal surface. The coefficient

of friction between the disc and the surface is 0.2. A horizontal time varying force is applied on

the centre of the disc whose variation with time is shown in graph.

Column I Column II

(a) Disc rolls without slipping (p) at t = 7 s

(b) Disc rolls with slipping (q) at t = 3 s

(c) Disc starts slipping at (r) at t = 4 s

(d) Friction force is 10 N at (s) None

7. Match the columns.

Column I Column II

(a) Moment of inertia of a circular disc of mass M and

radius R about a tangent parallel to plane of disc
(p)

MR2

2

(b) Moment of inertia of a solid sphere of mass M and

radius R about a tangent
(q)

7

5

2MR

(c) Moment of inertia of a circular disc of mass M and

radius Rabout a tangent perpendicular to plane of disc
(r)

5

4

2MR

(d) Moment of inertia of a cylinder of mass M and radius R about its

axis
(s)

3

2

2MR
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Subjective Questions

1. Figure shows three identical yo-yos initially at rest on a horizontal surface. For each yo-yo the
string is pulled in the direction shown. In each case there is sufficient friction for the yo-yo to
roll without slipping. Draw the free-body diagram for each yo-yo. In what direction will each
yo-yo rotate ?

2. A uniform rod of mass m and length l is held horizontally by two vertical
strings of negligible mass, as shown in the figure.

(a) Immediately after the right string is cut, what is the linear acceleration

of the free end of the rod ?

(b) Of the middle of the rod ?

(c) Determine the tension in the left string immediately after the right

string is cut.

3. A solid disk is rolling without slipping on a level surface at a constant speed of 2.00 m/s. How far

can it roll up a 30° ramp before it stops? (Take g = 9.8 m/ s2)

4. A lawn roller in the form of a thin-walled hollow cylinder of mass M is pulled horizontally with a
constant horizontal force F applied by a handle attached to the axle. If it rolls without slipping,
find the acceleration and the friction force.

5. Due to slipping, points A and B on the rim of the disk have the velocities shown. Determine the
velocities of the centre point C and point F at this instant.

6. A uniform cylinder of mass M and radius R has a string wrapped around it. The string is held

fixed and the cylinder falls vertically, as in figure.

(a) Show that the acceleration of the cylinder is downward with magnitude a
g= 2

3
.

(b) Find the tension in the string.
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7. A uniform disc of mass M and radius R is pivoted about the horizontal axis through its centre C.
A point mass m is glued to the disc at its rim, as shown in figure. If the system is released from
rest, find the angular velocity of the disc when m reaches the bottom point B.

8. A disc of radius R and mass m is projected on to a horizontal floor with a backward spin such
that its centre of mass speed is v0 and angular velocity is ω0. What must be the minimum value
of ω0 so that the disc eventually returns back ?

9. A ball of mass m and radius r rolls along a circular path of radius R. Its speed at the bottom
( )θ = °0 of the path is v0. Find the force of the path on the ball as a function of θ.

10. A heavy homogeneous cylinder has mass m and radius R. It is
accelerated by a force F, which is applied through a rope wound around
a light drum of radius r attached to the cylinder (figure). The coefficient
of static friction is sufficient for the cylinder to roll without slipping.

(a) Find the friction force.

(b) Find the acceleration a of the centre of the cylinder.

(c) Is it possible to choose r, so that a is greater than
F

m
? How ?

(d) What is the direction of the friction force in the circumstances of part (c) ?

11. A man pushes a cylinder of mass m1 with the help of a plank of mass m2 as
shown. There is no slipping at any contact. The horizontal component of the
force applied by the man is F. Find :

(a) the acceleration of the plank and the centre of mass of the cylinder and

(b) the magnitudes and directions of frictional forces at contact points.

12. For the system shown in figure, M = 1 kg, m = 0.2 kg, r = 0.2 m.

Calculate: (g = 10 m/s2)

(a) the linear acceleration of hoop,

(b) the angular acceleration of the hoop of mass M and

(c) the tension in the rope.

Note Treat hoop as the ring. Assume no slipping between string and hoop.

13. A cylinder of mass m is kept on the edge of a plank of mass 2m and

length 12 m, which in turn is kept on smooth ground. Coefficient of

friction between the plank and the cylinder is 0.1. The cylinder is

given an impulse, which imparts it a velocity 7 m/s but no angular

velocity. Find the time after which the cylinder falls off the plank.

( )g = 10 2m/ s
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14. The 9 kg cradle is supported as shown by two uniform disks that roll
without sliding at all surfaces of contact. The mass of each disk is
m = 6 kg and the radius of each disk is r = 80 mm. Knowing that the
system is initially at rest, determine the velocity of the cradle after it
has moved 250 mm.

15. The disc of the radius r is confined to roll without slipping at A and B. If the plates have the

velocities shown, determine the angular velocity of the disc.

16. A thin uniform rod AB of mass m = 1kg moves transnationally with acceleration a = 2 2m/ s due

to two antiparallel forces F1 and F2. The distance between the points at which these forces are

applied is equal to l = 20 cm. Besides, it is known that F2 5= N. Find the length of the rod.

17. The assembly of two discs as shown in figure is placed on a rough horizontal surface and the
front disc is given an initial angular velocityω0. Determine the final linear and angular velocity
when both the discs start rolling. It is given that friction is sufficient to sustain rolling in the
rear wheel from the starting of motion.

18. A horizontal plank having mass m lies on a smooth horizontal surface.
A sphere of same mass and radius r is spined to an angular frequencyω0

and gently placed on the plank as shown in the figure. If coefficient of
friction between the plank and the sphere is µ. Find the distance moved
by the plank till the sphere starts pure rolling on the plank. The plank
is long enough.

19. A ball rolls without sliding over a rough horizontal floor with velocity v0 7= m/s towards a
smooth vertical wall. If coefficient of restitution between the wall and the ball is e = 0.7.
Calculate velocity v of the ball long after the collision.

20. A uniform rod of mass m and length l rests on a smooth horizontal surface. One of the ends of
the rod is struck in a horizontal direction at right angles to the rod. As a result the rod obtains
velocity v0. Find the force with which one-half of the rod will act on the other in the process of
motion.
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21. A sphere, a disk and a hoop made of homogeneous materials have the same radius (10 cm) and
mass (3 kg). They are released from rest at the top of a 30° incline and roll down without

slipping through a vertical distance of 2 m. (g = 9.8 m/s2)

(a) What are their speeds at the bottom ?

(b) Find the frictional force f in each case

(c) If they start together at t = 0, at what time does each reach the bottom ?

22. ABC is a triangular framework of three uniform rods each of mass m and length 2l. It is free to
rotate in its own plane about a smooth horizontal axis through A which is perpendicular to
ABC. If it is released from rest when AB is horizontal and C is above AB. Find the maximum
velocity of C in the subsequent motion.

23. A uniform stick of length L and mass M hinged at one end is released from rest at an angle θ0

with the vertical. Show that when the angle with the vertical is θ, the hinge exerts a force Fr

along the stick and Ft perpendicular to the stick given by F Mgr = −1

2
5 3 0( cos cos )θ θ and

F Mgt = 1

4
sin θ

24. A uniform rod AB of mass 3m and length 4l, which is free to turn in a vertical plane about a
smooth horizontal axis through A, is released from rest when horizontal. When the rod first
becomes vertical, a point C of the rod, where AC l= 3 , strikes a fixed peg. Find the linear
impulse exerted by the peg on the rod if

(a) the rod is brought to rest by the peg,

(b) the rod rebounds and next comes to instantaneous rest inclined to the downward vertical at an

angle
π
3

radian.

25. A uniform rod of length 4l and mass m is free to rotate about a horizontal axis passing through a

point distant l from its one end. When the rod is horizontal, its angular velocity isω as shown in

figure. Calculate :

(a) reaction of axis at this instant,

(b) acceleration of centre of mass of the rod at this instant,

(c) reaction of axis and acceleration of centre mass of the rod when rod becomes vertical for the

first time,

(d) minimum value of ω , so that centre of rod can complete circular motion.

26. A stick of length l lies on horizontal table. It has a mass M and is free to move in any way on the
table. A ball of mass m, moving perpendicularly to the stick at a distance d from its centre with
speed v collides elastically with it as shown in figure. What quantities are conserved in the
collision ? What must be the mass of the ball, so that it remains at rest immediately after
collision?
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27. A rod of length l forming an angle θ with the horizontal strikes a frictionless floor at A with its
centre of mass velocity v0 and no angular velocity. Assuming that the impact at A is perfectly
elastic. Find the angular velocity of the rod immediately after the impact.

28. Three particles A, B and C, each of mass m, are connected to each other by three massless rigid
rods to form a rigid, equilateral triangular body of side l. This body is placed on a horizontal
frictionless table (x-y plane) and is hinged to it at the point A, so that it can move without
friction about the vertical axis through A (see figure). The body is set into rotational motion on
the table about A with a constant angular velocity ω.

(a) Find the magnitude of the horizontal force exerted by the hinge on the body.

(b) At time T, when the side BC is parallel to the x-axis, a force F is applied on B along BC

(as shown). Obtain the x-component and the y-component of the force exerted by the hinge on

the body, immediately after time T.

29. A semicircular track of radius R = 62.5 cm is cut in a block. Mass of block, having track, is

M = 1 kg and rests over a smooth horizontal floor. A cylinder of radius r = 10 cm and mass

m = 0.5 kg is hanging by thread such that axes of cylinder and track are in same level and

surface of cylinder is in contact with the track as shown in figure. When the thread is burnt,

cylinder starts to move down the track. Sufficient friction exists between surface of cylinder

and track, so that cylinder does not slip.

Calculate velocity of axis of cylinder and velocity of the block when it reaches bottom of the

track. Also find force applied by block on the floor at that moment. ( )g = 10 m/ s2

30. A uniform circular cylinder of mass m and radius r is given an initial angular velocityω0 and no
initial translational velocity. It is placed in contact with a plane inclined at an angle α to the
horizontal. If there is a coefficient of friction µ for sliding between the cylinder and plane. Find
the distance the cylinder moves up before sliding stops. Also, calculate the maximum distance it
travels up the plane. Assume µ α> tan .
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31. Show that if a rod held at angle θ to the horizontal and released, its lower end will not slip if the

friction coefficient between rod and ground is greater than
3

1 3 2

sin cos

sin

θ θ
θ+

.

32. One-fourth length of a uniform rod of mass m and length l is placed on a rough horizontal
surface and it is held stationary in horizontal position by means of a light thread as shown in
the figure. The thread is then burnt and the rod starts rotating about the edge. Find the angle
between the rod and the horizontal when it is about to slide on the edge. The coefficient of
friction between the rod and the surface is µ.

33. In figure the cylinder of mass 10 kg and radius 10 cm has a tape wrapped round it. The pulley
weighs 100 N and has a radius 5 cm. When the system is released, the 5 kg mass comes down
and the cylinder rolls without slipping. Calculate the acceleration and velocity of the mass as a
function of time.

34. A cylinder is sandwiched between two planks. Two constant horizontal forces F and 2F are
applied on the planks as shown. Determine the acceleration of the centre of mass of cylinder
and the top plank, if there is no slipping at the top and bottom of cylinder.

35. A ring of mass m and radius r has a particle of mass m attached to it at a point A. The ring can
rotate about a smooth horizontal axis which is tangential to the ring at a point B diametrically
opposite to A. The ring is released from rest when AB is horizontal. Find the angular velocity

and the angular acceleration of the body when AB has turned through an angle
π
3

.
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36. A hoop is placed on the rough surface such that it has an angular velocity ω = 4 rad/s and an

angular deceleration α = 5 rad/s2.Also, its centre has a velocity of v0 5= m/s and a deceleration

a0
22= m/ s . Determine the magnitude of acceleration of point B at this instant.

37. A boy of mass m runs on ice with velocity v0 and steps on the end of a plank of length l and mass
M which is perpendicular to his path.

(a) Describe quantitatively the motion of the system after the boy is on the plank. Neglect friction

with the ice.

(b) One point on the plank is at rest immediately after the collision. Where is it?

38. A thin plank of mass M and length l is pivoted at one end. The plank is released at 60° from the
vertical. What is the magnitude and direction of the force on the pivot when the plank is
horizontal?
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Answers
Introductory Exercise 12.1

1.
2

3
l 2. 55 kg-m

2 3.
5

3

2ml

4. About a diagonal, because the mass is more concentrated about a diagonal

5. (i)
8

5
2

2 2mr ma+ (ii)
8

5

2 2mr ma+ 6. (a) 2
2Ml (b)

1

3

2Ml

7. 0.5 kg m
2- 8. The one having the smaller density 9. 0.43 kg m- 2 10.

π2

3

Introductory Exercise 12.2

1.
π

30
rad s

−1 2. ω = v

R2
3. (

$
)−k rad s

−1 4.
v

l
, perpendicular to paper inwards

Introductory Exercise 12.3

1. (
$ $

)− −2 2i k N-m 2. 400 N-m (perpendicular to the plane of motion) 3. 2.71 N-m 4.
83

20
N-m

Introductory Exercise 12.4
1. 8

2π rad- s
−

, ( )40
1π rad- s

− 2. 100 rad 3. 5 N-m 4. 800 rad 5. 0.87 N

6. (a) 4 rad-s
−1

, −6 rad-s
−2

(b) −12 rad-s
−2 7. 20 s 8. (a) 0.01 N-m (b) 10.13 N-m 9. (a) 36 s (b) 12

2

k

10. (a) 12.5 rad (b) 127.5 rad 11. 9 rad, 1.43

Introductory Exercise 12.5

1. ml2ω 2. 4 2
1

kg- m s
2 − 3.

mu

g

3 2

2

cos sinα α
4. No 5. −





7

5
mRv $k 6.

1

2
mRv (clockwise)

Introductory Exercise 12.6

1.
ω0

2

M

M m+
2. Duration of day night will increase 3. True 4. Increase

Introductory Exercise 12.7

1. v iM v= 3

2

$
, v i jN v

v= −$ $

2
, v iR

v=
2

$
, v i jS v

v= +$ $

2

2. a jM R= ( )
$ω2
, a iN R= ( )

$ω2
, a jR R= − ( )

$ω2
, a iS R= − ( )

$ω2

Introductory Exercise 12.8
1. 25 J,  35 J 2. True 3. True

Introductory Exercise 12.9
1. vA is zero. Rest three velocities are : | |vC v= 2 ,| | | |v vB D v= = 2

Introductory Exercise 12.10

1. False 2. 72 N 3. (a)
2

7 3
(b)

25

7

2
ms

−
(c)

30

7

2
ms

− 4. (a) g gsin cosθ µ θ− (b)
5

2

µ θg

R

cos
5. Leftwards

Introductory Exercise 12.11
1. False 2. (a) Same in both cases (b) Solid sphere (c) Solid sphere



Exercises

LEVEL 1

Assertion and Reason

1. (d) 2. (b) 3. (d) 4. (a) 5. (a) 6. (a) 7. (c) 8. (b) 9. (b) 10. (a)

11. (c)

Objective Questions

1. (d) 2. (a) 3. (c) 4. (d) 5. (b) 6. (a) 7. (c) 8. (b) 9. (b) 10. (b)

11. (d) 12. (a) 13. (b) 14. (b) 15. (b) 16. (d) 17. (a) 18. (b) 19. (b) 20. (d)

21. (c) 22. (d) 23. (b) 24. (a) 25. (a) 26. (d) 27. (c) 28. (b) 29. (a) 30. (d)

Subjective Questions

1. 6h 2.
R

2
3.

Ma2

12
4.

l

2
5. I r= µ 2

, where µ =
+

mm

m m
1 2

1 2

is called the reduced mass of two masses.

6. 8 cm 7. 07
2

. ms
− 8. 10 rad s- −1 9.

mv

g

3 2

2

sin cosθ θ
10. I = +








α βl l4 3

4 3
11. False

12.
2

7
mgh 13.

v v

R

1 2

2

−
14.

2

3

2Ma 15. 7 s 16. ± 





−
cos

1 v

Rω
17.

I

I

+
−

2

4

2

2

Mr

Mr

18. lim

F → 0

can make the body move 19. (a) µ < 1 (b) µ > 1

20.
20

3
N-m, 4 s 21. (a)

3

4

0ω
µ

R

g
(b)

3

8

0

2ω
µ

R

g

22. ωav = 4 rad/s, α av 6.0 rad s= − −2- 23. −





10

3
mRv $k 24.

25

6
rad s- −1 25. 7.29 10 kg m

4 2× − -

26. (a) 14.3 rad s
1- − = 2.27 rev s

1- −
(b) E i = 39.9 J, E f = 181 J (c) 141.1 J

27. (a) ω ω= +





1
2

0

m

M
(b)

1

2
1

2
0

2 2m R
m

M
ω +





28.
4

3 8

3

3 8 3 8

F

M m

MF

M m

MF

M m

cos
,

cos
,

cosθ θ θ
+ + +

29.
F

M m+ 3
each in opposite directions 30.

4

3
mlω 31. (a)

2

9

v

L
(b)

1

9

32. (a)
2

3

u
(b)

2

3

u

LEVEL 2

Objective Questions

1. (d) 2. (b) 3. (b) 4. (d) 5. (c) 6. (a) 7. (a) 8. (b) 9. (c) 10. (c)

11. (b) 12. (c) 13. (b) 14. (b) 15. (d) 16. (a) 17. (b) 18. (b) 19. (d) 20. (b)

21. (c) 22. (b) 23. (c) 24. (d) 25. (c) 26. (a) 27. (b) 28. (d) 29. (a) 30. (c)

31. (b) 32. (b) 33. (c) 34. (d) 35. (a) 36. (d) 37. (b) 38. (d) 39. (c) 40. (a)

41. (a) 42. (a)

More than One Correct Options

1. (a,c) 2. (all) 3. (a,b,d) 4. (a,d) 5. (a,c,d) 6. (all) 7. (a,c)

8. (b,d) 9. (a,b) 10. (a,c) 11. (a,b)



Comprehension Based Questions

1. (c) 2. (a) 3. (d) 4. (b) 5. (d) 6. (c) 7. (c) 8. (d) 9. (d) 10. (a)

Match the Columns
1. (a) → q (b) → s (c) → q (d) → p

2. (a) → p (b) → s (c) → p (d) → r

3. (a) → p,s (b) → p,r (c) → q,r (d) → p,r

4. (a) → q (b) → r (c) → r (d) → p

5. (a) → q (b) → s (c) → p (d) → s

6. (a) → q,r (b) → p (c) → s (d) → q

7. (a) → r (b) → q (c) → s (d) → p

Subjective Questions

1. In each case in clockwise direction 2. (a) 3g/2, (b) 3g/4 (c) mg/4 3. 0.612 m 4.
F

M

F

2 2
,

5. 0.75 ms
−1

, 1.98 ms
−1 6. (b)

1

3
Mg 7.

4

2

mg

m M R( )+
8.

2 0v

R

9. f mg= 2

7
sin ,θ N

mg mv

R r
= − +

−7
17 10 0

2

( cos )
( )

θ

10. (a) f
r

R
F= −





2

3

1

2
, assuming f opposite to F (b) a

F

mR
R r= 





+2

3
( ) (c) yes, if r is greater than

1

2
R.

(d) f in same direction as F. 11. (a)
8

3 81 2

F

m m+
,

4

3 81 2

F

m m+

(b)
3

3 8

1

1 2

m F

m m+
(between plank and cylinder)

m F

m m

1

1 23 8+
(between cylinder and ground)

12. (a) 1.43 ms
−2

(b) 7.15 rad-s−2
(c) 1.43 N 13. 2.25 s 14. 0.745 ms

−1
(rightwards)

15.
3

2

v

r
(anticlockwise) 16. 1 m 17.

ω ω0 0

6 6

R
; 18. S

r

g
= 2

81

0

2 2ω
µ

19. v = 1.5 ms
−1 20.

9

2

0

2mv

l

21. (a) Sphere, 5.29 ms
1−
, disk 5.11 ms

1−
, hoop 4.43 ms

1−

(b) Sphere 4.2 N, disk 4.9 N, hoop 7.36 N (c) Sphere, 1.51 s disk 1.56 s hoop 1.81 s

22. 2
3

l
l

g
24. (a)

8

3
3m g





l , (b)
4

3
6m gl ( )2 1+

25. (a)
4

7
1

7

4

2
2

mg
g

+ 







lω
(b)

3

7

2

2 2g





+ ( )lω (c)
13

7

6

7

2 2mg m
g+





+





l lω ω, (d)
6

7

g

l

26. Linear momentum, angular momentum and kinetic energy,
M

d

l

l

2

2 2
12 +

27. ω
θ

θ
=

+









6

1 3

0

2

v

l

cos

cos

28. (a) 3
2mlω (b) F

F
x = – ,

4
F my = 3

2lω 29. 2.0 ms
−1

, 1.5 ms
−1

, 16.67 N

30. d
r

g
1

2

0

2

2
2 3

=
−

−
ω µ α α

µ α α
( cos sin )

( cos sin )
, d

r

g
max

( cos sin )

sin ( cos sin )
=

−
−

2

0

2

4 3

ω µ α α
α µ α α

32. θ µ= 





−
tan

1 4

13
33. 3.6 ms

−2
,

4

11

gt
34.

F

M26
,

21

26

F

M
35.

6 3

11

g

r
,

3

11

g

r
36. 6.21 ms

−2

37. (b)
2

3

l
from the boy 38.

10

4
Mg, α = 





−
tan

1 1

3
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13.1 Introduction
Why are planets, moon and the sun all nearly spherical? Why do some earth satellites circle the earth

in 90 minutes, while the moon takes 27 days for the trip? And why don’t satellites fall back to earth?

The study of gravitation provides the answers for these and many related questions.

Gravitation is one of the four classes of interactions found in nature. These are :

(i) the gravitational force

(ii) the electromagnetic force

(iii) the strong nuclear force (also called the hadronic forces)

(iv) the weak nuclear forces.

Although, of negligible importance in the interactions of elementary particles, gravity is of primary

importance in the interactions of large objects. It is gravity that holds the universe together.

In this chapter, we will learn the basic laws that govern gravitational interactions.

13.2 Newton's Law of Gravitation
Along with his three laws of motion, Newton published the law of gravitation in 1687. According to

him; “every particle of matter in the universe attracts every other particle with a force that is directly

proportional to the product of the masses of the particles and inversely proportional to the square of

the distance between them.”

Thus, the magnitude of the gravitational force F between two particles m1 and m2 placed at a distance

r is,

F
m m

r
∝ 1 2

2
or F G

m m

r
= 1 2

2

Here, G is a universal constant called gravitational constant whose magnitude is,

G = ×6.67 10–11 N-m 2/kg 2

The direction of the force F is along the line joining the two particles.

Following three points are important regarding the gravitational force :

(i) Unlike the electrostatic force, it is independent of the medium between the particles.

(ii) It is conservative in nature.

(iii) It expresses the force between two point masses (of negligible volume). However, for external

points of spherical bodies the whole mass can be assumed to be concentrated at its centre of mass.

Gravity
In Newton’s law of gravitation, gravitation is the force of attraction between any two bodies. If one of

the bodies is earth then the gravitation is called ‘gravity’. Hence, gravity is the force by which earth

attracts a body towards its centre. It is a special case of gravitation.
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� Direct formula F
Gm m

r
= 1 2

2
can be applied under following three conditions:

(a) To find force between two point masses

(b) To find force between two spherical bodies

(c) To find force between a spherical body and a point mass.

� To find force between a point mass and a rod single integration is required. In this case, we cannot

assume whole mass of the rod at its centre to find force between them. Thus,

F
GMm

r
≠

2

� To find force between two rods double integration is required but normally, double integration is not asked
in physics paper.

� Two or more than two gravitational forces acting on a body can be added by vector addition method.

V Example 13.1 Three point masses ‘m’ each are placed at the three vertices of
an equilateral triangle of side ‘a’. Find net gravitational force on any one point
mass.
Solution We are finding net force on the point mass kept at O.

F
G m m

a

Gm

a
= =( ) ( )

2

2

2

Since,  the two forces are equal in magnitudes, therefore the

resultant force will pass through the centre as shown in figure.

F F F F Fnet = + + °2 2 2 60( ) ( )cos

= 3 F

= 3 2

2

Gm

a
Ans.
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m1 m2

r

Fig. 13.1

m2m1

r

Fig. 13.2

m2m1

r

Fig. 13.3

r
c

mM L,

Fig. 13.4

M L1 1, M L2 2,

Fig. 13.5

30°

30°

F

F

O
m

Fnet

m

m

Fig. 13.6

Extra Points to Remember



V Example 13.2 Four particles each of mass ‘m’ are placed at the four vertices
of a square of side ‘a’. Find net force on any one of the particle.

Solution. We are finding net force on the particle at D.

F F
G m m

a

Gm

a
FDC DA= = = =( ) ( )

2

2

2
(say)

F
G m m

a

Gm

a

F
DB = = =( ) ( )

( )2

1

2 22

2

2

Now, resultant of FDA and FDC is 2 F in the direction of DB.

∴ F F
F

Fnet = + = +





2
2

2
1

2

= +





2
1

2

2

2

Gm

a
(towards DB) Ans.

V Example 13.3 Six particles each of mass ‘m’ are placed at six vertices A, B, C,
D, E and F of a regular hexagon of side ‘a’. A seventh particle of mass ‘M’ is
kept at centre ‘O’ of the hexagon.

(a) Find net force on ‘M’.

(b) Find net force on ‘M’ if particle at A is removed.

(c) Find net force on ‘M’ if particles at A and C are removed.

Solution (a) F F F F F F
GmM

a
FA B C D E F= = = = = = =

2
(say)

So, net force will be zero, as three pairs of equal and opposite forces are acting on ‘M’ at O.

(b) When particle at A is removed then FA is removed. So, there is no force to cancel FD .

∴ F F
GMm

a
Dnet = =

2
(towards D) Ans.

(c) When particles at A and C are removed then, FA and FC are removed. FB and FE are still

cancelled. So, net force is the resultant of two forces FD and FF of equal magnitudes acting

at 120°. So, the resultant will pass through the centre or towards E. Magnitude of this

resultant is

F F F F Fnet = + + °2 2 2 120( ) ( )cos

= F = GMm

a2
(towards E) Ans.
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V Example 13.4 Five particles each of mass ‘m’ are kept at five vertices of a
regular pentagon. A sixth particle of mass ‘M’ is kept at centre of the pentagon
‘O’. Distance between ‘M’ and ‘m’ is ‘a’. Find

(a) net force on ‘M’

(b) magnitude of net force on ‘M’ if any one particle is removed from one of the

vertices.

Solution (a) F F F F F
GMm

a
FA B C D E= = = = = =

2
(say)

Angle between two successive force vectors is θ = ° = °360

5
72 .

When these five force vectors are added as per polygon law of vector

addition we get another closed regular polygon as shown below.

Therefore, net resultant force on ‘M’ is zero.

Note This result is true ( )Fnet =0 for any number of particles, provided masses at vertices are equal and polygon is

regular.

(b) When particle at A is removed, then FA will be removed. So, magnitude of net force will be

F as shown below:

∴ F F
GMm

a
net = =

2
Ans.

V Example 13.5 A mass m is at a distance a from one end of a uniform rod of
length l and mass M. Find the gravitational force on the mass due to the rod.
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Solution dF
G dM m

x
= ( )

2
=

⋅





G
M

l
dx m

x2

∴ F dF
GMm

a l ax a

x a l
= =

+=

= +
∫

( )

( )
Ans.

V Example 13.6 A uniform ring of mass m is lying at a distance 3 a from the

centre of a sphere of mass M just over the sphere (where a is the radius of the
ring as well as that of the sphere). Find the magnitude of gravitational force
between them.

Solution Net force on ring = °∫whole ring
dF sin 60

= ∫whole ring

GM dm

a

( )

( )2

3

22

= 3

8 2

GMm

a

as
whole ring∫ =dm m

1. Three uniform spheres each having a mass M and radius a are kept in such a way that each

touches the other two. Find the magnitude of the gravitational force on any one of the spheres

due to the other two.

2. Four particles having masses m, 2m, 3m and 4m are placed at the four corners of a square of

edge a. Find the gravitational force acting on a particle of mass m placed at the centre.

3. Two particles of masses 1.0 kg and 2.0 kg are placed at a separation of 50 cm. Assuming that

the only forces acting on the particles are their mutual gravitation, find the initial accelerations of

the two particles.

4. Three particles A, B and C, each of mass m, are placed in a line with AB BC d= = . Find the

gravitational force on a fourth particle P of same mass, placed at a distance d from the particle B

on the perpendicular bisector of the line AC.

5. Spheres of the same material and same radius r are touching each other. Show that

gravitational force between them is directly proportional to r4.

214 � Mechanics - II

dF 3a

a

60°

dm

dF
2a

M,a

Fig. 13.15

a

m

M

3a√

a

Fig. 13.14

INTRODUCTORY EXERCISE 13.1

dM

dx

x

m

Fig. 13.13



13.3 Acceleration due to Gravity
When a body is dropped from a certain height above the ground it begins to fall towards the earth

under gravity. The acceleration produced in the body due to gravity is called the acceleration due to

gravity. It is denoted by g . Its value close to the earth’s surface is 9.8 m/s 2 .

Suppose that the mass of the earth is M, its radius is R, then the force of attraction acting on a body of

mass m close to the surface of earth is

F
GMm

R
=

2

According to Newton’s second law, the acceleration due to gravity

g
F

m

GM

R
= =

2

This expression is independent of m. If two bodies of different masses are allowed to fall freely, they

will have the same acceleration, i.e. if they are allowed to fall from the same height, they will reach

the earth simultaneously.

Variation in the Value of g

The value of g varies from place to place on the surface of earth. It also varies as we go above or

below the surface of earth. Thus, value of g depends on following factors :

Shape of the Earth

The earth is not a perfect sphere. It is somewhat flat at the two poles. The equatorial radius is

approximately 21 km more than the polar radius and since

g
GM

R
=

2
or g

R
∝

1
2

The value of g is minimum at the equator and maximum at the poles.

Height above the Surface of the Earth

The force of gravity on an object of mass m at a height h above the surface of earth is,

F
GMm

R h
=

+( )2

∴ Acceleration due to gravity at this height will be,

g
F

m

GM

R h
′ = =

+( )2

This can also be written as, g
GM

R
h

R

′ =

+





2
2

1

or g
g

h

R

′ =

+





1

2
as

GM

R
g

2
=
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Thus, g g′ <
i.e. the value of acceleration due to gravity g goes on decreasing as we go above the surface of

earth. Further,

g g
h

R
′ = +





−

1

2

or g g
h

R
′ ≈ −





1
2

if h R< <

Depth below the Surface of the Earth

Let an object of mass m is situated at a depth d below the earth’s surface. Its

distance from the centre of earth is ( ).R d− This mass is situated at the surface of

the inner solid sphere and lies inside the outer spherical shell. According to

Gauss theorem (you will study in class XII) the gravitational force of attraction

on a mass inside a spherical shell is always zero. Therefore, the object

experiences gravitational attraction only due to inner solid sphere.

The mass of this sphere is,

M
M

R
R d′ = 





−
4 3

4

33

3

/
( )

π
π

or M
R d

R
M′ =

−( )
.

3

3

F
GM m

R d

GMm R d

R
=

′
−

=
−

( )

( )
2 3

and g
F

m
′ =

Substituting the values, we get g g
d

R
′ = −





1 i.e. g g′ <

Note We can see from this equation that g′ = 0 at d R= , i.e. acceleration due to gravity is zero at the centre of

the earth.

Thus, the variation in the value of g with r (the distance from the centre

of earth) is as shown in Fig. 13.18.

For r R≤ , g g
d

R

gr

R
′ = −





=1

as R d r− = or g r′ ∝

For r R≥ , g
g

d

R

′ =

+





1

2
=

gR

r

2

2

as R d r+ = or g
r

′ ∝
1
2
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Axial Rotation of the Earth

Let us consider a particle P at rest on the surface of the earth, at latitude φ. Then the pseudo force

acting on the particle is mrω2 in outward direction. The true acceleration g is acting towards the

centre O of the earth. Thus, the effective acceleration g ′ is the resultant of g and rω2 or

g g r g r′ = + + ° − φ2 2 2 22 180( ) ( ) cos ( )ω ω

as angle between g and rω2 is ( )180° − φ .

or g g r gr′ = + − φ2 2 4 22ω ω cos …(i)

Here, the term r 2 4ω comes out to be too small as ω
π π

= =
×

2 2

24 3600T
rad/s

is small. Hence, this term can be ignored. Also, r R= φcos . Therefore,

Eq. (i) can be written as

g g gR′ = − φ( cos ) /2 2 2 1 22 ω

= −
φ







g

R

g
1

2 2 2
1 2

ω cos
/

≈ −
φ







g

R

g
1

2 2ω cos

Thus, g g R′ = − φω2 2cos

Following conclusions can be drawn from the above discussion :

(i) The effective value of g is not truly vertical passing through the centre O.

(ii) The effect of centrifugal force due to rotation of earth is to reduce the effective value of g.

(iii) At equator φ = °0 .

Therefore, g g R′ = − ω2

and at poles φ = °90 ,

Therefore, g g′ =
Thus, at equator g ′ is minimum while at poles g ′ is maximum.

V Example 13.7 Assuming earth to be a sphere of uniform mass density, how
much would a body weigh half way down the centre of the earth, if it weighed
100 N on the surface?

Solution Given, mg = 100 N ⇒ g g
d

R
′ = −





1

d
R=
2

⇒ d

R
= 1

2

∴ g g
g′ = −





=1
1

2 2

∴ mg
mg′ = = =
2

100

2
50 N Ans.
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V Example 13.8 Suppose the earth increases its speed of rotation. At what new
time period will the weight of a body on the equator becomes zero? Take

g m s= 10 2/ and radius of earth R km= 6400 .

Solution The weight will become zero, when

g ′ = 0 or g R− =ω2 0 (on the equator g g R′ = − ω2 )

or ω = g

R

∴ 2π
T

g

R
= or T

R

g
= 2π

Substituting the values, T =

×
2

6400 10

10

3600

3

π
h

or T = 1.4 h Ans.

Thus, the new time period should be 1.4 h instead of 24 h for the weight of a body to be zero on

the equator.

V Example 13.9 Draw g ′ versus d and g ′ versus h graph. Here, ‘d’ is depth
below the surface of earth and h is the height from the surface of earth.

Solution On the surface of earth,

g g′ =
At depth ‘d’ below the surface of earth,

g g
d

R
′ = −





1

i.e. g ′ decreases linearly with depth.

At, d R= , g ′ = 0

At height h above the surface of earth.

g
g

h

R

′ =

+





1

2

With increase in the value of ‘h’ value of g ′ decreases but not linearly. At h→ ∞, g ′→ 0 .

The correct graph is as shown in Fig. 13.20.
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V Example 13.10 At what depth below the surface of earth, value of acceleration
due to gravity is same as the value at height h R= , where R is the radius of
earth.

Solution Given that, g ′ at depth d g= ′ at height h R=

∴ g
d

R

g

h

R

1

1

2
−





=

+





Substituting, h R= , we get

d R= 3

4
Ans.

From the graph we can see that value of g ′ at depth d R= 3

4
and height h R= are same.

1. Value of g on the surface of earth is 9.8 m s/ 2. Find its value on the surface of a planet whose

mass and radius both are two times that of earth.

2. Value of g on the surface of earth is 9.8 m s/ 2. Find its value

(a) at height h R= from the surface,

(b) at depth d
R=
2

from the surface. (R = radius of earth)

3. Calculate the distance from the surface of the earth at which the acceleration due to gravity is

the same below and above the surface of the earth.

4. Calculate the change in the value of g at altitude 45°. Take radius of earth R = ×637 103. km.

5. At what height from the surface of earth will the value of g be reduced by 36% from the value at

the surface? Take radius of earth R = 6400 km.

6. Determine the speed with which the earth would have to rotate on its axis, so that a person on

the equator would weigh
3

5
th as much as at present. Take R = 6400 km.

7. A body is weighed by a spring balance to be 1000 N at the north pole. How much will it weight at

the equator? Account for the earth’s rotation only.

8. At what rate should the earth rotate so that the apparent g at the equator becomes zero ? What

will be the length of the day in this situation?

9. Assuming earth to be spherical, at what height above the north pole, value of g is same as that

on the earth’s surface at equator?
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13.4 Gravitational Field and Field Strength
The space around a mass or system of masses in which any other test mass experiences a gravitational

force is called gravitational field. When this test mass is moved from one point to another point, some

work is also done by this gravitational force.

Mathematically, gravitational field at any point can be defined by two physical quantities. One is

vector quantity, called gravitational field strength or intensity of gravitational field and it is

denoted by E. This is related to the gravitational force (a vector quantity) experienced by test mass in

gravitational field. We also sometimes called it gravitational field.

The other physical quantity is gravitational potential. It is represented by V. This is related to the

work done (a scalar quantity) by gravitational force in moving the test mass from one point to another

point in the gravitational field.

Gravitational Field Strength (E)
The force experienced (both in magnitude and direction) by a unit test mass placed at a point in a

gravitational field is called the gravitational field strength or intensity of gravitational field at that

point. Thus,

E
F

=
m

SI unit of E is N/kg.

Note The test mass to find field strength at some point should be infinitesimally small otherwise it will produce its

own field and will disturb the original field.

In Article 13.3, we have seen that acceleration due to gravity g is also
F

m
. Hence, for the earth’s

gravitational field g and E are same. The E versus r (the distance from the centre of earth) graph are
same as that of g ′ versus r graph.

Field due to a Point Mass
Suppose, a point mass M is placed at point O. We want to find the intensity of gravitational field Eat a

point P, a distance r from O. Magnitude of force F acting on a particle of mass m placed at P is,

F
GMm

r
=

2

∴ E
F

m
= or E

GM

r
=

2

The direction of the force F and hence of E is from P to O as shown in Fig. 13.23.
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Gravitational Field due to a Uniform Solid Sphere

Field at an External Point

A uniform sphere may be treated as a single particle of same mass placed at its centre for calculating

the gravitational field at an external point. Thus,

E r
GM

r
( ) =

2
for r R≥ or E r

r
( ) ∝

1
2

Here, r is the distance of the point from the centre of the sphere and R the radius of sphere.

Field at an Internal Point

The gravitational field due to a uniform sphere at an internal point is

proportional to the distance of the point from the centre of the sphere.

At the centre itself, it is zero and at surface it is
GM

R 2
, where R is the

radius of the sphere. Thus,

E r
GM

R
r( ) =

3
for r R≤ or E r r( ) ∝

Hence, E versus r graph is as shown in Fig. 13.24.

Field due to a Uniform Spherical Shell

At an External Point

For an external point the shell may be treated as a single particle of same mass placed at its centre.

Thus, at an external point the gravitational field is given by,

E r
GM

r
( ) =

2
for r R≥

at r R= (the surface of shell)

E
GM

R
=

2
and otherwise E

r
∝

1
2

At an Internal Point

The field inside a uniform spherical shell is zero.

Thus, E versus r graph is as shown in Fig. 13.25.
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Field due to a Uniform Circular Ring at some Point on its Axis
Field strength at a point P on the axis of a circular ring of radius R and mass M is given by,

E r
GMr

R r
( )

( ) /
=

+2 2 3 2

This is directed towards the centre of the ring. It is zero at the centre

of the ring and maximum at r
R

=
2

(can be obtained by putting

dE

dr
=0). Thus, E-r graph is  as shown in Fig. 13.27.

The maximum value is E
GM

R
max .=

2

3 3 2

13.5 Gravitational Potential
As we have discussed earlier also, this is a scalar quantity related to work done by gravitational force

in moving a unit test mass in gravitational field from one point to another point.

Gravitational potential at any point is defined as the negative of work done by gravitational force in

moving a unit test mass from infinity (where potential is assumed to be zero) to that point. Thus,

potential at P is

V
W

m
P

P=
− ∞→

(by gravitational force)

It SI unit is J/kg.

Potential due to a Point Mass

Suppose a point mass ‘M’ is placed at origin ( )x =0 . We wish to find gravitational potential at P, at a

distance ‘r’ from M.

First of all we will calculate the work done by gravitational force in moving a test mass ‘m’ from

infinity to P. Gravitational force on ‘m’ when it is at a distance ‘x’ from M is

F
GMm

x
= −

2
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Here, negative sign implies that this force is towards ‘M’ or towards negative x-direction. This is a

variable force (a function of x). Therefore, work done is

W Fdx
GMm

x
dx

r r
= = −



∞ ∞∫ ∫ 2

=
GMm

r

Now, from the definition of potential,

V
W

m

GM

r
= − = −

∴ V
GM

r
= −

Potential due to a Uniform Solid Sphere

Potential at some External Point

The gravitational potential due to a uniform sphere at an external point is same as that due to a single

particle of same mass placed at its centre. Thus,

V r
GM

r
( ) = − r R≥

At the surface, r R= and V
GM

R
= −

Potential at some Internal Point

At some internal point, potential at a distance r from the centre is

given by,

V r
GM

R
R r( ) ( )= − −

3

2 21.5 0.5 r R≤

At r R= , V
GM

R
= −

while at r =0, V
GM

R
= −

1.5

i.e. at the centre of the sphere the potential is 1.5 times the potential at the surface. The variation of V

versus r graph is as shown in Fig. 13.29.

Potential due to a Uniform Thin Spherical Shell

Potential at an External Point

To calculate the potential at an external point, a uniform spherical shell may be treated as a point mass

of same magnitude at its centre. Thus, potential at a distance r is given by,

V r
GM

r
( ) = − r R≥

at r R= , V
GM

R
= −
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Potential at an Internal Point

The potential due to a uniform spherical shell is constant at any point inside the shell and this is equal

to −
GM

R
. Thus, V-r graph for a spherical shell is as shown in Fig. 13.30.

Potential due to a Uniform Ring at some Point on its Axis
The gravitational potential at a distance r from the centre on the axis of a

ring of mass M and radius R is given by,

V r
GM

R r
( ) = −

+2 2
0 ≤ ≤ ∞r

At r =0, V
GM

R
= − , i.e. at the centre of the ring gravitational potential is

−
GM

R
.

The V-r graph is as shown in Fig. 13.32.

V Example 13.11 Three point masses ‘m’ each are kept at three vertices of a
square of side ‘a’ as shown in figure. Find gravitational potential and field
strength at point O.
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Solution Gravitational potential is a scalar quantity.

∴ VO = scalar sum of potentials due to point masses at A, B and C.

= − − −Gm

a

Gm

a

Gm

a2

= − +









Gm

a
2

1

2
Ans.

Gravitational field strength is a vector quantity. So, net field strength at O is the vector sum of

three field strengths produced due to the three point masses at A, B and C.

Field strength due to A = field strength due to C = Gm

a2
(towards the point masses)

= E (say)

Field strength due to B
Gm

a

Gm

a

E= = =
( )2 2 22 2

Resultant of E and E is 2E towards B.

E

2
is also towards B.

∴ E E
E

net
= +2

2
= +





2
1

2
E

= +





2
1

2 2

Gm

a
(towards B) Ans.

V Example 13.12 Four point masses each of mass ‘m’ are placed at four vertices
A, B, C and D of a regular hexagon of side ‘a’ as shown in figure. Find
gravitational potential and field strength at the centre O of the hexagon.
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Solution Gravitational potential is a scalar quantity. Therefore,

VO = scalar sum of gravitational potentials produced by four point masses at A, B, C and D.

= − − − −Gm

a

Gm

a

Gm

a

Gm

a

= − 4Gm

a
Ans.

Gravitational field strength is a vector quantity. So, it is a vector sum of four vectors of equal

magnitudes.

E
Gm

a
E E E EA B C D= = = = =

2

E A and ED are cancelled. So, net field strength is a vector sum of EB and EC at angle 60°.

∴ E E E E E
net

= + + °2 2 2 60( ) ( )cos = 3 E

= 3
2

Gm

a
Ans.

Note If E E E1 2= = and θ be the angle between them then, E Enet = 



2

2
cos

θ

This net field strength is along the bisector line of ∠ COB, away from O, between EC and EB .

V Example 13.13 At what distance ‘d’ from the surface of a solid sphere of
radius ‘R’,

(a) potential is same as at a distance
R

2
from the centre ?

(b) field strength is same as at a distance
R

4
from centre.

Solution (a) Given, V V
outside inside

=

No such point will exist. Because potential at centre is
−15. GM

R
. Potential at surface is − GM

R

and potential at infinity is zero. From centre to surface potential varies between − 1.5GM

R

and
−GM

R
. From surface to infinity potential varies between

−GM

R
and zero.

(b) Given, E E
inside outside

=
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∴ GM

R
r

GM

r3 1

2
2

( )=

Here, r1 and r2 are the distances from centre.

∴ GM

R

R GM

R d3 24







=
+( )

Solving this equation, we get

d R= Ans.

1. Two points masses ‘m’ each are kept at the two vertices of an equilateral triangle of side ‘a’ as

shown in figure.

Find gravitational potential and magnitude of field strength at O.

2. Five point masses ‘m’ each are kept at five vertices of a regular pentagon. Distance of centre of

pentagon from any one of the vertices is ‘a’. Find gravitational potential and field strength at

centre.

3. In the above problem, if any one point mass is removed then what is gravitational potential and

magnitude of field strength at centre?

4. A particle of mass m is placed at the centre of a uniform spherical shell of same mass and

radius R. Find the gravitational potential at a distance
R

2
from the centre.

5. A particle of mass 20 g experiences a gravitational force of 4.0 N along positive x-direction. Find

the gravitational field at that point.

13.6 Relation between Gravitational Field and Potential
In gravitational field, field strength E and potential V are different at different points. So, they are

functions of position. In cartesian co-ordinate system position of a point can be represented by three

variable co-ordinates x, y and z. So, Eand V are functions of three variables x, y and z. But in physics,

we normally try to keep least number of variables. So, in one dimension (say along x-axis) position of

a point can be represented by a single variable co-ordinates x.

So, E and V are functions of only one variable x. Similarly, in case of point mass or spherical bodies

this single variable is r. Where r is the distance from point mass or distance from the centre of the

spherical body.

Further, E and V are not two independent functions, but they are related to each other either by

differentiation or integration.
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Conversion of V Function into E Function
To convert V function into E function, differentiation is required. If there are more than one variables

then partial differentiation is done and if there is only one variable then, direct differentiation is done.

More than one variables In this case,

E= −gradient V = − + +










∂
∂

∂
∂

∂
∂

V

x

V

y

V

z
$ $ $i j k

or E = − + +










∂
∂

∂
∂

∂
∂

V

x

V

y

V

z
$ $ $i j k

Here,
∂
∂
V

x
is called partial differentiation of V with respect to x. In this differentiation we differentiate

V with respect to x, assuming other two variables y and z to be constant. Similarly
∂
∂
V

y
and

∂
∂
V

z
.

Only one variable In this case,

E
dV

dx

dV

dr
= − = − or E = (− slope ofV x- ) or (− Slope ofV r- graph)

Conversion of E Function into V Function
In this case, integration will be required. In integration, we will be required value of V at some given

position (also called limit) to get complete V function. Otherwise an unknown constant of integration

remains in the expression. One known limit is V =0 at infinity. This limit may not be given in the

question.

More than one variables In this case, dV d= − ⋅E r

or dV d
a

b

a

b
= − ⋅∫ ∫ E r

⇒ V V db a a

b
− = − ⋅∫ E r

Here, E will be given in the question and dr is a standard vector given by

d dx dy dzr = + +$ $ $i j k

Only one Variable

dV E dr= −∫∫
or dV E dr

a

b

a

b

∫ ∫= −

⇒ V V E drb a a

b
− = −∫

Here, E as a function of r will be given in the question. We may also write the above equation as

dV E dx= −∫∫
where, E is a function of x.
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V Example 13.14 Gravitational potential in x-y plane varies with x and y
coordinates as

V x y xy= +2 2

Find gravitational field strength E.

Solution Gravitational field strength is given by

E i j= − +





∂
∂

∂
∂

V

x

V

x
$ $

For the given potential function

∂
∂
V

x
xy y= +( )2 2

and
∂
∂
V

y
x x= +2 2

∴ E i j= − + + +[( ) $ ( ) $]2 2 22xy y x x Ans.

V Example 13.15 Gravitational potential at a distance ‘r’ from a point mass ‘m’
is

V
Gm

r
= −

Find gravitational field strength at that point.

Solution E
dV

dr
= −

= − −





d

dr

Gm

r
= − Gm

r2
or E

Gm

r
=

2

Negative sign implies that direction of E is towards the point mass.

V Example 13.16 Gravitational potential
varies along x-axis as shown in figure.

(a) Plot E versus x graph corresponding to given

V x- graph.

(b) A mass of 2 kg is kept at x m= 3 . Find

gravitational force on it.

Solution (a) E
dV

dx
= − = − slope of V x- graph.

From x = 0 to x = 4 m

Slope = + = +10

4
2.5 N/kg

∴ E = −2.5 N/kg

From x = 4 m to x = 8 m

Slope = 0

∴ E = 0
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From x = 8 m to x =12 m

Slope = − = −10

4
2.5 N/kg

∴ E = +2.5 N/kg

Therefore, E x- graph is as shown in figure.

(b) At x = 3 m, E = −2.5 N/kg

∴ Gravitational force

F mE= (as E
F

m
= )

= −( ) ( . )2 25 = −5N Ans.

Here, negative sign implies that this force is acting towards negative x-direction.

V Example 13.17 Gravitational field in x-y plane is given as

E = +( $ $) /2 3 2x y N kgi j

Find difference in gravitation potential between two points A and B, where

co-ordinates of A and B are (2m, 4m) and (6m, 0).

Solution We know that, dV d= − ⋅E r …(i)

Here d dx dyr = +$ $i j

∴ E r⋅ = +d x dx y dy( )2 3 2

Now, Eq. (i) can be written as

dV x dx y dy
B

A

B

A

∫ ∫= − +( )2 3 2

or V V x yA B− = − +[ ]
( )

( )2 3

6

2

m, 0

m, 4m

= − + − +[{( ) ( ) } ( ) ( ) ]2 4 6 02 3 2 3

= −32J/kg Ans.

1. The gravitational potential due to a mass distribution is V x y y z= +3 2 3 . Find the gravitational

field.

2. Gravitational potential at x = 2 m is decreasing at a rate of 10 J/kg-m along the positive

x-direction. It implies that the magnitude of gravitational field at x = 2m is also 10 N Kg/ . Is this

statement true or false?

3. The gravitational potential in a region is given by,V x y= +20( ) J/kg. Find the magnitude of the

gravitational force on a particle of mass 0.5 kg placed at the origin.

4. The gravitational field in a region is given by E = +( $ $)2 3i j N/kg.

Find the work done by the gravitational field when a particle of mass 1 kg is moved on the line
3 2 5y x+ = from ( ,1 1m m) to (−2 3m m, ).
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13.7 Gravitational Potential Energy
The concept of potential energy has already been discussed in the chapter of work, energy and power.

The word potential energy is defined only for a conservative force field. There we have discussed that

the change in potential energy ( )dU of a system corresponding to a conservative force is given by

dU d= − ⋅F r or dU d
i

f

i

f∫ ∫= − ⋅F r
r

r
or U U df i

i

f− = − ⋅∫ F r
r

r

We generally choose the reference point at infinity and assume potential energy to be zero there, i.e. if

we take ri = ∞ (infinite) and U i =0, then we can write

U d W= − ⋅ = −
∞∫ F r
r

or potential energy of a body or system is negative of work done by the conservative forces in

bringing it from infinity to the present position.

Gravitational Potential Energy of a two Particle System
The gravitational potential energy of two particles of masses m1 and m2

separated by a distance r is given by,

U
Gm m

r
= − 1 2

This is actually the negative of work done in bringing those masses from infinity to a distance r by the

gravitational forces between them.

Gravitational Potential Energy for a System of Particles
The gravitational potential energy for a system of particles (say m1 , m2 , m3 and m4) is given by

U G
m m

r

m m

r

m m

r

m m

r

m m

r

m m

r
= − + + + + +4 3

43

4 2

42

4 1

41

3 2

32

3 1

31

2 1

21











Thus, for a n particle system there are
n n( )−1

2
pairs and the potential energy is calculated for each

pair and added to get the total potential energy of the system.

Gravitational Potential Energy of a Body on Earth’s Surface
The gravitational potential energy of mass m in the gravitational field of mass M at a distance r from it

is,

U
GMm

r
= −

The earth behaves for all external points as if its mass M were concentrated at its centre.

Therefore, a mass m near earth’s surface may be considered at a distance R (the radius of

earth) from M. Thus, the potential energy of the system will be

U
GMm

R
= −
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Extra Points to Remember

Difference in Potential Energy ( )∆U

Let us find the difference in potential energy in two positions shown in figure. The

potential energy when the mass is on the surface of earth (at B) is,

U
GMm

R
B = −

and potential energy when the mass m is at height h above the surface of earth (at A) is,

U
GMm

R h
A = −

+
( )U UA B>

∴ ∆ U U UA B= −

= −
+

− −





GMm

R h

GMm

R

= −
+







GMm

R R h

1 1

=
+

GMmh

R R h( )

=
+





=
+





GMmh

R
h

R

mgh

h

R

2 1 1

GM

R
g

2
=





∴ ∆U
mgh

h

R

=
+1

For h R< < , ∆U mgh≈

Thus, mgh is the difference in potential energy (not the absolute potential energy), for h R< < .

� Maximum height attained by a particle

Suppose a particle of mass m is projected vertically upwards with a speed v and we want to find the

maximum height h attained by the particle. Then we can use conservation of mechanical energy, i.e.

Decrease in kinetic energy = increase in gravitational potential energy of particle.

∴ 1

2

2mv U= ∆

or
1

2 1

2mv
mgh

h

R

=
+

Solving this, we get h
v

g
v

R

=
−

2

2

2

From this, we can see that h
v

g
≈

2

2
if v is small.
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V Example 13.18 Three masses of 1 kg, 2 kg and 3 kg are placed at the vertices
of an equilateral triangle of side 1 m. Find the gravitational potential energy of
this system.

Take G = × −6.67 10 11 N-m2/kg2

Solution U G
m m

r

m m

r

m m

r
= − + +







3 2

32

3 1

31

2 1

21

Here, r r r32 31 21= = =1.0 m, m1 1= kg,

m2 2= kg

and m3 3= kg

Substituting the values, we get

U = − × × + × + ×





−( )6.67 10
3 2

1

3 1

1

2 1

1

11

or U = − × −7.337 J10 10 Ans.

V Example 13.19 Eight particles of mass ‘m’ each are placed at the vertices of a
cube of side ‘a’. Find gravitational potential energy of this system.

Solution Total particles are n = 8

∴ Total number of pairs are
n n( )−1

2
or 28.

In 12 pairs, distance between the particles is ‘a’.

In 12 pairs, distance is 2a and in remaining 4 pairs distance is 3a.

∴ U
Gmm

a

Gmm

a
= −





+ −





12 12

2
+ −






4

3

Gmm

a

= − + +







Gm

a

2

12 6 2
4

3
Ans.

V Example 13.20 A particle of mass ‘m’ is raised from the surface of earth to a
height h R=2 . Find work done by some external agent in this process. Here, R is
the radius of earth and g the acceleration due to gravity on earth's surface.
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Solution No information is given about the change in kinetic energy of the particle. So,

assuming change in kinetic energy to be zero.

Work done by external agent = change in potential energy

= ∆U =
+

mgh

h

R
1

Substituting h R= 2 , we get, Work done = 2

3
mgR Ans.

V Example 13.21 A particle is projected from the surface of the earth with an
initial speed of 4.0 km/s. Find the maximum height attained by the particle.

Radius of earth = 6400 km and g m/s= 9.8 2.

Solution The maximum height attained by the particle is,

h
v

g
v

R

=
−

2

2

2

Substituting the values, we have h = ×

× − ×
×

(4.0 10 )

2 9.8
(4.0 10 )

6.4 10

3 2

3 2

6

= ×9.35 m105 or h ≈ 935 km Ans.

1. Two particles of masses 20 kg and 10 kg are initially at a distance of 1.0 m. Find the speeds of

the particles when the separation between them decreases to 0.5 m, if only gravitational forces

are acting.

2. Four particles each of mass m are kept at the four vertices of a square of side ‘a’. Find

gravitational potential energy of this system.

3. A particle of mass ‘m’ is raised to a height h R= from the surface of earth. Find increase in

potential energy. R = radius of earth.g = acceleration due to gravity on the surface of earth.

4. Show that if a body be projected vertically upward from the surface of the earth so as to reach a

height nR above the surface

(i) the increase in its potential energy is
n

n
mgR

+








1
,

(ii) the velocity with which it must be projected is
2

1

ngR

n +
, where R is the radius of the earth and

m the mass of body.

5. A projectile is fired vertically from the earth's surface with an initial speed of 10 km/s. Neglecting

air drag, how high above the surface of earth will it go?

6. A particle is fired vertically upwards from earth’s surface and it goes upto a maximum height of

6400 km. Find the initial speed of the particle.
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13.8 Binding Energy
Total mechanical energy (potential + kinetic) of a closed system is negative. The modulus of this total

mechanical energy is known as the binding energy of the system. This is the energy due to which

system is closed or different parts of the system are bound to each other.

Suppose the mass m is placed on the surface of earth. The radius of the earth is R and its mass is M.

Then, the kinetic energy of the particle K =0 and the potential energy is U
GMm

R
= − .

Therefore, the total mechanical energy is,

E K U
GMm

R
= + = −0

or E
GMm

R
= −

∴ Binding energy = =| |E
GMm

R

It is due to this energy, the particle is attached with the earth. If minimum this much energy is given to

the particle in any form (normally kinetic) the particle no longer remains attached to the earth. It goes

out of the gravitational field of earth.

Escape Velocity

As we discussed above, the binding energy of a particle on the surface of earth kept at rest is
GMm

R
. If

this much energy in the form of kinetic energy is supplied to the particle, it leaves the gravitational

field of the earth. So, if ve is the escape velocity of the particle, then

1

2

2mv
GMm

R
e = or v

GM

R
e =

2

or v gRe = 2 as g
GM

R
=

2

Substituting the value of g (9.8 m/s 2) and R ( )6.4 m×106 , we get

ve ≈11.2 km /s

Thus, the minimum velocity needed to take a particle to infinity from the earth is called the escape

velocity. On the surface of earth its value is 11.2 km/s.
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� The value of escape velocity is 11.2 km/s from the surface of earth. From some height above the surface

of earth this value will be less than 11.2 km/s.

� Escape velocity is independent of the direction in which it is projected. In the figure shown, body is given

11.2 km/s along three different paths. In each case, it will escape to infinity, but following different paths.

For example, along path-1 it will follow a straight line.

� If velocity of a particle is ve , then its total mechanical energy is zero. As the particle moves towards infinity

its kinetic energy decreases and potential energy increases, but total mechanical energy remains

constant. At any point

E K U= + =0 ⇒ K U= −
For example, if K =100J on the surface of earth then U = −100J. At some height suppose K becomes 60 J,

then U will become −60J. At infinity K =0. So U is also zero. Hence, speed at infinity will be zero.

� If velocity of the particle is less than ve then total mechanical energy is negative and it does not escape to

infinity.

� If velocity of the particle is more than ve then total mechanical energy is positive. Even at infinity some

kinetic energy and speed are left in the particle. Although its potential energy becomes zero.

V Example 13.22 Calculate the escape velocity from the surface of moon. The

mass of the moon is 74 1022. × kg and radius = ×174 106. m.

Solution Escape velocity from the surface of moon is v
GM

R
e

m

m

=
2

Substituting the values, we have

ve = × × × ×
×

2 667 10 10

10

11 22

6

. – 7.4

1.74

= ×2.4 103 m/s = 2.4 km/s Ans.

V Example 13.23 Kinetic energy of a particle on the surface is E0 and potential

energy is −
E0

2
.

(a) Will the particle escape to infinity ?

(b) At some height its kinetic energy becomes 06 0. E . What is potential energy at this

height ?

(c) If the particle escapes to infinity, what is kinetic energy of the particle at

infinity?
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Solution (a) Total mechanical energy

E K U E
E

E= + = − =0
0

0
2

0.5

Since, E is positive, particle will escape to infinity.

(b) Potential energyU E K= − = −05 060 0. .E E = −01 0. E Ans.

(c) At infinity,U = 0

∴ K E E= =05 0. Ans.

1. What is the kinetic energy needed to project a body of mass m from the surface of the earth to

infinity? Radius of earth is R and acceleration due to gravity on earth’s surface is g.

2. Mass and radius of a planet are two times the values of earth. What is the value of escape

velocity from the surface of this planet ?

3. Kinetic energy of a particle on the surface of earth is E0 and the potential energy is −2 0E .

(a) Will the particle escape to infinity ?

(b) What is the value of potential energy where speed of the particle becomes zero ?

13.9 Motion of Satellites
Just as the planets revolve around the sun, in the same way few celestial bodies revolve around these

planets. These bodies are called ‘Satellites’. For example moon is a satellite of earth. Artificial

satellites are launched from the earth. Such satellites are used for telecommunication, weather

forecast and other applications. The path of these satellites are elliptical with the centre of earth at a

focus. However the difference in major and minor axes is so small that they can be treated as nearly

circular for not too sophisticated calculations. Let us derive certain characteristics of the motion of

satellites by assuming the orbit to be perfectly circular.

Orbital Speed
The necessary centripetal force to the satellite is being provided by the

gravitational force exerted by the earth on the satellite. Thus,

mv

r

GMm

r

0
2

2
=

∴ v
GM

r
0 = or v

r
0

1
∝

Hence, the orbital speed ( )vo of the satellite decreases as the orbital radius ( )r of the satellite

increases. Further, the orbital speed of a satellite close to the earth’s surface ( )r R≈ is,

v
GM

R
gR

ve
0

2
= = =

Substituting ve =11.2 km/s ⇒ v0 = 7.9 km/s
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Extra Points to Remember

Period of Revolution
The period of revolution ( )T is given by

T
r

vo

=
2π

or T
r

GM

r

=
2π

or T
r

GM
=2

3

π or T
r

gR
=2

3

2
π (as GM gR= 2)

Energy of Satellite
The potential energy of the  system is

U
GMm

r
= −

The kinetic energy of the satellite is,

K mv m
GM

r
= = 





1

2

1

2
0
2

or K
GMm

r
=

1

2

The total energy is, E K U
GMm

r
= + = −

2

or E
GMm

r
= −

2

This energy is constant and negative, i.e. the system is closed. The farther the satellite from the

earth the greater its total  energy.

� T
r

gR
= 2

3

2
π ⇒ T r∝ 3 2/ or T r2 3∝ (which is alsothe Kepler’s third law)

� Time period of a satellite very close to earth’s surface ( )r R≈ is,

T
R

g
= 2 π

Substituting the values, we get T ≈ 84.6 min

� Suppose the height of a satellite is such that the time period of the satellite is 24 h and it moves in the same

sense as the earth. The satellite will always be overhead a particular place on the equator. As seen from

the earth, this satellite will appear to be stationary. Such a satellite is called a geostationary satellite.

Putting T = 24 h in the expression of T, the radius of geostationary satellite comes out to be r = ×4.2 104

km. The height above the surface of earth is about 36000 km.

� The plane of orbit of a satellite always passes through the centre of the earth as force is always towards

centre of earth. In case of geostationary satellite it is an equatorial plane (passing through equator)
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V Example 13.24 As orbital radius r of a satellite is increased, state which of
the following quantities will increase and which will decrease ?

(i) Orbital speed (ii)  Time period

(iii) Frequency (iv) Angular speed

(v) Kinetic energy (vi) Potential energy

(vii) Total mechanical energy

Solution (i) Orbital speed v
GM

r
o = or v

r
o ∝ 1

.

Therefore, orbital speed will decrease.

(ii) T
r

gR
= 2

3

2
π or T r∝ 3 2/

Therefore, time period will increase.

(iii) Frequency, f
T

= 1

Time period is increasing. So, frequency will decrease.

(iv) Angular speed ω π= 2

T
or ω ∝ 1

T

Time period is increasing. Hence, angular speed will decrease.

(v) Kinetic energy, K
GMm

r
=

2
or K

r
∝ 1

.

Therefore, kinetic energy will decrease.

(vi) Potential energy U
GMm

r
= − or U

r
∝− 1

Therefore, potential energy will increase.

(vii) Total mechanical energy, E
GMm

r
= −

2
or E

r
∝− 1

So, mechanical energy will also increase.

V Example 13.25 A geostationary satellite is orbiting the earth at a height of 6R
above the surface of the earth where R is the radius of earth. The time period of
another satellite at a distance of 3.5 R from the centre of the earth is ………
hours. (JEE 1987)

Solution T r∝
3

2

∴
T

T

r

r

2

1

2

1

3

2
=







 or T

r

r
T2

2

1

3

2

1=








T
R

R
2

3

2

7
24= 





3.5
( ) h = 8.48 h (T1 24= h for geostationary satellite)
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V Example 13.26 A spaceship is launched into a circular orbit close to the earth’s
surface. What additional velocity has now to be imparted to the spaceship in the

orbit to overcome the gravitational pull. Radius of earth = 6400 km, g = 9.8 m/s2 .

Solution The speed of the spaceship in a circular orbit close to the earth’s surface is given by,

v gRo =

and escape velocity is given by, v gRe = 2

∴ Additional velocity required to escape

v v gR gRe o− = −2 = −( )2 1 gR

Substituting the values of g and R, we get

v ve o− = ×3.278 m/s103 Ans.

V Example 13.27 What is the minimum energy required to launch a satellite of
mass m from the surface of a planet of mass M and radius R in a circular orbit
at an altitude of 2 R ? (JEE 2013, Main)

(a)
5

6

GmM

R
(b)

2

3

GmM

R

(c)
GmM

R2
(d)

GmM

R3

Solution E = Energy of satellite − energy of mass on the surface of planet

= − − −





GMm

r

GMm

R2

Here, r R R R= + =2 3

Substituting the values in above equation we get, E
GMm

R
= 5

6

The correct answer is (a)

V .Example 13.28 An artificial satellite is moving in a circular orbit around the
earth with a speed equal to half the magnitude of escape velocity from the earth.

(1990, 8M)

(a) Determine the height of the satellite above the earth’s surface.

(b)  If the satellite is stopped suddenly in its orbit and allowed to fall freely onto the

earth, find the speed with which it hits the surface of the earth.

Solution (a) Orbital speed of a satellite at distance r from centre of earth,

v
GM

r

GM

R h
0 = =

+
…(i)

Given, v
v GM R GM

R

e
0

2

2

2 2
= = =

/
…(ii)

From Eqs. (i) and (ii), we get

h R= = 6400 km
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(b) Decrease in potential energy = increase in kinetic energy

or
1

2

2mv U= ∆

∴ v
U

m
= 2( )∆ = +







2
1

mgh

h R

m

/ = gR ( )h R=

= × ×9.8 6400 103

= 7919 m/s = 7.9 km/s Ans.

1. Is it possible to have a geostationary satellite which always remains over New Delhi ?

2. Two satellites A and B revolve around a planet in two coplanar circular orbits in the same sense

with radii 104 km and 2 104× km respectively. Time period of A is 28 hours. What is time period

of another satellite?

3. Two satellites A and B of the same mass are orbiting the earth at altitudes R and 3R

respectively, where R is the radius of the earth. Taking their orbits to be circular obtain the ratios

of their kinetic and potential energies.

4. A satellite of mass 1000 kg is supposed to orbit the earth at a height of 2000 km above the

earth’s surface. Find (a) its speed in the orbit, (b) its kinetic energy, (c) the potential energy of

the earth-satellite system and (d) its time period. Mass of the earth = ×6 1024 kg.

5. A sky lab of mass2 103× kg is first launched from the surface of earth in a circular orbit of radius

2R and then it is shifted from this circular orbit to another circular orbit of radius 3R. Calculate

the energy required

(a) to place the lab in the first orbit,

(b) to shift the lab from first orbit to the second orbit. (R = 6400 km, g = 10 m s/ 2)

13.10 Kepler's Laws of Planetary Motion
Kepler discovered three empirical laws that accurately described the motion of the planets. The three

laws may be stated as,

(i) Each planet moves in an elliptical orbit, with the sun at one focus of the ellipse. This law is also

known as the law of elliptical orbits and obviously gives the shape of the orbits of the planets

round the sun.

(ii) The radius vector, drawn from the sun to a planet, sweeps out equal areas in equal time, i.e. its

areal velocity (or the area swept out by it per unit time) is constant. This is referred to as the law of

areas and gives the relationship between the orbital speed of the planet and its distance from the

sun.

(iii) The square of the planet’s time period is proportional to the cube of the semi-major axis of its

orbit. This is known as the law of time period and gives the relationship between the size of the

orbit of a planet and its time of revolution.
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Kepler did not know why the planets move in this way. Three generations later when Newton turned

his attention to the motion of the planets, he discovered that each of Kepler’s laws can be derived.

They are consequences of Newton’s law of motion and the law of gravitation.

Let us first consider the elliptical orbits described in Kepler’s first law. Figure shows the geometry of

the ellipse. The longest dimension is the major axis with half length a. This half length is called the

semi-major axis.

SP S P+ ′ = constant

Here, S and S ′ are the foci and P any point on the ellipse. The sun is at S and planet at P.

The distance of each focus from the centre of ellipse is ea, where e is the dimensionless number

between 0 to 1 called the eccentricity. If e =0, the ellipse is a circle. The actual orbits of the planets are

nearly circular, their eccentricities range from 0.007 for Venus to 0.248 for Pluto. For earth e =0.017.

The point in the planet’s orbit closest to the sun is the perihelion and the point most distant from the

sun is aphelion.

Explanation of First Law

Newton was able to show that for a body acted on by an attractive force proportional to
1
2r

, the only

possible closed orbits are a circle or an ellipse. The open orbits must be parabolas or hyperbolas. He

also showed that if total energy E is negative the orbit is an ellipse (or circle), if it is zero the orbit is a

parabola and if E is positive the orbit is a hyperbola. Further, it was also shown that the orbits under

the attractive force F
K

r n
= , are stable for n <3.Therefore, it follows that circular orbits will be stable

for a force varying inversely as the distance or the square of the distance and will be unstable for the

inverse cube (or a higher power) law.

Explanation of Second Law

PP v dt′ =
P M PP PP′ = ′ ° − = ′( ) sin ( ) sin180 θ θ

= ( sin )v dtθ
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Kepler’s second law is shown in figure. In a small time interval dt, the line from the sun S to the planet

P turns through an angle dθ. The area swept out in this time interval is,

dA = area of triangle shown in figure

=
1

2
( )( )base height

= ′
1

2
( )( )SP P M

=
1

2
( ) ( sin )r v dtθ

∴ Areal velocity
dA

dt
rv=

1

2
sin θ …(i)

Now, rv sin θ is the magnitude of the vector product r v× which in turn is
1

m
times the angular

momentum L r v= × m of the planet with respect to the sun. So we have,

dA

dt m
m

L

m
= × =

1

2 2
| |r v …(ii)

or
dA

dt

L

m
= =

2
constant

Thus, Kepler’s second law, that areal velocity is constant, means that angular momentum is constant.

It is easy to see why the angular momentum of the planet must be constant. According to Newton’s

law the rate of change of L equals the torque of the gravitational force F acting on the planet,

d

dt

L
r F= × = τ

Here, r is the radius vector of planet from the centre of the sun and the force F is directed from the

planet towards the centre of the sun. So, these vectors always lie along the same line and their vector

product r F× is zero. Hence,
d

dt

L
=0 or L = constant. Thus, from Eq. (ii) we can see that

dA

dt
= constant if L = constant. Thus, second law is actually the law of conservation of angular

momentum.

Explanation of Third Law
In Article 13.9 we have already derived Kepler’s third law for the particular case of circular orbits

( )T r2 3∝ . Newton was able to show that the same relationship holds for an elliptical orbit, with the

orbit radius r replaced by semimajor axis a. Thus,

T
a

GM s

=
2 3 2π /

(elliptical orbit)

Here, M s is the mass of the sun.

Chapter 13 Gravitation � 243



Extra Points to Remember
� Most of the problems of planetary motion are solved by two conservation laws:

(i) conservation of angular momentum about centre of the sun and

(ii) conservation of mechanical (potential + kinetic) energy

Hence, the following two equations are used in most of the cases,

mvr sin θ = constant …(i)

1

2

2mv
GMm

r
− = constant …(ii)

At aphelion (or M) and perihelion (or N) positions θ = °90

Hence, Eq. (i) can be written as,

mvr sin 90° =constant

or mvr = constant …(iii)

Further, since mass of the planet ( )m also remains constant, Eq. (i) can also be written as

vr sin θ =constant …(iv)

or v r v r11 2 2= ( )θ = °90

r r1 2>

∴ v v1 2<

V Example 13.29 Name the physical quantities which remain constant in a
planetary motion (in elliptical orbits).

Solution Angular momentum about centre of sun and mechanical energy.

V Example 13.30 Consider a planet moving in an elliptical orbit round the sun.
The work done on the planet by the gravitational force of the sun is zero in any
small part of the orbit. Is this statement true or false ?

Solution False, only at aphelion and perihelion positions F is perpendicular to dS. So, at these

two positions work done by gravitational force is zero. At other points angle between F and dS

is not 90°. So, work done is not zero. But, being a conservative force work done in a closed path

(or in one full rotation) is zero.
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Final Touch Points
Polar and Geostationary Satellites

1. Satellites in low polar orbit pass over the poles. They orbit between 100 km and 200 km above the

Earth's surface, taking around 90 minutes to make each orbit. The earth spins beneath the satellites

as it moves, so the satellite can scan the whole surface of the earth. Low orbit polar satellites have

uses such as

• Monitoring the weather.

• Observing the earth's surface.

• Military uses including spying.

2. Geostationary satellites have a different trajectory to polar satellites. They are in orbit above the

equator from west to east. The height of their orbit-36,000 km is just the right distance so that it takes

them one day (24 hours) to make each orbit. This means that they stay in a fixed position over the

earth's surface. A single geostationary satellite is on a line sight with about 40 percent of the earth's

surface. Three such satellites, each separated by 120 degrees of longitude, can provide coverage of

the entire planet. Geostationary satellites have uses such as:

• communications- including satellites phones

• global positioning or GPS.

Geostationary satellites always appear in the same position when seen from the ground. This is why

satellite television dishes can be bolted into one position and do not need to move.

3. Acceleration due to moon’s gravity on moon’s surface is
ge

6
because

M

R

M

R

m

m

e

e
2 2

1

6
≈ g

GM

R
=



2

While acceleration due to earth’s gravity on moon’s surface is approximately
ge

( )60 2
or

ge

3600
. This is

because distance of moon from the earth’s centre is approximately equal to 60 times the radius of earth

and g
r

∝ ⋅1
2

In the shown figure

. g
ge

1 260
=

( )
while g

ge
2

6
=
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4. Total energy of a closed system is always negative. For example, energy of planet-sun, satellite-earth

or electron-nucleus system is always negative.

5. If the law of force obeys the inverse square law F
r

F
dU

dr
∝ = −





1
2

,

K
U

E= =| |
| |

2

The same is true for electron-nucleus system because there also, the electrostatic forceF
r

e ∝ 1
2

.

6. Trajectory of a body projected from point A in the direction AB with different initial velocities :

Let a body be projected from point A with velocity v in the direction AB. For different values of v the

paths are different. Here, are the possible cases.

(i) If v = 0, path is a straight line from A to M.

(ii) If 0 < <v vo , path is an ellipse with centre O of the earth as a focus.

(iii) If v vo= , path is a circle with O as the centre.

(iv) If v v vo e< < , path is again an ellipse with O as a focus.

(v) If v ve= , body escapes from the gravitational pull of the earth and  path is a parabola

(vi) If v ve> , body again escapes but now the path is a hyperbola.

Here, vo = orbital speed
GM

r







 at A for a circular orbit and ve = escape velocity from A.

Note 1. From case (i) to (iv), total mechanical energy is negative. Hence, these are the closed orbits. For case (v),

total energy is zero and for case (vi) total energy is positive. In these two cases orbits are open.

2. If v is not very large the elliptical orbit will intersect the earth and the body will fall back to earth.
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7. If F rn∝

thenT r n2 1∝ −( )

and if U rm∝
then T r m2 2∝ −( ) (Applicable only for circular orbits)

8. T
R

g
= ≈2π 84.6 min comes in following four places in whole physics :

(i) If time period of rotation of earth becomes 84.6 min, effective value of g on equator becomes

zero or we feel weightlessness on equator.

(ii) Time period of a satellite close to earth’s surface is 84.6 min.

(iii) Time pendulum of a pendulum of infinite length is 84.6 min.

(iv) If a tunnel is dug along any chord of the earth and a particle is released from the surface of earth

along this tunnel, then motion of this particle is simple harmonic and time period of this is also

84.6 min.

Note (a) Points (iii) and (iv) come in the chapter of simple harmonic motion.

(b) T
R

g
= 2π is also the time period of small oscillations of a block inside a smooth spherical bowl of

radius R.
But this is not 84.6 min because here R is the radius of bowl not the radius of earth.

This expression can be compared with the time period of a pendulum T
l

g
= 2π .
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TYPED PROBLEMS

Type 1. Two or more than two particles rotate in circular motion under their mutual gravitational
attraction. We have to find speed of each particle.

How to Solve?

Find net force on any one particle. It should come towards centre of the circle. This net force provides the
necessary centripetal force.

V Example 1 Three particles each of mass m, are located at the

vertices of an equilateral triangle of side a. At what speed must

they move if they all revolve under the influence of their

gravitational force of attraction in a circular orbit circumscribing

the triangle while still preserving the equilateral triangle ?

Solution F F FA AB AC= +

=








 ° =









2 30 3

2

2

2

2

Gm

a

Gm

a
cos

r
a=
3

,

Now
mv

r
F

2

= or
3 32 2

2

mv

a

Gm

a
=

∴ v
Gm

a
= Ans.

V Example 2 In the above problem, find total mechanical energy of the system.

Solution Total mechanical energy,

E U K= +
where,U = potential energy of 3 identical pairs of masses ‘m’ each at a distance ‘a’

= − 





= −3
3 2Gmm

a

Gm

a

K = kinetic energy of three particles

= 





3
1

2

2mv =








3

2

2

m
Gm

a
= 3

2

2Gm

a

∴ E U K= + = −3

2

2Gm

a
Ans.

Note Total mechanical energy is negative, as the system is closed.

3
0
°

A

BC

m

mm

O
r

Solved Examples



Type 2. Gravitational field and force on a mass due to spherical shells.

Concept

According to Gauss theorem, net field strength at any point in the
above situation is only due to the masses inside an imaginary
spherical surface drawn at that point.

For example, field strength at P is

E
G M M

r
P =

+( )1 2

2
(towards C)

If a mass m is kept at P, then force on this mass is

F mE
G M M m

r
P= =

+( )1 2

2
(towards C)

V Example 3 Two concentric shells of masses M1 and M2 are concentric as
shown. Calculate the gravitational force on m due to M1 and M2 at points P Q,
and R.

Solution At P, F = 0

At Q, F
GM m

b
= 1

2

At R, F
G M M m

c
= +( 1 2

2

)

Type 3. To find variation of time period of a satellite in circular orbit with its orbital radius ‘r’ if
gravitational potential energy between two point masses varies as U r n∝ with

negative sign.

How to Solve?

From the relation between conservative force F and its potential energy U,

F
dU

dr
= −

First find the variation of F with r. Then, this force provides the necessary centripetal force. So, find variation of
v with r by putting,

F
mv

r
=

2

Now, finally time period is given by T
r

v
= 2π

. So, find variation of T with r.
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V Example 4 Gravitational potential energy between two points masses is

U
K m m

rn
= − 1 2

where, K is a positive constant. With what power of ‘r’ time period of a satellite of mass ‘m’

varies in circular orbit if mass of planet is M ?

Solution U
KMm

rn
= −

F
dU

dr

KMmn

rn
= − = +1

or F r n∝ − +( )1

Now, this force provides the necessary centripetal force.

∴ mv

r

KMm

rn

2

1
= + or v r n2 ∝ −

∴ v r

n

∝
−
2

Time period is given by

T
r

v
= 2π

or T
r

v
∝

or T
r

r

n
∝ −

2

⇒ ∴ T r

n

∝
+1

2

Note Under normal conditions

U
GMm

r
= −

So, if we compare with the given equation then, n =1.

Now, T r

n

∝
+1

2 or T r∝
3

2 (for n =1)

V Example 5 Imagine a light planet revolving around a very massive star in a

circular orbit of radius R with a period of revolution T. If the gravitational force

of attraction between the planet and the star is proportional to R−5 2/ , then

(a) T 2 is proportional to R2

(b) T 2 is proportional to R7 2/

(c) T 2 is proportional to R3 2/

(d) T 2 is proportional to R3 75.

Solution
mv

R
R

2
5 2∝ − /

∴ v R∝ −3 4/

Now, T
R

v
= 2π

or T
R

v

2
2

∝ 





or T
R

R

2

3 4

2

∝ 



− /

or T R2 7 2∝ /

∴ The correct answer is (b).
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Type 4. Based on conservation of mechanical energy.

Concept

In the figure, M m>> , hence only the particle moves along the line CP. The spherical body
remains at rest. The problem of any such type can be solved by energy conservation
principle or

E Ei f=
⇒ U K U Ki i f f+ = +

Here, U
GMm

r
= − for  external points

andU mV= for internal points of sphere.

where, V is the gravitational potential due to M. In this type, we are using only one
conservation law. Therefore, number of unknown should be only one.

V Example 6 There is a smooth tunnel upto centre C of a solid sphere of mass ‘M’

and radius R. A particle of mass m M( )<< is released from point P along the line

CP. Find velocity of ‘m’ while striking at C.

Solution Using mechanical energy conservation equation.

E EC P= ⇒ K U K UC C P P+ = +

⇒ 1

2
02mv mV

GMm

R R
C C+ = −

+( )
…(i)

Here, VC = potential at C due to mass M = −3

2

GM

R

Substituting this value in Eq. (i) and then solving we get,

v
GM

R
C = 2

Ans.

V Example 7 A particle of mass ‘m’ is projected from the surface of earth with

velocity v ve=2 , where ve is the value of escape velocity from the surface of earth.

Find velocity of the particle on reaching to interstellar space (at infinity) in terms

of ve .
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Solution v
GM

R
e = 2 ⇒ GM

R

ve=
2

2
…(i)

Using conservation of mechanical energy at the surface of earth and infinity.

We have, K U K Uf f i i+ = +

⇒ 1

2
0

1

2
22 2mv m v

GMm

R
e∞ + = −( ) …(ii)

Substituting the value of
GM

R

ve=
2

2

From Eq. (i) in Eq. (ii) we get, v ve∞ = 3

Alternate Method

On the surface of earth speed is two times the escape velocity. So, kinetic energy is four times.

One kinetic energy is used in taking it to  infinity. So, three kinetic energies are still left at

infinity. In terms of speed it is 3ve.

Type 5. Based on conservation of mechanical energy and linear momentum.

Concept

Two particles (or two spherical bodies) of masses m1 and m2 are free
to move along the line joining them. This time their masses are
comparable. Net force on the two particle system is zero.Therefore,
linear momentum of the system may be conserved. Further, gravitational forces are
conservative in nature.

Therefore, mechanical energy of the system is also conserved. Since, we are using two
conservation laws, therefore number of unknowns are also two.

V Example 8 In the figure shown in the text, m m1 = , m m2 2= and initial distance

between them is r0 . Find velocities of the masses when separation between them

becomes
r0

2
.

Solution Let their velocities are v1 and v2. From conservation of linear momentum.

p pi f=
∴ 0 21 2= −mv mv …(i)

From conservation of mechanical energy,

E Ei f=
or K U K Ui i f f+ = +

or 0
2 1

2

1

2
2

0
1
2

2
2− = + × ×G m m

r
mv m v

( ) ( ) − G m m

r

( ) ( )

( / )

2

22

…(ii)

Solving Eqs. (i) and (ii), we get

v
Gm

r
1

0

2
2

3
= , v

Gm

r
2

0

2

3
= Ans.
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Type 6. Based on conservation of angular momentum (L mvr= sinθ) and mechanical energy.

Concept

In the figure shown, M m>> . Hence, the sphere of mass M is at rest
and only the particle of mass ‘m’ will move. This particle is projected
with velocity v at some angle θ from the surface as shown.
Gravitational force on ‘m’ is always towards centre of ‘M’. So, its
torque about centre is always zero and angular momentum of particle
about centre may be conserved. Further, the gravitational force,
being a conservative force mechanical energy can also be conserved.
We are applying two conservation laws, so number of unknown are
also two.

V Example 9 Find the maximum and minimum distances of the planet A from

the sun S, if at a certain moment of time it was at a distance r0 and travelling

with the velocity v0, with the angle between the radius vector and velocity vector

being equal to φ.

Solution At minimum and maximum distances velocity vector ( )v makes an angle of 90° with

radius vector. Hence, from conservation of angular momentum,

mv r mrv0 0 sin φ = …(i)

Here, m is the mass of the planet.

From energy conservation law, it follows that

mv GMm

r

mv GMm

r

0
2

0

2

2 2
− = − …(ii)

Here, M is the mass of the sun.

Solving Eqs. (i) and (ii) for r, we get two values of r, one is rmax and another is rmin. So,

r
r

K
K Kmax ( ( ) sin )=

−
+ − − φ0 2

2
1 1 2

and r
r

K
K Kmin ( ( ) sin )=

−
− − − φ0 2

2
1 1 2

Here, K
r v

GM
= 0

2
0
2

V Example 10 A projectile of mass m is fired from the surface of the earth at an

angle α = °60 from the vertical. The initial speed v0 is equal to
GM

R

e

e

. How high

does the projectile rise ? Neglect air resistance and the earth’s rotation.
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Solution Let v be the speed of the projectile at highest point and rmax its distance from the

centre of the earth. Applying conservation of angular momentum and mechanical energy,

mv mvr0 90sin sinα = °max

or mv mvr0 sin maxα = …(i)

1

2

1

2
0
2 2mv

GM m

R
mv

GM m

r

e

e

e− = −
max

…(ii)

Solving these two equations with the given data we get,

r
Re

max = 3

2

or the maximum height h r R
R

e
e

max max= − =
2

Ans.

Type 7. Based on double star system.

Concept

In motion of a planet round the sun we have assumed the mass of the
sun to be too large in comparison to the mass of the planet. Under
such situation the sun remains stationary and the planet revolves
round the sun. If however masses of sun and planet are comparable
and motion of sun is also to be considered, then both of them revolve
around their centre of mass with same angular velocity but different
linear speeds in the circles of different radii. The centre of mass
remains stationary. This system of two stars is called a double star
system.
We use following equations under this condition.

m r m r1 1 2 2= …(i)

m r m r
Gm m

r r
1 1

2
2 2

2 1 2

1 2
2

ω ω= =
+( )

…(ii)

Solving these two equations, we can find that

ω = GM

r3
or T

r

GM
= 2 3 2π /

Here, M m m= +1 2 and r r r= +1 2

Further, angular momentum of the system about COM

L I I
m m

m m
r r= + =

+






 =( )1 2

1 2

1 2

2 2ω ω µ ω

Kinetic energy of system, K
m m

m m
r r=

+






 =1

2

1

2

1 2

1 2

2 2 2 2ω µ ω

and  moment of inertia of system,

I
m m

m m
r r=

+






 =1 2

1 2

2 2µ

Here, µ =
+

=
m m

m m

1 2

1 2

reduced mass
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Thus, the two bodies can be replaced by a single
body whose mass is equal to reduced mass. This
single body revolve in a circular orbit whose radius
is equal to the distance between two bodies and
centripetal force of circular motion is equal to force
of interaction between two bodies for actual
separation.

V Example 11 A planet of mass m1 revolves round the sun of mass m2 . The

distance between the sun and the planet is r. Considering the motion of the sun

find the total energy of the system assuming the orbits to be circular.

Solution Both the planet and the sun revolve around their centre of mass with same angular

velocity (say ω)

r r r= +1 2 …(i)

m r m r
Gm m

r
1 1

2
2 2

2 1 2
2

ω ω= = …(ii)

Solving Eqs. (i) and (ii), we get

r r
m

m m
1

2

1 2

=
+









r r
m

m m
2

1

1 2

=
+









and ω2 1 2
3

= +G m m

r

( )

Now, total energy of the system is

E = PE KE+ or E
Gm m

r
m r m r= − + +1 2

1 1
2 2

2 2
2 21

2

1

2
ω ω

Substituting the values of r1 , r2 and ω2, we get

E
Gm m

r
= − 1 2

2
Ans.

Type 8. To find gravitational field strength for spherical mass distribution when mass density is a
function of r (not constant), where r is the distance from centre.

Concept

Mass density of a solid sphere of radius R varies as ρ ρ= 0
2r , where ρ0 is a

positive constant, we have to find variation of E with r.

According to Gauss theorem, the mass inside a spherical surface only
contributes in the field strength on the surface of that sphere or at a
distance ‘r’ from the centre

E
Gm

r
= in

2
…(i)

where, m
in

is the mass inside that sphere. Here, m
in

will be obtained by integration as the
mass density is not constant.
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Let us take a small element of thickness dr at distance ‘r’. Volume of this element.

dV r dr=( )4 2π
Mass density at distance r is

ρ ρ= 0
2r

Therefore, small mass of this element

dm dV=ρ
or dm r dr=( )4 0

4πρ

∴ m dm r dr
rr

in
= = ∫∫ ( )4 0

4

00
πρ

or m r
in

=
4

5

0 5πρ
…(ii)

Substituting this value of m
in

in Eq. (i) we can find E.

V Example 12 In the problem discussed in the text, find E r- expressions for inside

and outside points.

Solution Inside points (r R≤ )

Directly substituting value of m
in

from Eq. (ii) in Eq. (i) we have,

E
G

r

r=








2

0
54

5

πρ

or E
G r= 4

5

0
3π ρ

Outside points (r R≥ )

Mass is only upto r R= . So, substituting r R= in Eq. (ii) we have,

m R
in

= 4

5

0 5πρ

Now, substituting this value of m
in

in Eq. (i), we have

E
G

r

R=








2

0
54

5

πρ

or E
G R

r
= 4

5

0
5

2

π ρ

Note Direction of E is always towards the centre of the sphere.

Type 9. To draw E r- and V r- graphs due to two points masses, along the line joining two masses.

Concept

(i) Expressions of E and V due to a point mass are

E
Gm

r
=

2
(towards the point mass)

and V
Gm

r
= −

(ii) As r → ∞, E and V both → 0.

256 � Mechanics - II



(iii) As r → 0, E→ ∞ and V → − ∞
(iv) E is a vector quantity. On two sides of a point mass directions are different. So, on one

side if value is + ∞ (just over the mass as r → 0) and on its other side value will be − ∞.

(v) V is a scalar quantity. On both sides of the mass (as r → 0) value will be − ∞.

(vi) Between two zero values, we will get one maximum (or minimum value)

How to Solve?

Just write down the values at r → ∞ and r → 0, then draw the graph with the help of five points discussed
above.

V Example 13 Two points masses ‘m’ and 2m are kept at certain distance as

shown in figure. Draw E r- and V r- graphs along the line joining them

corresponding to given mass system.

Solution E r- Graph

Region I Fields of m and 2m both are positive. Hence, net field at any point is also positive.

Region II Field at m is negative and field of 2m is positive. So, at some point P (nearer to m)

two fields are equal and opposite and net field is zero.
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E = 0
r

E

E r= 0, at → ∞
V = 0

r

V

V

r

= 0

at → ∞
or

m 2m

m

–∞ –∞

EE m

+∞ – ∞

EE 2m

+∞ –∞

I

as r → ∞
E 0→

–ve
+ve

as r → ∞
E 0→ Q

II III

P

EE m

+∞ –∞ +ve



Region III Fields of m and 2m both are negative. Hence, net field at any point is also negative.

V r- Graph

Gravitational potential is always negative on both sides. So, net potential at any point is always

negative. Between two masses potential varies between − ∞ and − ∞. So, graph is as shown in

figure.

Type 10. To find value of E or V at some point due to a solid sphere having some cavity in it.

How to Solve?

Suppose a solid sphere of mass M and radius R has a cavity of radius
R

4
as shown in figure and we wish to

find net gravitational field and potential at point P. Then,

E E ET R C= +
∴ E E ER T C= − …(i)

Similarly, V V VR T C= − …(ii)

Here, R stands for remaining mass, T for  total mass and C for cavity.

V Example 14 In the problem discussed in the text, find the values of E and V at

P due to the remaining mass.

Solution Total mass is M of volume
4

3

3πR . Therefore, mass of cavity of volume
4

3 4

3

π R



 will be

M

64
.

Further, C P R
R R

1 2
4

9

4
= + =

Using Eq. (i), E i iR

GM

R

G
M

R
= − −







−
( )

( $)
( / )

( $)
3

64

9 42 2

Note Field strength is always towards the centre.
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P

R/4
x - axis

3R

CR

C1

m

–∞

2 m V

r

0

as

→
→ ∞

V

r

0

as

→
→ ∞

–∞ –∞–∞



∴ E iR

GM

R
= −35

324 2
( $) Ans.

∴ Field Strength is
35

324 2

GM

R
towards C.

Using Eq. (ii), we have

V
GM

R

G
M

R
R = − −

− 























3

64

9 4( / )

= − 47

144

GM

R
Ans.

Type 11. To find minimum velocity required to project one particle from the surface of one planet to
other planet.

Concept

Suppose the particle of mass ‘m’ is projected from the surface of planet of mass M1 and we
wish to project it upto the surface of other planet. In between the two planets, there is a
point P, where net field strength is zero. Or, net force on ‘m’ is zero.

From C1 to P field strength of M1 is stronger and net force on ‘m’ is towards C1. At point P
field strengths of both M1 and M2 are equal and opposite. BetweenC2 and P field strengths
of M2 is stronger and net force on ‘m’ is towards C2.

So, we have to project the particle only upto P. After P, it automatically moves towards the
surface of B by the attraction of M2.

How to Solve?

First find the point P, where net gravitational force on ‘m’ is zero. Then, apply energy conservation equation
between A and P where,

vA = minimum velocity required and vP is tending to zero.

Note By applying energy  conservation principle we can also find velocity at B, on reaching to the surface of B.

V Example 15 Distance between the centres of two stars is 10a. The masses of

these stars are M and 16M and their radii a and 2a respectively. A body of mass

m is fired straight from the surface of the larger star towards the surface of the

smaller star. What should be its minimum initial speed to reach the surface of the

smaller star? Obtain the expression in terms of G M, and a. (JEE 1996)
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Solution Let there are two stars 1 and 2 as shown below.

Let P is a point between C1 and C2, where gravitational field strength is zero or at P field

strength due to star 1 is equal and opposite to the field strength due to star 2. Hence,

GM

r

G M

r1
2

2
2

16= ( )
or

r

r
r r a2

1
1 24 10= + =also

∴ r a a2

4

4 1
10 8=

+






 =( ) and r a1 2=

Now, the body of mass m is projected from the surface of larger star towards the smaller one.

Between C2 and P it is attracted towards 2 and between C1 and P it will be attracted towards 1.
Therefore, the body should be projected to just cross point P because beyond that the particle is

attracted towards the smaller star itself.

From conservation of mechanical energy
1

2

2mv min

= Potential energy of the body at P – Potential energy at the surface of larger star.

∴ 1

2

162

1 2

mv
GMm

r

GMm

r
min = − −









 − −

−
−











GMm

a a

GMm

a10 2

16

2

= − −





− − −





GMm

a

GMm

a

GMm

a

GMm

a2

16

8 8

8

or
1

2

45

8

2mv
GMm

a
min = 



 ⇒ ∴ v

GM

a
min =









3 5

2
Ans.

Type 12. To find gravitational potential due to two or more than two spherical shells.

Concept

At any point inside the shell (upto the surface).

V
GM

R
= − =constant

In the denominator, substitute R, radius of the shell.

At any point outside the shell,

V
GM

r
= − or V

r
∝− 1

In the denominator, substitute r, actual distance of the point from the centre.
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V Example 16 Three spherical shells of masses M, 2M and 3M have radii R, 3R

and 4R as shown in figure. Find net potential at point P, where CP R= 2

Solution Point P lies outside the innermost shell. So, in the denominator we will substitute

actual distance of P from the centre or r CP R= =2 .

This point P lies inside the other  two shells. So, we will substitute their radii, 3R and 4R in the

denominator.

∴ V
GM

R

G M

R

G M

R
P = − − −

2

2

3

3

4

( ) ( ) = −23

12

GM

R
Ans.

V Example 17 Explain the reason of weightlessness inside a satellite.

Solution Feeling of weight is due to the normal reaction from the

ground. Inside a satellite, this normal reaction becomes zero, which can

be proved as given below.

Orbital speed is  given by

v
GM

r
= …(i)

Two forces are acting on the person.

(i) F = gravitational force from earth

or F
GMm

r
=

2
…(ii)

(ii) N = normal reaction

Person is also revolving in circular motion with same speed v. So, it needs a centripetal

force.

∴ F N
mv

r
− =

2

or N F
mv

r
= −

2

Substituting the values of F and v in Eqs. (i) and (ii) we have,

N
GMm

r

m

r

GM

r
= −







 =

2

2

0 Hence Proved.

Note Moon is also an earth's satellite but there we don't feel weightlessness because mass of moon is large and

we feel weight due to the gravitational force due to the moon (which is not insignificant like other satellite as

its mass is less in comparison to the moon).
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V Example 18 Find the speeds of a planet of mass m in its perihelion and

aphelion positions. The semimajor axis of its orbit is a, eccentricity is e and the

mass of the sun is M. Also find the total energy of the planet in terms of the given

parameters.

Solution Let v1 and v2 be the speeds of the planet at perihelion

and aphelion positions.

r a e1 1= −( )

and r a e2 1= +( ) …(i)

Applying conservation of angular momentum of the planet at P
(perihelion) and A (aphelion)

mv r mv r1 1 2 290 90sin sin° = °
or v r v r1 1 2 2= …(ii)

Applying conservation of mechanical energy in these two positions, we have

1

2

1

2
1
2

1
2
2

2

mv
GMm

r
mv

GMm

r
− = − …(iii)

Solving Eqs. (i), (ii) and (iii), we get

v
GM

a

e

e
1

1

1
= +

−






 and v

GM

a

e

e
2

1

1
= −

+








Further, total energy of the planet

E mv
GMm

r
= −1

2
1
2

1

= +
−

















 −

−
1

2

1

1 1
m

GM

a

e

e

GMm

a e( )

=
−

+



 −





GMm

a e

e

( )1

1

2
1

=
−

−





GMm

a e

e

( )1

1

2
or E

GMm

a
= −

2
Ans.

V Example 19 The minimum and maximum distances of a satellite from the

centre of the earth are 2R and 4R respectively, where R is the radius of earth and

M is the mass of the earth. Find

(a) its minimum and maximum speeds,

(b) radius of curvature at the point of minimum distance.

Solution (a) Applying conservation of angular momentum

mv R mv R1 22 4( ) ( )=
v v1 22= ... (i)

From conservation of energy

1

2 2

1

2 4
1
2

2
2mv

GMm

R
mv

GMm

R
− = − ... (ii)

Solving Eqs. (i) and (ii), we get

v
GM

R
v

GM

R
2 1

6

2

3
= =,

262 � Mechanics - II

3R

R
A

R

v1

v2

B

v1

r2

S

v2

r1
AP



(b) If r is the radius of curvature at point A

mv

r

GMm

R

1
2

22
=

( )

r
v R

GM
= 4 1

2 2

= 8

3

R
(putting value of v1)

V Example 20 A planet of mass m revolves in elliptical orbit around the sun of

mass M so that its maximum and minimum distances from the sun are equal to

ra and rp respectively. Find the angular momentum of this planet relative to the

sun.

Solution Using conservation of angular momentum

mv r mv rp p a a=
As velocities are perpendicular to the radius vectors at apogee and perigee.

⇒ v r v rp p a a=
Using conservation of energy,

− + = − +GMm

r
mv

GMm

r
mv

p
p

a
a

1

2

1

2

2 2

By solving, the above equations,

v
GMr

r r r
p

a

p p a

=
+

2

( )

L mv r m
GMr r

r r
p p

p a

p a

= =
+

2

( )

V Example 21 If a planet was suddenly stopped in its orbit supposed to be

circular, show that it would fall onto the sun in a time
2

8
times the period of the

planet’s revolution.

Solution Consider an imaginary planet moving along a strongly

extended flat ellipse, the extreme points of which are located on

the planet’s orbit and at the centre of the sun. The semi-major axis

of the orbit of such a planet would apparently be half the

semi-major axis of the planet’s orbit. So, the time period of the

imaginary planet T ′ according to Kepler’s law will be given by

T

T

r

r

′



 = ′





3

2

or T T′ = 





1

2

3

2
as r

r′ =



2

∴ Time taken by the planet to fall onto the sun is

t
T T= ′ = 



2 2

1

2

3

2 ⇒ t T= 2

8
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V Example 22 A satellite is revolving round the earth in a circular orbit of radius

r and velocity v0 . A particle is projected from the satellite in forward direction

with relative velocity v v= −( / ) .5 4 1 0 Calculate its minimum and maximum

distances from earth’s centre during subsequent motion of the particle.

Solution v
GM

r
o = = orbital speed of satellite …(i)

where, M = mass of earth.

Absolute velocity of particle would be

v v v v vp = + = =0 0 0

5

4
1.25 …(ii)

Since, vp lies between orbital velocity and escape velocity, path of the particle would be an

ellipse with r being the minimum distance.

Let r′ be the maximum distance and vp′ its velocity at that moment.

Then, from conservation of angular momentum and conservation of mechanical energy, we get

mv r mv rp p= ′ ′ …(iii)

and
1

2

1

2

2 2mv
GMm

r
mv

GMm

r
p p− = ′ −

′
…(iv)

Solving the above Eqs. (i), (ii), (iii) and (iv), we get

r
r′ = 5

3
and r

Hence, the maximum and minimum distances are
5

3

r
and r respectively.

V Example 23 An earth satellite is revolving in a circular orbit of radius a with

velocity vo . A gun is in the satellite and is aimed directly towards the earth. A

bullet is fired from the gun with muzzle velocity
v0

2
. Neglecting resistance offered

by cosmic dust and recoil of gun, calculate maximum and minimum distance of

bullet from the centre of earth during its subsequent motion.

Solution Orbital speed of satellite is

v
GM

a
o = …(i)

From conservation of angular momentum at P and Q, we have

mav mvro =

or v
av

r

o= …(ii)
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From conservation of mechanical energy at P and Q, we have

1

2 4

1

2

2
2

2m v
v GMm

a
mv

GMm

r
o

o+






 − = −

or
5

8 2

2
2

v
GM

a

v GM

r
o − = −

Substituting values of v and vo from Eqs. (i) and  (ii), we get

5

8 2

2

2

GM

a

GM

a

a

r

GM

a

GM

r
− = 



 −.

or − = −3

8 2

1
2a

a

r r

or − = −3 4 82 2r a ar

or 3 8 4 02 2r ar a− + =

or r
a a a

=
± −8 64 48

6

2 2

or r
a a= ±8 4

6

or r a= 2 and
2

3

a

Hence, the maximum and minimum distances are 2a and
2

3

a
respectively.

V Example 24 Binary stars of comparable masses m1 and m2 rotate under the

influence of each other’s gravity with a time period T. If they are stopped

suddenly in their motions, find their relative velocity when they collide with each

other. The radii of the stars are R1 and R2 respectively. G is the universal

constant of gravitation.

Solution Both the stars rotate about their centre of mass (COM).

For the position of COM,
r

m

r

m

r r

m m

r

m m

1

2

2

1

1 2

1 2 1 2

= = +
+

=
+

( )r r r= +1 2
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Also, m r
Gm m

r
1 1

2 1 2
2

ω =

or ω2 2

1
2

= Gm

r r
ω π=





2

T

But, r
m r

m m
1

2

1 2

=
+

∴ ω2 1 2
3

= +G m m

r

( )

or r
G m m= +








( )
/

1 2
2

1 3

ω
…(i)

Applying conservation of mechanical energy, we have

− = −
+

+Gm m

r

Gm m

R R
vr

1 2 1 2

1 2

21

2( )
µ …(ii)

Here, µ = reduced mass

=
+

m m

m m

1 2

1 2

and vr = relative velocity between the two stars.

From Eq. (ii), we find that

v
Gm m

R R r
r
2 1 2

1 2

2 1 1=
+

−








µ

=

+
+

−








2 1 11 2

1 2

1 2

1 2

Gm m

m m

m m

R R r

= +
+

−






2

1 1
1 2

1 2

G m m
R R r

( )

Substituting the value of r from Eq. (i), we get

v = G m + m
R + R

–
G m + m T

r 2
1 4

1 2
1 2

2

1 2
2

1

( )
( )

π







/3
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LEVEL 1
Assertion and Reason

Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : When two masses come closer, their gravitational potential energy decreases.

Reason : Two masses attract each other.

2. Assertion : In moving from centre of a solid sphere to its surface, gravitational potential
increases.

Reason : Gravitational field strength increases.

3. Assertion : There are two identical spherical bodies fixed in two positions as shown. While
moving from A to B gravitational potential first increases then decreases.

Reason : At centre point of A Band field strength will be zero.

4. Assertion : If we plot potential versus x-coordinate graph along the x-axis, then field strength
is zero where slope of V -x graph is zero.

Reason : If potential is function of x-only then

E
dV

dx
= −

5. Assertion : A particle is projected upwards with speed v and it goes to a height h. If we double
the speed then it will move to height 4h.

Reason : In case of earth, acceleration due to gravity g varies as

g
r

∝ 1
2

(for r R≥ )

6. Assertion : In planetary motion angular momentum of planet about centre of sun remains
constant. But linear momentum of system does not remain constant.

Reason : Net torque on planet about any point is zero.

7. Assertion : Plane of space satellite is always equatorial plane.

Reason : On the equator value of g is minimum.

A B

Exercises



8. Assertion : On satellites we feel weightlessness. Moon is also a satellite of earth. But we do not
feel weightlessness on moon.

Reason : Mass of moon is considerable.

9. Assertion : Plane of geostationary satellites always passes through equator.

Reason : Geostationary satellites always lies above Moscow.

10. Assertion : It we double the circular radius of a satellite, then its potential energy, kinetic
energy and total mechanical energy will become half.

Reason : Orbital speed of a satellite.

v
r

∝ 1

where, r is its radius of orbit.

11. Assertion : If the radius of earth is decreased keeping its mass constant, effective value of g
may increase or decrease at pole.

Reason : Value of g on the surface of earth is given by g
GM

R
=

2
.

Objective Questions
Single Correct Option

1. A satellite orbiting close to the surface of earth does not fall down because the gravitational pull
of earth

(a) is balanced by the gravitational pull of moon

(b) is balanced by the gravitational pull of sun

(c) provides the necessary acceleration for its motion along the circular path

(d) makes it weightless

2. For the planet-sun system identify the correct statement.

(a) the angular momentum of the planet is conserved about any point

(b) the total energy of the system is conserved

(c) the momentum of the planet is conserved

(d) All of the above

3. If the earth stops rotating about its axis, then the magnitude of gravity

(a) increases everywhere on the surface of earth

(b) will increase only at the poles

(c) will not change at the poles

(d) All of the above

4. For a body to escape from earth, angle from horizontal at which it should be fired is

(a) 45°

(b) 0°

(c) 90°

(d) any angle
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5. The correct variation of gravitational potential V with radius r measured from the centre of
earth of radius R is given by

(a) (b)

(c) (d) None of these

6. The Gauss’ theorem for gravitational field may be written as

(a) g S∫ ⋅ =d
m

G
(b) − ⋅ =∫ g Sd mG4π (c) g S∫ ⋅ =d

m

G4π
(d) − ⋅ =∫ g Sd

m

G

7. In the earth-moon system, if T1 and T2 are period of revolution of earth and moon respectively
about the centre of mass of the system then

(a) T T1 2> (b) T T1 2= (c) T T1 2< (d) Insufficient data

8. The figure shows a spherical shell of mass M. The point A is not at the centre but
away from the centre of the shell. If a particle of mass m is placed at A, then

(a) it remains at rest

(b) it experiences a net force towards the centre

(c) it experiences a net force away from the centre

(d) None of the above

9. If the distance between the earth and the sun were reduced to half its present value, then the
number of days in one year would have been

(a) 65 (b) 129

(c) 183 (d) 730

10. The figure represents an elliptical orbit of a planet around sun. The planet

takes timeT1 to travel from A to Band it takes timeT2 to travel fromC to D.

If the area CSD is double that of area ASB, then

(a) T T1 2=
(b) T T1 22=
(c) T T1 205= .

(d) Data insufficient

11. At what depth from the surface of earth the time period of a simple pendulum is 0.5% more than
that on the surface of the Earth? (Radius of earth is 6400 km)

(a) 32 km (b) 64 km (c) 96 km (d) 128 km

12. If M is the mass of the earth and R its radius, the ratio of the gravitational acceleration and the
gravitational constant is

(a)
R

M

2

(b)
M

R2
(c) MR2 (d)

M

R
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13. The height above the surface of earth at which the gravitational field intensity is reduced to 1%
of its value on the surface of earth is

(a) 100Re (b) 10Re (c) 99Re (d) 9Re

14. For a satellite orbiting close to the surface of earth the period of revolution is 84 min. The time
period of another satellite orbiting at a height three times the radius of earth from its surface
will be

(a) ( )84 2 2 min (b) 8 (84) min

(c) ( )84 3 3 min (d) 3 (84) min

15. The angular speed of rotation of earth about its axis at which the weight of man standing on the
equator becomes half of his weight at the poles is given by

(a) 0.034 rad s−1 (b) 8 75 10 4 1. × − −rad s

(c) 123 10 2 1. × − −rad s (d) 765 10 7 1. × − −rad s

16. The height from the surface of earth at which the gravitational potential energy of a ball of
mass m is half of that at the centre of earth is (where R is the radius of earth)

(a)
R

4
(b)

R

3
(c)

3

4

R
(d)

4

3

R

17. A body of mass m is lifted up from the surface of earth to a height three times the radius of the
earth R. The change in potential energy of the body is

(a) 3mgR (b)
5

4
mgR

(c)
3

4
mgR (d) 2mgR

18. A satellite is revolving around earth in its equatorial plane with a period T . If the radius of
earth suddenly shrinks to half without change in the mass. Then, the new period of revolution
will be

(a) 8T (b) 2 2 T

(c) 2T (d) T

19. A planet has twice the density of earth but the acceleration due to gravity on its surface is
exactly the same as that on the surface of earth. Its radius in terms of earth’s radius R will be

(a) R/4 (b) R/2

(c) R/3 (d) R/8

20. The speed of earth’s rotation about its axis is ω. Its speed is increased to x times to make the
effective acceleration due to gravity equal to zero at the equator, then x is around (g = −10 2ms ;
R = 6400 km)

(a) 1 (b) 8.5

(c) 17 (d) 34

21. A satellite is seen every 6 h over the equator. It is known that it rotates opposite to that of
earth’s direction. Then, the angular velocity (in radian per hour) of satellite about the centre of
earth will be

(a)
π
2

(b)
π
3

(c)
π
4

(d)
π
8

22. For a planet revolving around sun, if a band are the respective semi-major and semi-minor
axes, then the square of its time period is proportional to

(a)
a b+



2

3

(b)
a b−



2

3

(c) b3 (d) a3

270 � Mechanics - II



23. The figure represents two concentric shells of radii R R1 2and and masses
M M1 2and respectively. The gravitational field intensity at the point A at
distance a ( )R a R1 2< < is

(a)
G M M

a

( )1 2
2

+
(b)

GM

a

GM

R

1
2

2

2
2

+

(c)
GM

a

1
2

(d) zero

24. A straight tunnel is dug into the earth as shown in figure at a distance b from
its centre. A ball of mass m is dropped from one of its ends. The time it takes
to reach the other end is approximately

(a) 42 min (b) 84 min

(c) 84
b

R





 min (d) 42

b

R





 min

25. Three identical particles each of mass M are placed at the corners of an equilateral triangle of
side l. The work done by external force to increase the side of triangle from l to 2l is

(a) − 3

2

2GM

l
(b)

− 3 2GM

l

(c)
3

2

2GM

l
(d)

3 2GM

l

26. A particle is thrown vertically upwards from the surface of earth and it reaches to a maximum
height equal to the radius of earth. The ratio of the velocity of projection to the escape velocity
on the surface of earth is

(a)
1

2
(b)

1

2
(c)

1

4
(d)

1

2 2

27. The gravitational potential energy of a body at a distance r from the centre of earth isU . Its
weight at a distance 2r from the centre of earth is

(a)
U

r
(b)

U

r2
(c)

U

r4
(d)

U

r2

Subjective Questions

1. A particle of mass 1 kg is kept on the surface of a uniform sphere of mass 20 kg and radius 1.0 m.
Find the work to be done against the gravitational force between them to take the particle away
from the sphere.

2. What is the fractional decrease in the value of free-fall acceleration g for a particle when it is
lifted from the surface to an elevation h? (h < < R)

3. Two masses m1 and m2 at an infinite distance from each other are initially at rest, start
interacting gravitationally. Find their velocity of approach when they are at a distance r apart.

4. If a satellite is revolving close to a planet of density ρwith period T, show that the quantity ρT 2

is a universal constant.

5. A satellite is revolving around a planet in a circular orbit. What will happen, if its speed is
increased from v0 to

(a) 1 5 0. v (b) 2 0v

6. If the radius of the earth contracts to half of its present value without change in its mass, what
will be the new duration of the day?
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7. Two concentric spherical shells have masses m m1 2, and radii R R R R1 2 1 2, ( )< . Calculate the

force exerted by this system on a particle of mass m, if it is placed at a distance
( )R R1 2

2

+
from

the centre.

8. Find the force of attraction on a particle of mass m placed at the centre of a semicircular wire of
length L and mass M.

9. A rocket is accelerated to speed v gR= 2 near the earth’s surface (R = radius of earth). Show

that very far from earth its speed will be v gR= 2 .

10. Two spheres one of mass M has radius R. Another sphere has mass 4M and radius 2R. The
centre to centre distance between them is 12R. Find the distance from the centre of smaller
sphere where

(a) net gravitational field is zero,

(b) net gravitational potential is half the potential on the surface of larger sphere.

11. A uniform solid sphere of mass M and radius a is surrounded symmetrically by a uniform thin

spherical shell of equal mass and radius 2a. Find the gravitational field at a distance (a)
3

2
a

from the centre, (b)
5

2
a from the centre.

12. The density inside a solid sphere of radius a is given by ρ ρ= 0a r/ ,where ρ0 is the density at the
surface and r denotes the distance from the centre. Find the gravitational field due to this
sphere at a distance 2a from its centre.

13. Two neutron stars are separated by a distance of 1010 m. They each have a mass of 1030 kg and a

radius of 105 m. They are initially at rest with respect to each other.

As measured from the rest frame, how fast are they moving when

(a) their separation has decreased to one-half its initial value,

(b) they are about to collide.

14. A mass m is taken to a height R from the surface of the earth and then is given a vertical
velocity v. Find the minimum value of v, so that mass never returns to the surface of the earth.
(Radius of earth is R and mass of the earth M ).

15. In the figure masses 400 kg and 100 kg are fixed.

(a) How much work must be done to move a 1 kg mass from point A to point B ?

(b) What is the minimum kinetic energy with which the 1 kg mass must be projected from A to the

right to reach the point B ?

16. Two identical stars of mass M orbit around their centre of mass. Each orbit is circular and has
radius R, so that the two stars are always on opposite sides of the circle.

(a) Find the gravitational force of one star on the other.

(b) Find the orbital speed of each star and the period of the orbit.

(c) What minimum energy would be required to separate the  two stars to infinity ?
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17. Consider two satellites A and B of equal mass, moving in the same circular orbit of radius r
around the earth but in the opposite sense and therefore a collision occurs.

(a) Find the total mechanical energy E EA B+ of the two satellite-plus-earth system before collision.

(b) If the collision is completely inelastic, find the total mechanical energy immediately after

collision. Describe the subsequent motion of the combined satellite.

18. In a certain binary star system, each star has the same mass as our sun. They revolve about
their centre of mass. The distance between them is the same as the distance between earth and
the sun. What is their period of revolution in years ?

19. (a) Does it take more energy to get a satellite upto 1500 km above earth than to put it in circular

orbit once it is there.

(b) What  about 3185 km?

(c) What about 4500 km? (Take Re = 6370 km)

LEVEL 2

Objective Questions
Single Correct Option

1. An artificial satellite of mass m is moving in a circular orbit at a height equal to the radius R of
the earth. Suddenly due to internal explosion the satellite breaks into two parts of equal pieces.
One part of the satellite stops just after the explosion. The increase in the mechanical energy of
the system due to explosion will be
(Given, acceleration due to gravity on the surface of earth is g)

(a) mgR (b)
mgR

2

(c)
mgR

4
(d)

3

4

mgR

2. Gravitational field at the centre of a semicircle formed by a thin wire ABof mass M and length l
is

(a)
GM

l2
along x-axis (b)

GM

lπ 2
along y-axis

(c)
2

2

πGM

l
along x-axis (d)

2
2

πGM

l
along y-axis

3. Four particles, each of mass M, move along a circle of radius R under the action of their mutual
gravitational attraction. The speed of each particle is

(a)
GM

R
(b) 2 2

GM

R

(c)
GM

R
( )2 2 1+ (d)

GM

R

2 2 1

4

+
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4. A projectile is fired from the surface of earth of radius R with a velocity kve (where ve is the
escape velocity from surface of earth and k < 1). Neglecting air resistance, the maximum height
of rise from the centre of earth is

(a)
R

k2 1−
(b) k R2

(c)
R

k1 2−
(d) kR

5. Suppose a vertical tunnel is dug along the diameter of earth, which is assumed to
be a sphere of uniform mass density ρ. If a body of mass m is thrown in this tunnel,
its acceleration at a distance y from the centre is given by

(a)
4

3

π ρG ym (b)
3

4
πρy

(c)
4

3
πρy (d)

4

3
π ρG y

6. A train of mass m moves with a velocity v on the equator from east to west. If ω is the angular
speed of earth about its axis and R is the radius of the earth then the normal reaction acting on
the train is

(a) mg
R v

g

v

Rg
1

2 2

− − −










( )ω ω
(b) mg

R v

g

v

Rg
1 2

2

− − −










( )ω ω

(c) mg
R v

g

v

Rg
1

2 2

− + −










( )ω ω
(d) mg

R v

g

v

Rg
1 2

2

− − −










( )ω ω

7. The figure represents a solid uniform sphere of mass M and radius R. A spherical
cavity of radius r is at a distance a from the centre of the sphere. The gravitational
field inside the cavity is

(a) non-uniform (b) towards the centre of the cavity

(c) directly proportional to a (d) All of these

8. If veis the escape velocity for earth when a projectile is fired from the surface of earth. Then, the
escape velocity if the same projectile is fired from its centre is

(a)
3

2
ve (b)

3

2
ve

(c)
2

3
ve (d)

2

3
ve

9. If the gravitational field intensity at a point is given by g
GM

r
=

2.5
. Then, the potential at a

distance r is

(a)
− 2

3

GM

r1.5
(b)

− GM

r2.5

(c)
2

3

GM

r1.5
(d)

GM

r3.5

10. Three identical particles each of mass M move along a common circular path of radius R under
the mutual interaction of each other. The velocity of each particle is

(a)
GM

R

2

3
(b)

GM

R3

(c)
GM

R3
(d)

2

3

GM

R
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11. If T be the period of revolution of a planet revolving around sun in an orbit of mean radius R,
then identify the incorrect graph.

(a) (b)

(c)
(d) None of these

12. A person brings a mass of 1 kg from infinity to a point A. Initially, the mass was at rest but it
moves at a speed of 3 m/s as it reaches A. The work done by the person on the mass is – 5.5 J.
The gravitational potential at A is

(a) – 1 J/kg (b) – 4.5 J/kg (c) – 5.5 J/kg (d) – 10 J/kg

13. With what minimum speed should m be projected from point C in
presence of two fixed masses M each at A Band as shown in the figure
such that mass m should escape the gravitational attraction of A Band ?

(a)
2GM

R
(b)

2 2GM

R

(c) 2
GM

R
(d) 2 2

GM

R

14. Consider two configurations of a system of three particles of masses m m, 2 and 3m. The work
done by gravity in changing the configuration of the system from figure (i) to figure (ii) is

(a) zero (b)
6

1
1

2

2Gm

a
+








(c)
6

1
1

2

2Gm

a
−








(d)
6

2
1

2

2Gm

a
−








15. A tunnel is dug along the diameter of the earth. There is a particle of mass m at the centre of the
tunnel. Find the minimum velocity given to the particle so that is just reaches to the surface of
the earth.(R = radius of earth)

(a)
GM

R

(b)
GM

R2

(c)
2GM

R

(d) it will reach with the help of negligible velocity
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16. A body is projected horizontally from the surface of the Earth (radius = R) with a velocity equal

to n times the escape velocity. Neglect rotational effects of the earth. The maximum height

attained by the body from the earth’s surface is R/ 2. Then, n must be

(a) 06. (b) ( )/3 2 (c) 04. (d) 1/2

17. A tunnel is dug in the earth across one of its diameter. Two masses m and 2m are dropped from

the two ends of the tunnel. The masses collide and stick each other. They perform SHM, the

amplitude of which is (R = radius of earth)

(a) R (b) R/2 (c) R/3 (d) 2 3R/

18. There are two planets. The ratio of radius of the two planets is k but ratio of acceleration due to

gravity of both planets is g. What will be the ratio of their escape velocity?

(a) ( ) /kg 1 2 (b) ( )kg −1 2/ (c) ( )kg 2 (d) ( )kg −2

19. A body of mass 2 kg is moving under the influence of a central force whose potential energy is

given byU r= 2 3 J. If the body is moving in a circular orbit of 5 m, its energy will be

(a) 625 J (b) 250 J (c) 500 J (d) 125 J

20. A research satellite of mass 200 kg circles the earth in an orbit of average radius 3 2R/ , where R

is the radius of the earth. Assuming the gravitational pull on the mass of 1 kg on the earth’s

surface to be 10 N, the pull on the satellite will be

(a) 1212 N (b) 889 N (c) 1280 N (d) 960 N

21. A satellite of mass m revolves around the earth of radius R at a height x from its surface. If g is
the acceleration due to gravity on the surface of the earth, the orbital speed of the satellite is

(a) gx (b)
gR

R x−
(c)

gR

R x

2

−
(d)

gR

R x

2

+

22. A solid sphere of uniform density and radius R applies a
gravitational force of attraction equal to F1 on a particle placed at
P, distance 2R from the centre O of the sphere. A spherical cavity
of radius R/ 2 is now made in the sphere as shown in figure. The
sphere with cavity now applies a gravitational force F2 on same
particle placed at P. The ratio F F2 1/ will be

(a) 1/2 (b) 7/9

(c) 3 (d) 7

More than One Correct Options

1. Three planets of same density have radii R R1 2, and R3 such that R R R1 2 32 3= = . The
gravitational field at their respective surfaces are g g g1 2 3, and and escape velocities from their
surfaces are v v v1 2 3, and , then

(a) g g1 2 2/ = (b) g g1 3 3/ =
(c) v v1 2 1 4/ /= (d) v v1 3 3/ =

2. For a geostationary satellite orbiting around the earth identify the necessary condition.

(a) it must lie in the equatorial plane of earth

(b) its height from the surface of earth must be 36000 km

(c) it period of revolution must be 2π R

g
, where R is the radius of earth

(d) its period of revolution must be 24 hrs
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3. A ball of mass m is dropped from a height h equal to the radius of the earth above
the tunnel dug through the earth as shown in the figure. Choose the correct
options. (Mass of earth = M )

(a) Particle will oscillate through the earth to a height h on both sides

(b) Particle will execute simple harmonic motion

(c) Motion of the particle is periodic

(d) Particle passes the centre of earth with a speed v
GM

R
= 2

4. Two point masses m and 2m are kept at points A Band as shown.

E represents magnitude of gravitational field strength and V the

gravitational potential. As we move from A to B

(a) E will first decrease then increases (b) E will first increase then decrease

(c) V will first decrease then increase (d) V will first increase then decrease

5. Two spherical shells have masses m and 2m as shown. Choose the correct

options.

(a) Between A and B gravitational field strength is zero

(b) Between A Band gravitational potential is constant

(c) There will be two points one lying between B Cand and other lying

between C and infinity where gravitational field strength are same

(d) There will be a point between B Cand where gravitational potential

will be zero

6. Four point masses are placed at four corners of a square as shown. When positions of m mand 2
are interchanged

(a) gravitational field strength at centre will increase

(b) gravitational field strength at centre will decrease

(c) gravitational potential at centre will remain unchanged

(d) gravitational potential at centre will decrease

7. Two identical particles 1 and 2 are projected from surface of earth with same velocities in the
directions shown in figure.

(a) Both the particles will stop momentarily (before striking with ground) at different times

(b) Particle-2 will rise upto lesser height compared to particle-2

(c) Minimum speed of particle-2 is more than that of particle-1

(d) Particle-1 will strike the ground earlier
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8. A planet is moving round the sun in an elliptical orbit as shown. As the planet moves from A to
B

(a) its kinetic energy will decrease

(b) its potential energy will remain unchanged

(c) its angular momentum about centre of sun will remain unchanged

(d) its speed is minimum at A

9. A satellite of mass m is just placed over the surface of earth. In this position mechanical energy
of satellite is E1. Now it starts orbiting round the earth in a circular path at height h = radius of
earth. In this position, kinetic energy, potential energy and total mechanical energy of satellite
are K U E2 2 2, and respectively. Then

(a) U
E

2
1

2
= (b) E

E
2

1

4
= (c) K E2 2= − (d) K

U
2

2

2
= −

10. A satellite is revolving round the earth in circular orbit

(a) if mass of earth is made four times, keeping other factors constant, orbital speed of satellite

will become two times

(b) corresponding to change in part (a), times period of satellite will remain half

(c) when value of G is made two times orbital speed increases and time period decreases

(d) G has no effect on orbital speed and time period

Match the Columns
1. There is a small hole in a spherical shell of mass M and radius R. A particle

of mass m is dropped from point A as shown. Match the two columns for the
situation shown in figure.

Column I Column II

(a) Potential energy from A to B (p) Continuously increases

(b) Potential energy from B to C (q) Continuously decreases

(c) Speed of particle from B to C (r) First increases then

remains constant

(d) Acceleration of particle from A to

C
(s) None of these

2. Five point masses m each are placed at five corners of a regular pentagon. Distance of any
corner from centre is r. Match the following two columns.

Column I Column II

(a) Gravitational field strength at centre (p) Gm r/ 2

(b) Gravitational potential at centre (q) 4Gm r/

(c) When one mass is removed gravitational

field strength at centre

(r) zero

(d) When one mass is removed gravitational

potential at centre

(s) None of these
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3. | Potential | on the surface of a solid sphere is x and radius is y. Match the following two
columns.

Column I Column II

(a) Field strength at distance 2y from centre (p) x

y2

(b) | Potential | at distance
y

2
from centre (q)

x

2

(c) Field strength at distance y/2 from centre (r)
x

y4

(d) | Potential | at distance 2y from centre (s) None

4. Match the following two columns.

Column I Column II

(a) Work done is raising a mass m to a height h R= (p) 1

4
mgR

(b) Kinetic energy of a satellite of mass m at height

h R=
(q) mgR

(c) Difference in energies of two satellites each of mass

m but one at height h R1 = and another of height

h R2 2=

(r)
1

2
mgR

(d) Kinetic energy required to raise a particle of mass

m to a height h R= if projected vertically from

surface of earth.

(s) None

5. Match the following two columns.

Column I Column II

(a) Gravitational field strength is maximum at (p) r = 0

(b) Gravitational field strength is zero at (q) r R=

(c) Gravitational potential is minimum at
(r) r

R=
2

(d) Gravitational potential is zero at (s) None of these

Here, r is distance from centre of a solid sphere or distance from centre of a ring along its
axis.

Subjective Questions

1. Three particles of mass m each are placed at the three corners of an equilateral triangle of side
a. Find the work which should be done on this system to increase the side of the triangle to 2a.

2. A man can jump vertically to a height of 1.5 m on the earth. Calculate the radius of a planet of
the same mean density as that of the earth from whose gravitational field he could escape by

jumping. Radius of earth is 6.41 × 106 m.
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3. An artificial satellite is moving in a circular orbit around the earth with a speed equal to half
the magnitude of escape velocity from the surface of earth. (Radius of earth = 6400 km)

(a) Determine the height of the satellite above the earth’s surface.

(b) If the satellite is stopped suddenly in its orbit and allowed to fall freely on the earth, find the

speed with which it hits the surface of earth.

4. A uniform metal sphere of radius R and mass m is surrounded by a thin uniform spherical shell

of same mass and radius 4R. The centre of the shell C falls on the surface of the inner sphere.

Find the gravitational fields at points A and B.

5. Figure shows a spherical cavity inside a lead sphere. The surface of the
cavity passes through the centre of the sphere and touches the right side
of the sphere. The mass of the sphere before hollowing was M. With what
gravitational force does the hollowed out lead sphere attract a particle of
mass m that lies at a distance d from the centre of the lead sphere on the
straight line connecting the centres of the spheres and of the cavity.

6. The density of the core of a planet is ρ1 and that of the outer shell is ρ2, the radii of the core and

that of the planet are R and 2R respectively. The acceleration due to gravity at the surface of the

planet is same as at a depth R. Find the ratio of
ρ
ρ

1

2

.

7. If a satellite is revolving around a planet of mass M in an elliptical orbit of semi-major axis a.
Show that the orbital speed of the satellite when it is at a distance r from the focus will be given
by

v GM
r a

2 2 1= −





8. A uniform ring of mass m and radius a is placed directly above a uniform sphere of mass M and

of equal radius. The centre of the ring is at a distance 3a from the centre of the sphere. Find

the gravitational force exerted by the sphere on the ring.

9. Distance between the centres of two stars is 10a. The masses of these stars are M and 16M and
their radii a and 2a respectively. A body of mass m is fired straight from the surface of the
larger star towards the smaller star. What should be its minimum initial speed to reach the
surface of the smaller star? Obtain the expression in terms of G, M and a.
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10. A smooth tunnel is dug along the radius of earth that ends at centre. A ball is released from the
surface of earth along tunnel. Coefficient of restitution for collision between soil at centre and
ball is 0.5. Calculate the distance travelled by ball just before second collision at centre. Given
mass of the earth is M and radius of the earth is R.

11. Inside a fixed sphere of radius R and uniform density ρ, there is spherical cavity of radius
R

2
such that surface of the cavity passes through the centre of the sphere as shown in figure. A
particle of mass m0 is released from rest at centre B of the cavity. Calculate velocity with which
particle strikes the centre A of the sphere. Neglect earth’s gravity. Initially sphere and particle
are at rest.

12. A ring of radius R = 4m is made of a highly dense material. Mass of the ring is m1
910= ×5.4 kg

distributed uniformly over its circumference. A highly dense particle of mass m2
86 10= × kg is

placed on the axis of the ring at a distance x0 3= m from the centre. Neglecting all other forces,

except mutual gravitational interaction of the two. Calculate

(i) displacement of the ring when particle is at the centre of ring, and

(ii) speed of the particle at that instant.

13. Two planets of equal mass orbit a much more massive star (figure). Planet m1 moves in a

circular orbit of radius 1 108× km with period 2 yr. Planet m2 moves in an elliptical orbit with

closest distance r1
81 10= × km and farthest distance r2

810= ×1.8 km, as shown.

(a) Using the fact that the mean radius of an elliptical orbit is the length of the semi-major axis, find

the period of m2’s orbit.

(b) Which planet has the greater speed at point P ? Which has the greater total energy ?

(c) Compare the speed of planet m2 at P with that at A.

14. In a double star, two stars one of mass m1 and another of mass m2, with a separation d, rotate

about their common centre of mass. Find

(a) an expression for their time period of revolution.

(b) the ratio of their kinetic energies.

(c) the ratio of their angular momenta about the centre of mass.

(d) the total angular momentum of the system.

(e) the kinetic energy of the system.
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Answers
Introductory Exercise 13.1

1.
3

4

2

2

GM

a
2.

4 2
2

2

Gm

a
3. a1

10 2
10= × − −

5.3 ms , a2

10 2
10= × − −

2.65 ms 4.
2 1

2

2

2

+









Gm

d
(along PB)

Introductory Exercise 13.2

1. 4.9 ms
−2 2. (a) 2.45 ms

−2
(b) 4.9 ms

−2 3.
( )5 1

2

− R
, where R is the radius of earth 4.

− −
0.0168 ms

2

5. 1600 km 6. 7.8 rad/s× −
10

4 7. 997 N 8. 1.237 rad/s 84.6 min× −
10

3
,

9. Approximately 10 km

Introductory Exercise 13.3

1.
−2 3

2

Gm

a

Gm

a
, 2.

−5 Gm

a
, zero 3.

−4

2

Gm

a

Gm

a
, 4.

−3 Gm

R
5. 200 N/kg along + x - direction

Introductory Exercise 13.4
1. − + + +[

$
( )

$ $
]6 3 3

2 2 3xy x y z yi j k 2. False 3. 10 2 N 4. zero

Introductory Exercise 13.5

1. 2.1 ms× − −
10

5 1
and 4 2 10

5
. × −

m/s 2.
− +Gm

a

2

4 2( ) 3.
1

2
mgR 5. 2.51 km× 10

4 6. 7.9 km/s

Introductory Exercise 13.6

1. mgR 2. 11.2 km/s 3. (a) No (b) −E0

Introductory Exercise 13.7
1. No 2. 56 2 h 3. 2 : 1, 2 : 1

4. (a) 6.90 km/s (b) 2.38 J× 10
10

(c) − ×4.76 J10
10

with usual reference (d)
21

106
24

3 2







/

( ) h

5. (a) 9.6 J× 10
10

(b) 1.07 J× 10
10

Exercises

LEVEL 1

Assertion and Reason

1. (b) 2. (b) 3. (b) 4. (d) 5. (d) 6. (d) 7. (d) 8. (a) 9. (c) 10. (b)

11. (d)

Single Correct Option

1. (c) 2. (b) 3. (c) 4. (d) 5. (d) 6. (b) 7. (b) 8. (a) 9. (b) 10. (c)

11. (b) 12. (b) 13. (d) 14. (b) 15. (b) 16. (b) 17. (c) 18. (d) 19. (b) 20. (c)

21. (c) 22. (d) 23. (c) 24. (a) 25. (c) 26. (a) 27. (c)



Subjective Questions

1. 1.334 J× −
10

9 2.
dg

g

h

R
= − 





2 3.
2 1 2G m m

r

( )+

5. (a) Orbit will become elliptical  (b) The satellite will escape

6. 6 h 7. F
Gm m

R R
=

+

4 1

1 2

2
( )

8.
2

2

πGMm

L
10. (a) 4R (b) 7.65 R and 1.49 R

11. (a)
4

9
2

GM

a
(towards the centre) (b)

8

25
2

GM

a
(towards the centre) 12.

π ρG a0

2

13. (a) 81.6 km/s (b) 1.8 10
4× kms

−1 14. v
GM

R
=

15. (a) 7.5 10 J
9× −

(b) 8.17 10 J
9× −

16. (a) F
GM

R
=

2

2
4

(b) v
GM

R
=

4
,T

R

GM
= 4

3 2π /

(c)
GM

R

2

4
17. (a)

−GMm

r
(b)

−2GMm

r

18. 0.71 yr 19. (a) No (b) Same (c) Yes

LEVEL 2
Single Correct Option

1. (c) 2. (d) 3. (d) 4. (c) 5. (d) 6. (a) 7. (c) 8. (a) 9. (a) 10. (b)

11. (d) 12. (d) 13. (b) 14. (c) 15. (a) 16. (a) 17. (c) 18. (d) 19. (a) 20. (b)

21. (d) 22. (b)

More than One Correct Options

1. (a,b,d) 2. (a,b,d) 3. (a,c,d) 4. (a,d) 5. (a,b,c) 6. (a,c) 7. (b,c,d)

8. (c,d) 9. (all) 10. (a,b,c)

Match the Columns
1. (a) → q (b) → s (c) → s (d) → r

2. (a) → r (b) → s (c) → p (d) → s

3. (a) → r (b) → s (c) → p (d) → q

4. (a) → r (b) → p (c) → s (d) → r

5. (a) → q,r (b) → p (c) → p (d) → s

Subjective Questions

1.
3

2

2Gm

a
2. 3.1 10

3× m 3. (a) 6400 km (b) 7.92 kms
1− 4.

Gm

R

Gm

R16

61

900
2 2

,

5.
GMm

d R d2 2
1

1

8 1 2
−

−











( / )
6. 7/3 8.

3

8
2

GMm

a
9.

3

2

5GM

a
10. d R= 2

11.
2

3

2π ρG R 12. (i) 0.3 m (ii) 18 cm/s

13. (a) 3.31 yr (b) m2 has greater speed and greater total energy (c) v vP A= 1.8

14. (a) 2

3

1 2

π d

G m m( )+
(b)

m

m
2

1

(c)
m

m
2

1

(d) µωd2

(e)
1

2

2 2µω d , where µ is the reduced mass and ω the angular velocity.
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14.1 Introduction
Following are given some general points regarding motion, periodic motion and simple harmonic

motion (SHM):

1. In general, motion of a body (or its path) depends on two factors:

(i) the nature of force (or acceleration) of the body and

(ii) its velocity

For example

A constant force or constant acceleration always gives a straight line or parabolic path. If initial

velocity is zero or parallel (or antiparallel) to constant acceleration then path is straight line. In all

other cases, path is a parabola. For small height, acceleration due to gravity ( )a g= is constant.

So, path is either straight line or parabola.

If force of constant magnitude is acting on a particle and its direction is

always perpendicular to velocity, then path is circular motion in which

speed is constant. This is also called uniform circular motion.

F F F F1 2 3 4

2

= = = =
mv

R
= centripetal force

v v v v1 2 3 4= = = =v = speed of the particle.

Now let us consider a particle free to move along x-axis, which is being

acted upon by a force given by,

F kx n= −
Here, k is a positive constant.

Now, following cases are possible depending on the value of n :

(i) If n is an even integer (0, 2, 4, … etc), force is always along negative x-axis. If the particle is

released from any position on the x-axis (except at x =0) a force in negative direction of

x-axis acts on it and it moves rectilinearly along negative x-axis.

(ii) If n is an odd integer (1, 3, 5, … etc), force is along negative x-axis for x >0, along positive

x-axis for x <0 and zero for x =0. Thus, the particle will oscillate about stable equilibrium

position (also called the mean position), x =0. The force in this case is called the restoring

force. Of these, if n =1, i.e. F kx= − the motion is said to be SHM.

2. In every oscillatory motion, there is one mean position (or stable equilibrium position) and two

extreme positions.

3. Distance between mean position and the extreme position is called amplitude of oscillation A.
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4. Oscillations does not start by itself. Normally the body has to be displaced from the mean position.

In this displacement F kx= − type force opposes the motion. So, work has to be done against this

force which remains stored in the system in the form of mechanical energy. In the absence of any

dissipative forces (like friction or viscous force) this mechanical energy remains constant. While

moving from extreme positions to mean position potential energy decreases and kinetic energy

increases but total mechanical energy remains constant. Similarly, in moving from mean position

to extreme positions potential energy increases and kinetic energy decreases.

5. The more the initial displacement from the mean position, more is the amplitude, more is the

initial work done and more is the mechanical energy given for oscillations.

6. Like any other motion, SHM is also a motion. So, basic characteristics of any motion

(like v
s

=
d

dt
, a

v
=

d

dt
etc.) can also be applied to SHM.

7. In most of the motions, displacement of the particle is measured from the starting point ( )t =0 . But

in SHM displacement is normally measured from the mean position and it is denoted by x

(or y).

8. At mean position, x =0, F =0, a =0

v =maximum, kinetic energy = maximum and potential energy is minimum (not necessarily zero)

At extreme positions, x A= ± , F = maximum, a = maximum, kinetic energy =0 and potential

energy = maximum.

9. SHM is called simple harmonic motion because its mathematics is simple. Mathematics of

periodic motion of higher powers (n = 3, 5, 7 etc in F kx n= − ) is slightly complex. This is the

reason, we study only simple harmonic oscillatory motion at this stage.

10. In SHM, we shall discuss x, A, v, a, F, K, U, E, T, f and ω. Here,

x = displacement from the mean position

A = amplitude of oscillations

v = velocity (or speed)

a = acceleration

F = force

K = kinetic energy

U = potential energy

E = total mechanical energy

T = time period of oscillations

f = frequency of oscillations and

ω =angular frequency of oscillations.

11. SHM may be linear or angular. For example, motion of a pendulum for small amplitudes is

angular SHM and motion of spring block system is linear SHM.

12. Like any other motion, equations of SHM can be written in terms of its displacement

(v u as2 2 2= + ) or time (v u at= + ). The only difference is, in most of the equations of SHM ‘x’ is

measured from the mean position.
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14.2 Displacement Equations of SHM
In most of the equations of SHM displacement will be represented by x, where x =displacement from

the mean position.

Force Equation As we have discussed earlier also,

F Kx= −

is the force required for a particle to execute SHM. This type of force is obtained when a block is

attached with a spring. Therefore, motion of block with a spring is always SHM.

Following are given some important points in this equation :

(i) x varies between + A and − A

(ii) F x- graph is a straight line passing through x =0or the mean position (not necessarily the origin)

At x A= ± , F KA=m

(iii) F =0 at x =0 or at the mean position

(iv) F KA
max

= at x A= ± or at the extreme positions.

(v) F x∝ −

Here, negative sign implies that direction of F and x are always opposite or direction of force is

always towards the mean position. Hence, it is always restoring in nature.

Further, magnitude of force is proportional to magnitude of x. It means magnitude of force varies

linearly with magnitude of x. If magnitude of x is doubled then magnitude of force will also

become two times.

(vi) tan θ = slope of F x- graph = − K
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Acceleration Equation

a
F

m

K

m
x x= = − = −ω2

Here, ω2 =
K

m
or ω =

K

m

Following are given some important points in above two equations:

(i) ω =
K

m
is called angular frequency of SHM. Later we will see that most of the equations of

SHM can be derived from uniform circular motion. Angular frequency of SHM is similar to

angular speed ω of uniform circular motion. At both places we can find time period T and

frequency f from ω.

ω
π

= =
K

m T

2

∴ T
m

K
=2π (in SHM)

(ii) a x- graph is a straight line passing through x =0 or the mean position.

tan β ω= = −Slope 2 ⇒ At x A= ± , a A= m ω2

(iii) a =0 at x =0, or at the mean position.

(iv) a A
max

=ω2 at x A= ± or at extreme positions.

(v) a x∝ −
So, direction of ‘a’ is always opposite to the direction of x

or acceleration is always towards the mean position. Further, magnitude of ‘a’ is directly proportional

to (linear variation) magnitude of ‘x’.
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Velocity Equation v x- graph in SHM is given by

v A x= ± −ω 2 2

Note We will derive this v x- equation in example 14.7.

Following are given some important points in this equation:

(i) The given equation can be written as

v x
A

2

2

2

2

2

1ω
+ =

( )

Therefore, v x- graph is an ellipse as shown below.

(ii) v =0 at x A= ± or at extreme positions.

(iii) v A= ±ω or v A
max

=ω at x =0, or at the mean position.

(iv) For upper half of the ellipse velocity is positive (when the body is moving from −A to +A).

For lower half of the ellipse velocity is negative (when the body is moving from +A to −A).

(v) At mean position (or x =0), velocity is +ωA when the body is moving towards +A and velocity is

−ωA when the body is moving towards −A.

Energy Equations

Total Mechanical Energy

As we have discussed earlier also, at mean position potential energy is minimum (say U 0). This

minimum potential energyU 0 may be zero, positive or negative. If not given in the question then we

will take is zero. Now, suppose W is the work done in displacing the body from x =0 to x A= . Then,

total mechanical energy is now E W U= + 0 . Let us start with an example of spring-block system kept

at height h, so that the block has already a potential energy, U mgh0 = at mean position or natural

length of spring where F =0.

Now, the block is displaced upto x A= . Work done (by external agent) in this displacement (against

the spring force −kx) is W KA=
1

2

2 .
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∴ Total mechanical energy E U W= +0

or E U KA U m A= + = +0
2

0
2 21

2

1

2
ω (as ω2 =

K

m
or K m= ω2)

Note (i) In the above discussion,U0 is positive as the spring block system is kept at some height. This value will be

zero if the system is kept on ground. In some cases, it may be negative also.

(ii) In the absence of any dissipative forces, this total mechanical energy remains constant at every point

between +A and −A.

At extreme positions, kinetic energy is zero. So, total mechanical energy is in the form of potential

energy.

E U U KA= = +0
21

2

or U m A0
2 21

2
+ ω

At mean position, potential energy is minimum or U 0 and the kinetic energy is
1

2

2KA or
1

2

2 2m Aω .

Thus,U 0 is present at every point. This is initial work done W KA=


1

2

2 or
1

2

2 2m Aω 


which changes between potential and kinetic energies. This is also called energy of oscillation. At

mean position, it completely converts into kinetic energy and at extreme positions it converts into

potential energy.

Potential Energy From Fig. 14.8, we can see that, at a general displacement x (from the mean

position) the potential energy is

U U= +0 Spring potential energy or U U K x U m x= + = +0
2

0
2 21

2

1

2
ω

Kinetic Energy Here, let us call it T as we are using K for spring constant of spring.

At a general displacement x,

T E U= −

= +





− +





U KA U Kx0
2

0
21

2

1

2

∴ T K A x m A x= − = −
1

2

1

2

2 2 2 2 2( ) ( )ω

Note At some places kinetic energy may be represented by K and force constant by k.

Alternate Method

T mv m A x= = ± −
1

2

1

2

2 2 2[ ]ω

= −
1

2

2 2 2m A xω ( )
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Graphs The three equations of total mechanical energy, potential energy and kinetic energy are

E U K A U m A= + = +0
2

0
2 21

2

1

2
ω

U U K x U m x= + = +0
2

0
2 21

2

1

2
ω

T K A x m A x= − = −
1

2

1

2

2 2 2 2 2( ) ( )ω

E is a constant function. U x- and T x- graphs are parabolas as shown in the Fig.14.9.

At mean position ( )x =0

E U KA= +0
21

2

U U= =0 minimum value and

T KA= =
1

2

2 maximum value.

At extreme positions ( )x A= ±

E U KA= +0
21

2

U U KA= + =0
21

2
maximum value

and T =0

The three graphs are as shown in figure.

V Example 14.1 Describe the motion of a particle acted upon by a force

(i) F x= − −2 2 3( )

(ii) F x= − −2 2 2( )

(iii) F x= − −2 2( )

Solution (i) F x= − −2 2 3( )

F = 0 at x = 2

Force is along negative x-direction for x > 2 and it is along positive x-direction for x < 2.

Thus, the motion of the particle is oscillatory (but not simple harmonic) about x = 2.

(ii) F = 0 for x = 2, but force is always along negative x-direction for any value of x except at

x = 2. Thus, the motion of the particle is rectilinear along negative x-direction provided it is

not kept at rest at x = 2.

(iii) Let, us take x X− =2 , then the given force can be written as,

F X= − 2

This  is the equation of SHM. Hence, the particle oscillates simple harmonically about X = 0

or x = 2.
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V Example 14.2 Maximum acceleration of a particle in SHM is 16 2cm s/ and

maximum velocity is 8 cm s/ . Find time period and amplitude of oscillations.

Solution a Amax = =ω2 16 cm/s …(i)

u Amax = =ω 8 cm/s …(ii)

Solving Eqs. (i) and (ii), we get

A = 4cm Ans.

and ω =2rad /s

Now, T = = =2 2

2

π
ω

π π( ) s

or T ≈ 3.14 s Ans.

V Example 14.3 F x- equation of a body in SHM is

F x+ =4 0

Here, F is in newton and x in metre. Mass of the body is 1 kg. Find time period of

oscillations.

Solution The given equation can be written as

F x= −4

Comparing this equation with the standard equation of SHM or

F Kx= −
we get K = 4 N/m

Now, T
m

K
= 2π

= 2
1

4
π = ( )π s Ans.

V Example 14.4 A linear harmonic oscillator has a total mechanical energy of
200 J. Potential energy of it at mean position is 50 J. Find

(i) the maximum kinetic energy,

(ii) the minimum potential energy,

(iii) the potential energy at extreme positions.

Solution At mean position, potential energy is minimum and kinetic energy is maximum.

Hence,

U min = 50 J (at mean position)

and K E Umax min`= − = −200 50

= 150 J (at mean position)

At extreme positions kinetic energy is zero and potential energy is maximum

∴ U Emax =
= 200 J (at extreme position)
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V Example 14.5 A particle executes SHM.

(a) What fraction of total energy is kinetic and what fraction is potential when

displacement is one half of the amplitude?

(b) At what value of displacement are the kinetic and potential energies equal?

Solution Here, let us take minimum potential energy at mean position

U0 0=

We know that E m Atotal = 1

2

2 2ω

KE = −1

2

2 2 2m A xω ( ) and U m x= 1

2

2 2ω

(a) When x
A=
2

KE =








1

2

3

4

2
2

m
Aω

⇒ KE

totalE
= 3

4
Ans.

At x
A=
2

, U m
A=









1

2 4

2
2

ω

⇒ PE

totalE
= 1

4
Ans.

(b) Since, K U=
1

2

1

2

2 2 2 2 2m A x m xω ω( )− =

or 2 2 2x A= or x
A

A= =
2

0.707 Ans.

V Example 14.6 The potential energy of a particle oscillating along x-axis is
given as

U x= + −20 2 2( )

Here, U is in joules and x in metres. Total mechanical energy of the particle is 36 J.

(a) State whether the motion of the particle is simple harmonic or not.

(b) Find the mean position.

(c) Find the maximum kinetic energy of the particle.

Solution (a) F
dU

dx
= − = − −2 2( )x

By assuming x X− =2 , we have F X= − 2

Since, F X∝ −
The motion of the particle is simple harmonic.
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(b) The mean position of the particle is X = 0 or x − =2 0, which gives x = 2 m.

(c) Maximum kinetic energy of the particle is,

K E Umax min= − = −36 20= 16 J

Note Umin is 20 J at mean position or at x m= 2 .

1. a x- equation of a particle in SHM is a x+ =4 0

Here, a is in cm/s2 and x in cm. Find time period in seconds.

2. At x
A=
4

,what fraction of the mechanical energy is potential? What fraction is kinetic? Assume

potential energy to be zero at mean position.

3. A cart of mass 2.00 kg is attached to the end of a horizontal spring with force constant

k = 150 N/m. The cart is displaced 15.0 cm from its equilibrium position and released. What are

(a) the amplitude (b) the period (c) the frequency (d) the mechanical energy (e) the

maximum velocity of the cart? Neglect friction.

4. A 0.5 kg body performs simple harmonic motion with a frequency of 2 Hz and an amplitude of

8 mm. Find the maximum velocity of the body, its maximum acceleration and the maximum

restoring force to which the body is subjected.

5. Can we use the equation v u at= + in SHM or not ?

14.3 Time Equations of SHM
In one dimensional motion, if acceleration as a function of time is given, then by integrating

a t- equation we can make v t- equation. By further integrating v t- equation we can make s t- or

x t- equation.

Meaning of General Solution
In one dimensional motion, if a = constant then general solution of v t- equation is (which can be

obtained by integrating a t- equation)

v u at= +
In this equation, u and a are constants but v and t are variables. In different problems, values of these

constants u and a are different but basic nature of all v t- equations are same. Here, the basic nature is

linear equation in v and t or straight line graph between v and t.

Standard Differential Equation of SHM
In article 14.2, we have seen that a x- equation of SHM is

a x= −ω2

This equation can also be written as

d x

dt
x

2

2

2= −ω …(i)
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This is standard second order differential equation of SHM. Solving this differential equation we can

find x t- equation. But normally we do not solve a differential equation in physics at this stage. So, we

can directly write general solution of Eq. (i). The general solution of Eq. (i) is

x A t= ±sin ( )ω φ or x A t= ±cos ( )ω φ
In these equations x and t are variables. But A, ωand φare constants. In different problems, values of

these constants are different but basic nature of all equations will be same. Here, the basic nature is

sinusoidal (sine or cosine) x t- equation and x t- graph.

By differentiating x t- equation we can also make other equations. For example, if

x A t= ±sin ( )ω φ

Then v
dx

dt
A t= = ±ω ω φcos( )

and, a
dv

dt
A t= = − ±ω ω φ2 sin( ) = −ω2 x [as A t xsin( )ω φ± = ]

Time Period (T ) and Frequency (f )
In the above equations, time period of oscillations is

T =
2π
ω

and frequency of oscillation is

f
T

= =
1

2

ω
π

Phase Angle at Time t

In any trigonometric function its angle is very important. The value of function varies with this angle.

For example, suppose we have a trigonometric function.

y = sin θ then, y =0 for θ = °0 , y=
1

2
for θ = °30

So, value of y depends on the angle θ. This angle is called the phase angle. In x t- , v t- and a t-

equations of SHM we have seen above that the phase angle is same, ( )ω φt ± . This may be called the

phase angle of x t- , v t- and a t- equations at time t. With the help of this angle values of x, v and a can

be obtained at any time t. Here, x varies between +A and −A, v varies between +ωA and −ωA and a

varies between +ω2 A and −ω2 A. If ( )ω φt ± is 30° at some instant, then according to above equations

values of x, v and a are +
A

2
, +

3

2

ωA
and −

ω2

2

A
.

This condition is shown in following figure:

x
A

v
A

a
A

= + =
+

=
−

2

3

2 2

2

,
ω ω

and
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Initial Phase Angle
In the phase angle ω φt ± if we substitute t =0, then the angle is ±φ. This is called initial phase angle.

With the help of initial phase angle we can determine initial values of x, v and a.

Dependence of Initial Phase Angle

Initial phase angle depends on following three factors :

(i) Whether we write sine equation or cosine equation.

(ii) Initial value of x (at t =0)

(iii) Initial direction of velocity.

For example, in first figure the body starts

(t =0, u ≠0) from x
A

= +
2

with velocity v
A

1

3

2
=

ω
and the initial phase angle is suppose φ1

(corresponding to sine equation)

In second figure, body starts from the same point x
A

= +
2

but direction of velocity is opposite or

v
A

2

3

2
= −

ω
and the initial phase angle is suppose φ2 (corresponding to sine equation). Then

φ φ1 2≠

Similarly, if we wish to write cosine equations and their initial phase angles are suppose φ1′ and φ2′ ,

then φ φ1 1≠ ′ and φ φ2 2≠ ′

Four Frequently used x t- Equations

Between + A and − A there may be infinite number of points from where the body may start its journey

(t =0 but u is zero only if, it starts from + A or − A).

Further at every point (except at + A and − A) two directions (positive x or negative x) of initial

velocity can exist. So, infinite number of initial phase angles are possible or infinite number of x t-

equations can be written. But following four initial conditions ( )t =0 and corresponding four x t-

equations are frequently used.
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Table 14.1

Initial Conditions at t=0 x t equation x t graph

x A t= sinω

x A t= − sinω

x A t= cosω

x A t= − cosω

Six Time Equations of SHM and their Graphs
Six time equations in SHM are x t- , v t- , a t- , E t- ,U t- andT t- ( )T =kinetic energy . If one equation is

given other five equations can be made. Let us start with x t- equation :

x A t= sin ω …(i)

According to this equation the body starts from mean positive, moving towards positive x-direction

with initial velocity, u A= +ω .

Now, v
dx

dt

d

dt
A t A t= = =( sin ) cosω ω ω

or v A t=ω ωcos …(ii)

a
dv

dt

d

dt
A t A t= = = −( cos ) sinω ω ω ω2

or a A t= −ω ω2 sin …(iii)

E U K A U m A= + = +0
2

0
2 21

2

1

2
ω …(iv)

298 � Mechanics - II

x

+A

–A

t

–A +AO

u = 0 x

+A

–A

t

–A +AO

u = 0

x

+A

–A

t
–A +AO

u A= – ω

x

+A

–A

t–A +AO

u A= + ω



U U K x U KA t= + = +0
2

0
2 21

2

1

2
sin ω

= +U m A t0
2 2 21

2
ω ωsin

or U U KA t U m A t= + = +0
2 2

0
2 2 21

2

1

2
sin sinω ω ω …(v)

T mv m A t= =
1

2

1

2

2 2( cos )ω ω

= =
1

2

1

2

2 2 2 2 2m A t KA tω ω ωcos cos

or T or KE = =
1

2

1

2

2 2 2 2 2KA t m A tcos cosω ω ω …(vi)

From the above six equations, we can draw following conclusions :

(i) x t− , v t− and a t− are sine or cosine functions of same ω. So, x, v and a oscillate sinusoidally

with same time period T =
2π
ω

.

(ii) U t- and T t- are sin 2 and cos 2 functions of time. But oscillation frequency of sin 2 or cos 2

functions is double of the oscillation frequency of sine and cosine functions. So, U and T

oscillate with double the frequency of oscillations of x, v and a.

Minimum value ofU isU 0 and maximum value of U isU KA0
21

2
+ orU m A0

2 21

2
+ ω . Therefore,

U oscillates between U 0 and U KA0
21

2
+ . Similarly, minimum value of T is zero and the

maximum value is
1

2

2KA or
1

2

2 2m Aω .

Hence, T oscillates between 0 and
1

2

2KA .

(iii) E does not oscillate because it is constant.

(iv) At t =0

x =0 (starts from mean position)

v A= ω (maximum velocity)

a =0

E U KA= +0
21

2

U U= 0 (minimum value)

and T or KE =
1

2

2KA

or
1

2

2 2m Aω (maximum value)
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(v) Average value of cos 2 function in one time period is
1

2
. Therefore, from Eq. (vi) we can see that

maximum value of kinetic energy is
1

2

2KA or
1

2

2m Aω2 . But average value of kinetic energy in

one time period is
1

4

2KA or
1

4

2 2m Aω .

(vi) The six graphs are as shown below.

In the first five graphs we can see that in time T ( / )=2π ω : x, v and a oscillate once but U and KE

oscillate twice.
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Note (i) If the first equation, x A t= sinω is changed then other five equations (and their graphs also) will change.

But the basic nature will remain same. Here the basic nature is that x, v and a oscillate sinusoidally with

same time period and frequency. E does not oscillate. U and KE oscillate with double frequency.

(ii) Phase difference between x t- and v t- equations or between v t- and a t- equations is
π
2

or 90°. Phase

difference between x t- and a t- equations is π or 180°.

List of Formulae of Articles 14.2 and 14.3 (with U 0 0= )

Table 14.2

S.No. Name of the equation Expression of the equation Remarks

1. Displacement-time x A t= + φcos ( )ω x varies between +A and – A

2. Velocity - time v
dx

dt
=





v A t= − + φω ωsin ( ) v varies between + Aωand − Aω

3. Acceleration - time a
dv

dt
=





a A t= − + φω ω2 cos ( ) a varies between + Aω2 and − Aω2

4. Kinetic energy - time KE =





1

2

2mv KE = + φ1

2

2 2 2mA tω ωsin ( ) KE varies between 0 and
1

2

2 2mA ω

5. Potential energy - time U m x=





1

2

2 2ω KE = + φ1

2

2 2 2m A tω ωcos ( ) U varies between
1

2

2 2mA ω and 0

6. Total energy - time ( )E U= +KE E m A= 1

2

2 2ω E is constant

7. Velocity - displacement v A x= ± −ω 2 2 v = 0 at x A= ± and at x = 0
v A= ± ω

8. Acceleration - displacement a x= − ω2 a = 0 at x = 0

a A= ± ω2 at x A= +

9. Kinetic energy - displacement KE = −1

2

2 2 2m A xω ( ) KE = 0 at x A= ± , KE = 1

2

2 2m Aω at

x = 0

10. Potential energy - displacement U m x= 1

2

2 2ω U = 0 at x = 0, U m A= 1

2

2 2ω at

x A= ±

11. Total energy - displacement E m A= 1

2

2 2ω E is constant

V Example 14.7 From the time equations of SHM, prove the relation,

v A x± −ω 2 2

Solution Let, x A t= sin ω

Then, sin ω t
x

A
=

Now, v
dx

dt
A t= =ω ωcos

= −ω ωA t1 2sin
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= − 





ω A
x

A
1

2

∴ v A
A x

A
= −ω

2 2

2

or v A x= ± −ω 2 2 Hence Proved.

V Example 14.8 If a SHM is represented by the equation x t= +





10
6

sin π
π

in

SI units, then determine its amplitude, time period and maximum velocity
vmax ?

Solution Comparing the above equation with

x A t= + φsin ( ),ω we get

A = 10 m Ans.

ω π= ( )
rad

s
and φ = π

6

Q T = 2π
ω

⇒ T = 2s Ans.

v Amax ( )= =ω π10 m/s Ans.

V Example 14.9 A particle executes SHM with a time period of 4 s. Find the
time taken by the particle to go directly from its mean position to half of its
amplitude.

Solution If the particle starts from the mean position in positive direction, then:

x A t= sin ( )ω

or
A

A t
2

= sin ( )ω

or
1

2
= sin ( )ωt

ω π
t = 





=−sin 1 1

2 6

t
T= =π

ω
π

π6 6 2( )

as ω π= 2

T

⇒ t
T= = =
12

4

12

1

3
s Ans.
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V Example 14.10 A particle executes simple harmonic motion about the point
x = 0. At time t = 0, it has displacement x = 2 cm and zero velocity. If the

frequency of motion is 0.25 s −1, find (a) the period, (b) angular frequency, (c) the
amplitude, (d) maximum speed, (e) the displacement from the mean position at
t = 3 s and (f) the velocity at t s= 3 .

Solution (a) Period T
f

= 1

= =
−

1
4

10.25 s
s Ans.

(b) Angular frequency ω π= 2

T

= =2

4 2

π π
rad/s

= 1.57 rad/s Ans.

(c) Amplitude is the maximum displacement from mean position. Hence, A = − =2 0 2 cm.

(d) Maximum speed v Amax = ω

= ⋅ =2
2

π πcm/s

= 3.14 cm/s Ans.

(e) At t = 0, particle starts from extreme position.

∴ x A t= cos ω

= 





2
2

cos
π

t

At t = 3 sec

x = 0 Ans.

(f ) Velocity at x = 0, is vmax i.e. 3.14 cm/s. Ans.

V Example 14.11 Find the period of the function,

y t t t= + +sin sin sinω ω ω2 3

Solution The given function can be written as,

y y y y= + +1 2 3

Here, y t1 = sin ,ω T1

2= π
ω

y t2 2= sin ,ω T2

2

2
= =π

ω
π
ω

and y t3 3= sin ,ω T3

2

3
= π

ω
∴ T T1 22= and T T1 33=
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So, the time period of the given function is T1 or
2π
ω

. Ans.

Because in time T = 2π
ω

, first function completes one oscillation, the second function two

oscillations and the third three.

1. A 2.0 kg particle undergoes SHM according to x
t= +



15

4 6
. sin

π π
(in SI units)

(a) What is the total mechanical energy of the particle?

(b) What is the shortest time required for the particle to move from x = 05. m to x = −075. m?

2. Given that the equation of motion of a mass is x = 0.20 sin( . )30 t m. Find the velocity and

acceleration of the mass when the object is 5 cm from its equilibrium position. Repeat for x = 0.

3. A particle executes simple harmonic motion of amplitude A along the x-axis. At t = 0, the position

of the particle is x
A=
2

and it moves along the positive x-direction. Find the phase constant δ, if

the equation is written as x A t= +sin ( )ω δ .

4. An object of mass 0.8 kg is attached to one end of a spring

and the system is set into simple harmonic motion. The

displacement x of the object as a function of time is shown in

the figure. With the aid of the data, determine

(a) the amplitude A of the motion,

(b) the angular frequency ω,

(c) the spring constant K,

(d) the speed of the object at t = 10. s and

(e) the magnitude of the object’s acceleration at t = 10. s.

5. The equation of motion of a particle started at t = 0 is given by x t= +



5 20

3
sin

π
, where x is in

cm and t in sec. When does the particle (a) first come to rest, (b) first have zero acceleration,

(c) first have maximum speed.

6. Describe the motion corresponding to x t- equation, x t= −10 4 cos ω .

14.4 Relation between Simple Harmonic Motion and
Uniform Circular Motion

Consider a particle Q, moving on a circle of radius A with constant angular velocity ω.The projection

of Q on a diameter BC is P. It is clear from the figure that as Q moves around the circle the projection

P oscillates between B and C. The angle that the radius OQ makes with the x-axis is, θ ω= + φt .Here,

φ is the angle made by the radius OQ with the x-axis at time t =0. Further,

OP OQ= cos θ
or x A t= + φcos ( )ω
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This is standard x t− equation of SHM. Hence, P executes SHM. That is

When a particle moves with uniform circular motion, its projection on a diameter moves with SHM.

The velocity of Q is perpendicular to OQ and has a magnitude of velocity v A′ = ω .The component of

v ′ along the x-axis is,

v v= − ′ sin θ or v A t= − + φω ωsin ( )

which is also the velocity of P. The acceleration of Q is centripetal and has a magnitude, a A′ = ω2 .

The component of a ′ along the x-axis is

a a= − ′ cos θ or a A t= − + φω ω2 cos ( )

Which again coincides with the acceleration of P.

Note v = velocity of SHM of particle P = = + φ = − + φdx

dt

d

dt
A t A t[ cos ( )] sin( )ω ω ω

a = acceleration of SHM of particle = = − + φdv

dt
A tω ω2

cos ( )

14.5 Methods of Finding Time Period of a Simple Harmonic Motion
If F x- or a x- equations are known then we can easily find the time period of SHM. For example,

F x- equation is of type F Kx= −

and time period in this case is T
m

K
=2π

Similarly, a x- equation is of type

a x= −ω2

∴ ω
π

= =
a

x T

2

or T
x

a
= =2 2π π

displacement

acceleration

In angular SHM, we will be required τ θ− or α θ− equations.

Now, there are following two methods of finding F x- and a x- equations (orτ θ− andα θ− equations).
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Restoring Force or Torque Method
The following steps are usually followed in this method:

Step 1 Find the stable equilibrium position which usually is also known as the mean position. Net

force or  torque on the particle in this position is zero. Potential energy is minimum.

Step 2 Displace the body from its mean position by a small displacement x (in case of a linear

SHM) or θ (in case of an angular SHM).

Step 3 Find net force or torque in this displaced position.

Step 4 Show that this force or torque has a tendency to bring the body back to its mean position and

magnitude of force or torque is proportional to displacement, i.e.

F x∝ − or F Kx= − …(i)

or τ θ∝ − or τ θ= − K …(ii)

This force or torque is also known as restoring force or  restoring torque.

Step 5 Find linear acceleration by dividing Eq. (i) by mass m or angular acceleration by dividing

Eq. (ii) by moment of inertia I. Hence,

a
K

m
x x= − = −. ω2 or α θ ω θ= − = −

K

I

2

Step 6 Finally, ω = 

 


a

x
or

α
θ



 




or
2π
T

a

x
= 


 


 or

α
θ



 




∴ T
x

a
= 


 


2π or 2π

θ
α



 




Energy Method

Repeat steps-1 and step-2 as in method-1. Find the total mechanical energy ( )E in the displaced

position. Since, mechanical energy in SHM remains constant.

dE

dt
=0

By differentiating the energy equation with respect to time and substituting
dx

dt
v= ,

d

dt

θ
ω= ,

dv

dt
a= ,

and
d

dt

ω
α= we come to step-5 or we directly get F x− and a x− equations (orτ θ− or x − θequation).

The remaining procedure is same.

Note (i) E usually consists of following terms :

(a) Gravitational PE (b) Elastic PE (c) Electrostatic PE

(d) Rotational KE and  (e) Translational KE

(ii) For gravitational PE, choose the reference point ( )h = 0 at mean position.

Now, let us take few examples of finding time period ( )T of certain simple harmonic motions.
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The Simple Pendulum

An example of SHM is the motion of a pendulum. A simple pendulum is defined as a particle of mass

m suspended from a point O by a string of length l and of negligible mass.

When the particle is pulled aside to position B, so that the string makes an angle θ0 with the vertical

OC and then released, the pendulum will oscillate between B and the symmetric position B ′ . The

oscillatory motion is due to the tangential component FT of the weight mg of the particle. This force

FT is maximum at B and B ′ and zero at C. Thus, we can write,

F mgT = − sin θ
Here, minus sign appears because it is opposite to the displacement.

x CA=
∴ ma mgT = − sin θ …(i)

Here, a lT = α where, α
θ

=








d

dt

2

2

and sin θ θ≈ for small oscillations

∴ ml mgα θ= −
Since, α is proportional to −θ . Hence, motion is simple harmonic.

or α θ= − 





g

l
or

θ
α



 


 =

l

g

∴ T = 

 


2π

θ
α

or T
l

g
=2π

Note that the period is independent of the mass of the pendulum.

Energy Method

Let us derive the same expression by energy method. Suppose ωbe the angular velocity of particle at

angular displacement θ about point O. Then, total mechanical energy of particle in position A is,

E I mg h hA C= + −
1

2

2ω ( )

or E ml mgl= + −
1

2
12 2( ) ( cos )ω θ
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E is constant, therefore,
dE

dt
=0 or 0 2= 





+ 





ml
d

dt
mgl

d

dt
ω

ω
θ

θ
sin

Putting
d

dt

θ
ω= ,

d

dt

ω
α= and sin θ θ≈ , we get the same expression

α θ= − 





g

l

∴ T = 

 


2π

θ
α

or T
l

g
=2π

Spring-block System
Suppose a mass m is attached to the free end of a massless spring of

spring constant k, with its other end fixed to a rigid support.

If the mass be displaced through a distance x, as shown, a linear

restoring force,

F kx= − …(i)

starts acting on the mass, tending to bring it back into its original position. The negative sign simply

indicates that it is directed oppositely to the displacement of the mass.

Eq. (i) can be written as,

ma kx= − …(ii)

or
x

a

m

k



 


 =

∴ T
x

a
= 


 


2π or T

m

k
=2π

Energy Method

The time period of the spring-block system can also be obtained by the energy method. Let v be the

speed of the mass in displaced position. Then total mechanical energy of the spring-block system is.

E = kinetic energy of the block + elastic potential energy

or E mv kx= +
1

2

1

2

2 2

Since, E is constant

dE

dt
=0 or 0 = 





+ 





mv
dv

dt
kx

dx

dt

Substituting,
dx

dt
v= and

dv

dt
a=

We have,

ma kx= −

∴ T
x

a

m

k
= 


 


 =2 2π π
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Example 14.12 F x- equation of a body of mass 2 kg in SHM is

F x+ =8 0

Here, F is in newton and x in metre. Find time period of oscillations.

Solution The given equation can be written as, F x= −8

Comparing with the standard equation of SHM, F Kx= − we have,

K = 8N/m

∴ T
m

K
= 2π

= 2π 2
8

= ( )π s = 314. s Ans.

V Example 14.13 Acceleration of a particle in SHM at displacement x cm=10

(from the mean position is a cm s= −2.5 / 2 ). Find time period of oscillations.

Solution Time period is given by

T
x

a
= 2π

Substituting the values we have,

T = 2π 10
2.5

= ( )4π s Ans.

V Example 14.14 Find time period of a vertical spring-block system by both
methods.

Solution Force Method

Position A In this position, spring is in its natural length. But net force on block is not zero. Its

mg is downwards.
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Position B This is equilibrium position. Net force on block is zero. Spring force kx0 in upward

direction is equal to mg force in downward direction.

Position C This is displaced position.

Net restoring force is upward direction or towards the mean position is

F k x x mg= − + −[ ( ) ]0 = −kx (as kx mg0 = )

Since, F kx= −

T
m

k
= 2π

Energy Method Taking h = 0, at the mean position B, total mechanical energy in displaced

position C is

E mv k x x mg x= + + −1

2

1

2

2
0

2( )

As E =constant
dE

dt
= 0

or
1

2
2

1

2
2 0m v

dv

dt
k x x( ) [ ( )]+ + dx

dt
mg

dx

dt
− =0

Substituting,
dx

dt
v= ,

dv

dt
a= , kx mg0 = and ma F= , the above equation also converts into,

F kx= −

∴ T
m

k
= 2π

V Example 14.15 A block with a mass of 3.00 kg is suspended from an ideal
spring having negligible mass and stretches the spring by 0.2 m.

(a) What is the force constant of the spring?

(b) What is the period of oscillation of the block if it is pulled down and released?

Solution (a) In equilibrium,

kl mg= ( )l = extension in spring

∴ k
mg

l
= K (i)
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Substituting the proper values, we have

k = (3.00)(9.8)

0.2

= 147 N/m Ans.

(b) From Eq. (i)
m

k

l

g
=

∴ T
m

k
= 2π = 2π l

g

= =2π 0.2

9.8
0.897s Ans.

1. a x- equation of a body in SHM is a x+ =16 0. Here, x is in cm and a in cm/s2. Find time period

of oscillations.

2. A mass M, attached to a spring, oscillates with a period of 2 s. If the mass is increased by 4 kg,

the time period increases by one second. Assuming that Hooke’s law is obeyed, find the initial

mass M.

3. Three masses of 500 g, 300 g and 100 g are suspended at the end of a spring as shown and are in

equilibrium. When the 500 g mass is removed suddenly, the system oscillates with a period of 2 s.

When the 300 g mass is also removed, it will oscillate with period T. Find the value of T.

4. A particle executes simple harmonic motion. Its instantaneous acceleration is given bya px= − ,

where p is a positive constant and x is the displacement from the mean position. Find angular

frequency of oscillations.

5. A mass M is suspended from a spring of negligible mass. The spring is pulled a little then

released, so that the mass executes simple harmonic motion of time period T. If the mass is

increased by m , the time period becomes
5

3

T
. Find the ratio of m M/ .

6. The length of a simple pendulum is decreased by 21%. Find the percentage change in its time

period.

7. A particle executes SHM on a straight line path. The amplitude of oscillation is 2 cm. When the

displacement of the particle from the mean position is 1 cm, the numerical value of magnitude of

acceleration is equal to the numerical value of magnitude of velocity. Find the frequency of SHM

(in Hz).
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14.6 Vector Method of Combining Two or
More Simple Harmonic Motions

A simple harmonic motion is produced when a force (called restoring force) proportional to the

displacement acts on a particle. If a particle is acted upon by two such forces the resultant motion of

the particle is a combination of two simple harmonic motions. Suppose the two individual motions

are represented by,

x A t1 1= sin ω
and x A t2 2= + φsin ( )ω
Both the simple harmonic motions have same angular frequency ω.

The resultant displacement of the particle is given by,

x x x= +1 2

= + + φA t A t1 2sin sin ( )ω ω
= +A tsin ( )ω α

Here, A A A A A= + + φ1
2

2
2

1 22 cos

and tan
sin

cos
α =

φ
+ φ
A

A A

2

1 2

Thus, we can see that this is similar to the vector addition. The same method of vector addition can be

applied to the  combination of more than two simple harmonic motions.

V Example 14.16 Find the displacement equation of the simple harmonic
motion obtained by combining the motions.

x t1 2= sin ,ω x t2 4
6

= +





sin ω π
and x t3 6

3
= +





sin ω π

Solution The resultant equation is,
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x A t= + φsin ( )ω
ΣAx = + ° + ° =2 4 30 6 60 846cos cos .

and ΣA y = ° + ° =4 30 6 30sin cos 7.2

∴ A A Ax y= +( ) ( )Σ Σ2 2

= (8.46) + (7.2)2 2

= 11.25

and tan φ =
Σ
Σ

A

A

y

x

= 7.2

8.46
= 0.85

or φ = −tan 1 (0.85)

= °40.4

Thus, the displacement equation of the combined motion is,

x t= + φ11.25sin ( )ω
where, φ = °40.4 Ans.

1. A particle is subjected to two simple harmonic motions of the same frequency and direction. The

amplitude of the first motion is 4.0 cm and that of the second is 3.0 cm. Find the resultant

amplitude if the phase difference between the two motions  is

(a) 0° (b) 60° (c) 90° (d) 180°

2. A particle is subjected to two simple harmonic motions.

x t1 40 100= . sin ( )π and x t2 30 100
3

= +



. sin π π

Find

(a) the displacement at t = 0

(b) the maximum speed of the particle and

(c) the maximum acceleration of the particle.

3. Three simple harmonic motions of equal amplitudes A and equal time periods in the same

direction combine. The phase of the second motion is 60° ahead of the first and the phase of the

third motion is 60° ahead of the second. Find the amplitude of the resultant motion.

4. A particle is subjected to two simple harmonic motions in the same direction having equal

amplitudes and equal frequency. If the resultant amplitude is equal to the amplitude of the

individual motions. Find the phase difference between the individual motions.
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Final Touch Points

1. Simple Pendulum

(i) Time periodT
l

g
= 2π is applicable only for small oscillations.

(ii) If the time period of a simple pendulum is 2 s, it is called seconds pendulum. Length of this

pendulum is 1 m.

(iii) If length of the pendulum is large, g no longer remains vertical but will be directed towards the

centre of the earth and expression for time period is given by,

T

g
l R

=
+





2
1

1 1
π

Here, R is the radius of earth. From this expression we can see that,

(a) if l R<< ,
1 1

l R
>> andT

l

g
= 2π

(b) as l → ∞,
1

0
l

→ andT
R

g
= 2π and substituting the value of R and g, we getT = 84.6 min.

(iv) Time period of a simple pendulum depends on acceleration due to gravity ‘ ’g as T
g

∝








1
so

take | |geff inT
l

g
= 2π . Following two cases are possible :

(a) If a simple pendulum is in a carriage which is accelerating with accelerationa, then

g g aeff = −
e.g. if the acceleration a is upwards, then

| |geff = +g a and T
l

g a
=

+
2π

If the acceleration a is downwards, then ( )with g a>

| |geff = −g a and T
l

g a
=

−
2π

If the acceleration a is in horizontal direction, then

| |geff = +a g2 2

In a freely falling lift geff = 0 andT = ∞ i.e. the pendulum will not oscillate.

(b) If in addition to gravity one additional force F, (e.g. electrostatic force Fe ) is also acting on

the bob, then in that case,

g g
F

eff = +
m

Here, m is the mass of the bob.

(v) Due to change in temperature, length of pendulum and so the time period will change. If ∆θ is the

increase in temperature then,

l l′ = +( )1 α θ∆ or
l

l

′ = +1 α θ∆

∴ T

T

l

l

′ = ′ = +( ) /1 1 2α θ∆ ≈ +



1

1

2
α θ∆
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∴ T

T

′ − ≈1
1

2
α θ∆

or
T T

T

′ − = 1

2
α θ∆

or ∆ ∆T T= 1

2
α θ

Note In case of a pendulum clock, time is lost if T increases and gained if T decreases. Time lost or gained in time t

is given by,

∆ ∆
t

T

T
t=

′
.

e.g. if T s= 2 , T s′ = 3 , then ∆T s= 1

∴ Time lost by the clock in 1 h.

∆t s= × =1

3
3600 1200

(vi) Above the surface of earth, blow the surface of earth, in moving from pole to equator and on moon

value of g decreases, therefore time period of pendulum will increase.

2. Spring-block System

(i)

In all three figures shown above, restoring force in displaced position is F kx= − . Therefore, time

period is,

T
m

K
= 2π

The only difference is, their mean positions are different. In the first figure, mean position is at the

natural length of spring. In the second figure, mean position is obtained after an extension of

x
mg

K
0 = (as kx mg0 = ) and in the third figure after an extension of x

mg

K
0 = sinθ

.

(ii) In case of a vertical spring-block system, time period can also be written as,

T
l

g
= 2π

Here, l = extension in the spring when the mass m is suspended from the spring.

This can be seen as under :

kl mg= (in equilibrium position)

∴ m

k

l

g
=

or T
m

k

l

g
= =2 2π π
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(iii) Equivalent force constant (k) If a spring block system is
constructed by using two springs and a mass, the following
three situations are possible:

Refer Fig. (a)

In this case,

1 1 1

1 2k k k
= +

or k
k k

k k
=

+
1 2

1 2

∴ T
m

k

m k k

k k
= = +

2 2 1 2

1 2

π π ( )

Fig. (b) and (c)

In both the cases,

k k k= +1 2

or T
m

k

m

k k
= =

+
2 2

1 2

π π

(iv) If spring has a mass ms and a mass m is suspended from it, then time period is given by,

T
m

m

k

s

=
+

2 3π

(v) If the spring connected with two masses m1 and m2 is
compressed or elongated by x0 and then left for oscillations then
both blocks execute SHM with same time period (and therefore
same frequency) but different amplitudes.

This time period is

T
K

= 2π µ

Here, µ is called their reduced mass given by
1 1 1

1 2µ
= +

m m
or µ =

+
m m

m m
1 2

1 2

Their  amplitudes of oscillations are in inverse ratio of their masses or

A
m

∝ 1 ⇒ A

A

m

m
1

2

2

1

=

⇒ A
m

m m
x1

2

1 2
0=

+






 and A

m

m m
x2

1

1 2
0=

+








Note If m m1 2>> , then
1 1

1 2m m
<<

∴ 1 1

2µ
≈

m
or µ ≈ m2 and T

m

K
=2 2π

So, in this case we can understand that m1 is almost stationary. Only m2 will oscillate.
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m2

K
m1

smooth

m2

m1

m m

m

k1

k2

k1 k2

k1

k2

(a) (b) (c)



(vi) The force constant( )k of a spring is inversely proportional to the length of

the spring. i.e.

k ∝ 1

length of spring

This can be visualized as:

A spring of length l and spring constant k can be supposed to be made

up by two springs in series, of length
l

2
and force constant 2k. In series,

k
k k

k k

k k

k k
keff =

+
=

+
=1 2

1 2

2 2

2 2

( ) ( )

3. Oscillations of a fluid column

Initially the level of liquid in both the columns is same. The area of

cross-section of the tube is uniform. If the liquid is depressed by x in one

limb, it will rise by x along the length of the tube is the other limb. Here,

the restoring force is provided by the hydrostatic pressure difference.

∴ F P A= − ( )∆ = − +( )h h gA1 2 ρ
= − +ρ θ θgA x(sin sin )1 2

Let, m be the mass of the liquid in the tube. Then,

ma gA x= − +ρ θ θ(sin sin )1 2

Since, F or a is proportional to − x, the motion of the liquid column is simple harmonic in nature, time

period of which is given by,

T
x

a
= 


 


2π

or T
m

gA
=

+
2

1 2

π
ρ θ θ(sin sin )

Note For a U-tube, if the liquid is filled to a height l, θ θ1 290= ° = and m A= 2 ( )l ρ

So, T
l

g
= 2π

Thus, we see that the expression T
l

g
= 2π comes in picture at three places.

(i) Time period of a simple pendulum for small oscillations.

(ii) Time period of a spring-block system in vertical position.

(iii) Time period of a liquid column in a U-tube filled to a height l.

But l has different meanings at different places.

4. Lissajous figures Suppose two forces act on a particle, the first alone would produce a simple

harmonic motion in x-direction given by,

x a t= sin ω
and the second would produce a simple harmonic motion in y-direction given by,

y b t= + φsin ( )ω
The amplitudes a and b may be different and their phases differ by φ. The frequencies of the two simple

harmonic motions are assumed to be equal. The resultant motion of the particle is a combination of the

two simple harmonic motions.
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x

x

θ1 θ2

l, k

l

2
, 2k

l

2
, 2k

⇒



Depending on the value of φ and relation between a and b, the particle follows different paths. These

different paths are called Lissajous figures. Given below are few special cases :

Case 1 (When φ = °0 ) When the phase difference between two simple harmonic motions is 0°, i.e.

x a t= sin ω ⇒ sin ωt
x

a
= …(i)

y b t= sin ω ⇒ sin ωt
y

b
= …(ii)

From Eqs. (i) and (ii), we get

x

a

y

b
= or y

b

a
x= 





which is equation of a straight line with slope
b

a
⋅ Thus, the path of the particle is a straight line. As a

special case y x= if a b= or slope is 1.

Case 2 when φ =





π
2

When the phase difference is
π
2

i.e.

x a t= sin ω ⇒ sin ωt
x

a
= …(iii)

y b t b t= +



 =sin cosω π ω

2

⇒ cos ωt
y

b
= …(iv)

Squaring and adding, Eqs. (iii) and (iv), we get

x

a

y

b

2

2

2

2
1+ =

which is an ellipse. Again as a special case, the above equation reduces to,

x

a

y

a

2

2

2

2
1+ =

or x y a2 2 2+ = (fora b= )

This is an equation of a circle.

5. Free and damped oscillations

We know that in reality, a spring won’t oscillate forever with constant amplitude. These constant

amplitude oscillations (which will really occur in vacuum) are called “free oscillations”. Frictional

forces will diminish the amplitude of oscillation until eventually the system comes to rest.

We will now add frictional forces to the mass and spring. Imagine that the mass was put in a viscous

liquid. To incorporate friction, we can just say that there is a frictional force that’s proportional to the

velocity of the mass. This is a pretty good approximation for a body moving at a low velocity in air, or in

a liquid. So we say the frictional force f bvr = − . The constant b depends on the kind of liquid and the

shape of the mass. The negative sign, just says that the force is in the opposite direction to the body’s

motion. Let’s add this frictional force in to the equation F manet =
− − =kx bv ma ...(i)

In terms of derivatives,

m
d x

dt
b

dx

dt
kx

2

2
0+ + = ...(ii)
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This is a differential equation. In the solution of this

type of differential equation instead of the amplitude

being constant, it is decaying with time.

A t A e t( ) = −
0

α

Here, α is a positive constant.

So, x t A t t A e tt( ) ( ) cos ( ) cos ( )= + = +−ω δ ω δα
0

Here’s a plot of an example of such a function.

These types of oscillations which eventually come to

end are called “damped oscillations”. There are

further three types of damped oscillations, namely

(i) Under damped

(ii) Critically damped and

(iii) Over damped oscillations

But their detailed discussion is out of our syllabus

at this stage.

Natural Frequency (or Characteristic Frequency)

That is the frequency at which a system would oscillate by itself if displaced. The natural frequency of

a spring-mass system is f
k

m
0

1

2
=

π
, where k is the spring constant and m is the mass of the object

attached to the spring.

Forced Oscillations

A periodic force at a given frequency (called driving frequency fd) is applied to an oscillating system

of natural frequency f0. At the beginning (transient stage), there is a mixture of two kinds of

oscillations, one has the frequency f0 and the other has fd. The former will gradually die out because of

the damping effect. Eventually (at the steady state) the system settles down with oscillation at the

frequency of the driving force ( )fd .

Resonance

When the driving frequency is at the same frequency as the natural frequency of the oscillator, the

amplitude of oscillation is at its greatest. When this happens the energy of the oscillator becomes a

maximum. This is called a condition of resonance.

Resonance and its Consequences

The fact that there is an amplitude peak at driving frequencies close to the natural frequency of the

system is called resonance. Physics is full of examples of resonance ; building up the oscillations of a

child on a swing by pushing with a frequency equal to the swing's natural frequency is one.

Inexpensive loudspeakers often have an unwanted boom or buzz when a musical note happens to

coincide with the resonant frequency of the speaker cone. Resonance also occurs in electric circuits ;

a tuned circuit in a radio or television receiver responds strongly to waves having frequencies near its

resonant frequency, and this fact is used to select a particular station and reject the others.

Resonance in mechanical systems can be destructive. A company of soldiers once destroyed a

bridge by marching across it in step ; the frequency of their steps was close to the natural vibration

frequency of the bridge and the resulting oscillation had large enough amplitude to tear the bridge

apart. Ever since, marching soldiers have been ordered to break step before crossing a bridge.

Nearly everyone has seen the film of the collapse of the Tacoma Narrows suspension bridge in 1940.
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TYPED PROBLEMS

Type 1. According to given x t- equation we have to find initial conditions (at t =0).

Concept

The method discussed here is a general method which can be applied for any type of
motion.

How to Solve?

Differentiate the given x t- equation and find v t- equation. Now, put t = 0 in both x t- and v t- equations.

V Example 1 x t- equation of a particle executing SHM is

x A t= − °cos( )ω 45

Find the point from where particle starts its journey and the direction of its initial velocity.

Solution Given, x A t= − °cos( )ω 45 …(i)

v
dx

dt
A t= = − − °ω ωsin( )45 …(ii)

Putting t =0 in both equations we have,

x
A= +
2

and v
A= + ω
2

So, the particle starts from x
A= +
2

with velocity in positive direction.

Note By further differentiating v t- equation, we can make a t- equation and by putting t = 0, we can also find

initial value of acceleration.

Type 2. First Use of reference circle (to make x t- equation corresponding to given initial conditions).

How to Solve?

For the given SHM particle P on the diameter we have to find its circular motion particle Q on the circle
according to given initial conditions. The following points will help you in finding the particle Q.

–A +AO

v = +
ωA

√2

A

√2
+

At = 0t

Solved Examples



• Particle Q can rotate, either clockwise or anticlockwise. But in all problems, we will take it anticlockwise.

• We can draw the perpendicular on any diameter but in all problems we will draw the perpendicular lying
along x-axis.

• If initial velocity of SHM particle P is negative then Q lies in upper half of the reference circle. Because, whenQ

moves in upper half of the circle (anticlockwise) P moves from + A to − A along negative x-direction.
Similarly, if P has  an initial  velocity in positive direction then Q is in lower half of the circle.

• If initial value of x is positive then Q lies to the right of O (between 0 and + A) and if x is negative, then Q lies to
the left of O (between 0 and − A ).

• If initial value of x is suppose + 3

2
A and velocity is negative then circular particle Q is in the position as

shown in figure.

This particle is 120° ahead (in anticlockwise direction) or 240° behind (in clockwise direction) from sine line or
it is 30° ahead or 330° behind the cosine line. Hence, the x t- equation corresponding to given initial
conditions may be

x A t= + °sin ( )ω 120

= − °A tsin ( )ω 240

= + °A tcos( )ω 30

= − °A tcos( )ω 330

V Example 2 A particle in SHM starts its journey (at t =0) from x
A

= −
2

in negative

direction. Write x t- equation corresponding to given conditions. Angular
frequency of oscillations is ω.

Solution For the given initial conditions, particle Q on reference circle is as shown in figure.

This is 210° ahead or 150° behind the sine line or 120° ahead or 240° behind the cosine line.

Therefore, the x t- equation can be written as

x A t= + °sin( )ω 210 = − °A tsin( )ω 150 = + °A tcos( )ω 120 = − °A tcos( )ω 240
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Type 3. Second use of reference circle (to find the shortest time in moving the particle from one
point to another point between + A and − A ).

Concept
Linear speed of particle in SHM is not constant (more near mean positive and less near
mean extreme positions)

So, we cannot apply

time
distance

speed
=

but the angular speed of its corresponding particle on reference circle is constant.

Therefore, t = θ
ω

(θ in radian)

can be applied for that particle. The following table will help you in solving such problems.

Angle rotated in radian Angle rotated in degrees Time taken

2 π 360° T

π 180° T /2

π/ 3 120° T / 3

π /2 90° T / 4

π /4 45° T / 8

π /6 30° T / 12

V Example 3 In terms of time period of oscillations T, find the shortest time in

moving a particle from +
A

2
to −

3

2
.

Solution As shown in figure, as the SHM particle P moves from P1 to P2, its corresponding

particle Q on reference circle rotates from Q1 to Q2 an angle of 90°. From the above table, we can

see that, in rotating an angle of 90° the time taken is
T

4
.

t
T=
4

Ans.

322 � Mechanics - II

√3A
2

–

30°

P2

Q2

Q1

P1
O

60° + /2A

A 90°
A



Note Some, standard results which are frequently asked are given in following table:

From To Time taken

O A /2 T /12

A /2 A T / 6

O A / 2 T / 8

A / 2 A T / 8

Near the mean position, speed of particle is more. Therefore, it covers first half of the
distance (from 0 to A/2) in a shorter time compared to the second half (from A/ 2 to A).

Type 4. Third Use of reference circle (finding time of collision of two particles executing SHM along
same straight line with same ωand A but different initial conditions).

How to Solve?

Corresponding to initial conditions of SHM particles P1 and P2, first find their particles Q1 and Q2 on the
reference circle.

Now, we can see that the particles Q1 and Q2 will never collide as they are rotating in the same direction
(anticlockwise) with same ω and T. But the perpendiculars from Q1 and Q2 on our diameter along x-axis will
collide when this diameter becomes the bisector line of the constant angle β (between OQ1 and OQ2) as
shown below.

Now, either of the two particles has rotated an angle.

θ α β= + ( / )2

∴ Time taken is t = θ
ω
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α
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V Example 4 Two SHM particles P1 and P2 start from +
A

2
and −

3

2

A
, both in

negative directions. Find the time (in terms of T) when they collide. Both particles

have same ω, A and T and they execute SHM along the same line.

Solution

In the first figure, we have shown two particles Q1 and Q2 corresponding to given initial
conditions of P1 and P2. In the second figure, we have shown the moment when the SHM

particles are colliding at x A
A= − ° = −cos45
2

.

We can see that either of the particles Q1 and Q2 has rotated an angle θ = °75 or
5

12

π
. So, the time

taken is

t
T

T= = =





θ
ω

π
π

( / )

( / )

5 12

2

5

24

Note In the above problem, the constant angle between OQ1 and OQ2 is 90°. So, the constant phase difference

between two SHM particles corresponding to given initial conditions is also 90°.

Type 5. Spring Block Systems.

Concept

There are a lot of problems based on spring-block system. The main concepts are:

(i) T
m

K
= 2π and ω π= =2

T

K

m

(ii) Force constant of spring,

K ∝ 1

Length of spring

(iii)
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A

x
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⇒
45°

45°

A
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K1

K2

K K= + 2K1



(iv)

Let us take some examples based on the above concepts.

V Example 5 A mass is suspended separately by two springs and the time periods

in the two cases are T1 and T2 . Now the same mass is connected in parallel

( )K K K= +1 2 with the springs and the time is suppose TP . Similarly time period

in series is TS , then find the relation between T1, T2 and TP in the first case and

T1, T2 and TS in the second case.

Solution T
m

K
=2π

∴ T
K

= α
(where, 2π αm = = constant)

⇒ K
T

= α 2

2
…(i)

or
1 2

2K

T=
α

…(ii)

First case In parallel,

K K K= +1 2

Using Eq. (i),
α α α2

2

2

1
2

2

2T T TP

= +

∴ T T TP
− − −= +2

1
2

2
2

Ans.

This is the desired relation.

Second case In series,
1 1 1

1 2K K K
= +

Now, using Eq. (ii) we have,
T T Ts

2

2
1
2

2
2
2

2α α α
= +

∴ T T Ts
2

1
2

2
2= + Ans.

This is the desired  relation in this case.

V Example 6 Time period of a block with a spring is T0 . Now, the spring is cut in

two parts in the ratio 2 : 3. Now find the time period of same block with the

smaller part of the spring.

Solution T
m

K
=2π ⇒ T

K
∝ 1

But K
l

∝ 1
(l = length of spring)

∴ T l∝ …(i)

Chapter 14 Simple Harmonic Motion � 325

K1

K2
+K K1 2

K K K= +1 2

1 1 1

or K =
K K1 2



Now, suppose total length of the spring is 5l and it is cut in two parts of lengths 2l and 3l.
Eq. (i) can be written as

T

T

l

l

l

l

2

5

2

5

2

5
= =

∴ T Tl l2 5

2

5
=







 =









2

5
0T Ans.

V Example 7 With the assumption of no slipping, determine the mass m of the

block which must be placed on the top of a 6 kg cart in order that the system

period is 0.75 s. What is the minimum coefficient of static friction µ s for which the

block will not slip relative to the cart if the cart is displaced 50 mm from the

equilibrium position and released? Take ( g = 9.8 m/s2 ).

Solution (a) T
m= +

2
6

600
π T

m

K
=







2π

or 0.75 = +
2

6

600
π m

∴ m = × −(

( )

0.75)2

2

600

2
6

π
= 2.55 kg Ans.

(b) Maximum acceleration of SHM is,

a Amax = ω2 ( )A = amplitude

i.e. maximum force on mass ‘m’ is m Aω2 which is being provided by the force of friction between

the mass and the cart. Therefore,

µ ωsmg m A≥ 2 or µ ω
s

A

g
≥

2

or µ π
s

T

A

g
≥ 



 ⋅2

2

or µ π
s ≥ 











2
2

0.75

0.05

9.8
(A = 50 mm)

or µs ≥ 0.358

Thus, the minimum value of µs should be 0.358. Ans.

V Example 8 A block is kept over a horizontal platform, executing vertical SHM of

angular frequency ω. Find maximum amplitude of oscillations, so that the block

does not leave contact with the platform.
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Solution At mean position, acceleration, a = 0

⇒ N mg= (N = normal reaction)

Below the mean position, acceleration is upwards (towards the mean position)

∴ N mg ma− = or N m g a= +( )

Above the mean position, acceleration is downwards (towards the mean position)

∴ mg N ma− = or N m g a= −( )

In this case, N decreases as ‘a’ increases. At the extreme position acceleration is maximum

( )=ω2A , so N is minimum. When the block leaves contact with the plank N becomes zero.

∴ 0 2= −m g A( )ω or A
g=

ω2

Therefore, the maximum value of amplitude A for not leaving the contact is
g

ω2
.

V Example 9 A particle of mass m is attached with three springs

A B, and C of equal force constants k as shown in figure. The

particle is pushed slightly against the spring C and released.

Find the time period of oscillation.

Solution OP x=
∠ = ∠ ≈ °POM PON 45

y x
x= ° =cos 45
2

Net restoring force,

F kx kynet = − + °[ cos ]2 45

= − ( )2k x as y
x=



2

∴ k ke = 2

Now, T
m

k

m

ke

= =2 2
2

π π

V Example 10 A spring block system is kept inside a lift moving

with a constant velocity v0 as shown in figure. Block is in

equilibrium and at rest with respect to lift. The lift is suddenly

stopped at time t =0. Taking upward direction as the positive

direction, write x t- equation of the block.

Solution Lift is suddenly stopped but block will not stop instantly. It will have same velocity v0

at t = 0. But this is the velocity at its mean position (as it was at rest w.r.t lift). So, this is also

its maximum velocity of SHM.

∴ v v A0 = =
max

ω ⇒ A
v= 0

ω
(where, ω = K

m
)

Now, at t =0, block is at mean position and has a velocity v0 in upward or positive direction.

Therefore, the x t- equation is

x A t= sin ω Ans.

where, A
v= 0

ω
and ω = K

m
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V Example 11 One end of an ideal spring is fixed to a wall at origin O and axis of

spring is parallel to x-axis. A block of mass m = 1 kg is attached to free end of the

spring and it is performing SHM. Equation of position of the block in co-ordinate

system shown in figure is x t= +10 3 10sin ( ). Here, t is in second and x in cm.

Another block of mass M kg= 3 , moving towards the origin with velocity 30 cm/s

collides with the block performing SHM at t = 0 and gets stuck to it. Calculate

(a) new amplitude of oscillations,

(b) new equation for position of the combined body,

(c) loss of energy during collision. Neglect friction.

Solution (a) Initially, ω2 = k

m

∴ k m= = =ω2 21 10 100( ) ( ) N/m

At t = 0, block of mass m is at mean position ( )x = 10 cm and moving towards positive

x-direction with velocity Aω or 30 cm/s.

From conservation of linear momentum,

( ) ( ) ( )M m v M m+ = −30 30

Substituting the values, we have

v = velocity of combined mass just after collision = 15 cm/s or 0.15 m/s

From conservation of mechanical energy,

1

2

1

2

2 2( ) ( )M m v k A+ = ′

Here, A′ = new amplitude of oscillation of combined mass

∴ A
M m

k
v′ = +






 = 





4

100

1 2/

( )0.15 = 0.03 m

or A′ = 3 cm Ans.

(b) New angular frequency ω′ =
+

= =k

M m

100

4
5 rad/s

∴ x t′ = −10 3 5sin Ans.

(c) Loss of mechanical energy E Ef i−

= + −1

2
1

1

2
3

1

2
42 2 2( ) ( ) ( )(( ) ( ) )0.3 0.3 0.15

= 0.135 J Ans.
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Type 6. Time period of a periodic motion which is not completely simple harmonic.

V Example 12 A pendulum has a period T for small oscillations.
An obstacle is placed directly beneath the pivot, so that only the
lowest one-quarter of the string can follow the pendulum bob when
it swings to the left of its resting position. The pendulum is
released from rest at a certain point. How long will it take to
return to that point again ? In answering this question, you may
assume that the angle between the moving string and the vertical
stays small throughout the motion.

Solution Half the oscillation is completed with length l and rest half with length
l

4
.

T
T T= +1 2

2 2
= +



















1

2
2 2 4π πl

g

l

g

=








 =3

4
2

3

4
π l

g
T , where T

l

g
= 2π Ans.

V Example 13 A block of mass 100 g attached to a

spring of stiffness 100 N/m is lying on a frictionless

floor as shown. The block is moved to compress the

spring by 10 cm and released. If the collision with the

wall is elastic then find the time period of oscillations.

Solution The given distance on RHS 5 cm is
A

2
and from 0 to

A

2
time taken is

T

12
.

T t t
T T= + = + 



LHS RHS

2
2

12

= =2

3

2

3
2T

m

k
( )π

= 4

3 100

π 0.1 = 0.133 s Ans.

V Example 14 Two light springs of force constants k1 and k2 and a block of mass m

are in one line AB on a smooth horizontal table such that one end of each spring is

fixed on rigid supports and the other end is free as shown in the figure. The distance

CD between the free ends of the spring is 60 cm. If the block moves along AB with a

velocity 120 cm/s in between the springs, calculate the period of oscillation of the

block. (Take k N m k N m1 2= =1.8 3.2/ /, , m g= 200 ) (JEE 1985)
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Solution Between C and D block will move with constant speed of 120 cm/s. Therefore, period

of oscillation will be (starting from C).

T t
T

t
T

CD DC= + + +2 1

2 2

Here, T
m

k
1

1

2= π and T
m

k
2

2

2= π

and t tCD DC= = =60

120
0.5 s

∴ T = + + +0.5
0.2

3.2
0.5

0.2

1.8

2

2

2

2

π π

T = 2.82 s Ans.

V Example 15 A block is released from point A as

shown in figure. All surfaces are smooth and there

is no loss of mechanical energy anywhere. Find the

time period of oscillations of block.

Solution As there is no loss of mechanical energy, the

block rises upto the same height ‘h’ on other side also.

AB
h=

sin α
, BC

h=
sin β

a g1 = sin α , a g2 = sin β
u uA C= =0

Using t
s

a
= 2

(with u =0)

∴ Time period of oscillations,

T t tAB CB= +2 2 = +2( )t tAB CB

=
×

+
×



















2

2 2
h

g

h

g
sin

sin

sin

sin

α
α

β
β

= +2
2h

g
[ ]cosec cosecα β Ans.

Type 7. When point of suspension of the pendulum has an acceleration a.

Concept

As we have discussed in the theory, time period in this case is

T
l

ge

= 2π

where, g g ae = − or g a+ −( ) and ge e= g
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α β
h

A C

a1 a2

B

h

α β
h
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V Example 16 A simple pendulum of length l is suspended from the ceiling of a

cart which is sliding without friction on an inclined plane of inclination θ. What

will be the time period of the pendulum?

Solution Here, point of suspension has an acceleration. a g= sin θ (down the plane). Further,

g can be resolved into two components g sin θ (along the plane) and g cos θ (perpendicular to

plane).

∴ g g aeff = − = + −g a( )

Resultant of g and −a will be g cosθ.

∴ g geff = cos θ (perpendicular to plane)

∴ T
l= 2π

| |geff

= 2π
θ

l

g cos
Ans.

Note If θ = °0 , T
l

g
= 2π which is quiet obvious.

Type 8. When displacement is not measured from the mean position.

Concept

In most of the x t- equations of SHM, x is measured from the mean position. In this type of
problems, we have to write S t- equation. But S here is not measured from the mean
position. The method can be best explained by the following example:

V Example 17 A block in SHM starts from + A position. Write S t- equation of the

block, if S is measured from − A.

Solution

When the block starts from + A and x at any time ‘t’ is measured from the mean position, then

x A t= cosω
In the figure, we can see that

S A x= + or S A A t= + cosω or S A t= +( cos )1 ω Ans.

Check From the equation we can see that,

S A=2 at t =0

S A= at t
T=
4

and ω π= 2

T
⇒ ω π

t =
2

S =0 at T
T=
2

and ω π= 2

T
⇒ ω πt =
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Type 9. Based on the concept of pseudo force.

Concept

If a block is observed from an accelerating or non-inertial frame of reference, a pseudo force
( )= −ma has to be applied on the block. Here, ‘m’ is the mass of the block and a the
acceleration of frame of reference.

V Example 18 A spring block system is kept inside the smooth surface of a trolley

as shown in figure.

At t = 0, trolley is given an acceleration ‘a’ in the direction shown in figure.

Write S t- equation of the block

(a) with respect to trolley.

(b) with respect to ground.

Note S has to be measured from the starting point (at t =0) not from the mean position of SHM with respect to

trolley.

Solution (a) Trolley is an accelerating or non-inertial frame. So, a pseudo force F ma= has to

be applied on the block towards left.

Here, P or natural length of the spring is not the mean position (of SHM of the block with

respect to trolley).

Let mean position (where F
net

=0) is obtained after an extension of x0. Then

ma kx= 0 ⇒ x
ma

k
0 =

This x0 is also the amplitude of SHM of block with respect to trolley.

∴ A x
ma

k
= =0

Further, at t =0, block is at x A= + .

Therefore, x t- equation of block is, x A t= cosω (where, ω = k

m
)

But in this equation x is measured from the mean position and we have to measure S from the

starting point ( )= + A
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m
K a

Kx0

x0

x = 0 x A= +
t = 0

F ma= F ma=

Q P

–A +
= 0
A

t

O t t=
+ve

x
S

bt



From the figure we can see that,

Sbt = displacement of block with respect to trolley.

= − −( )A x

= − −( cos )A A tω
S A t Abt = −( cos )ω Ans.

(b) Displacement of trolley at time ‘t’ is

S att = 1

2

2

Now S S Sbt b t= −
∴ S S Sb bt t= +
or Sb = displacement of block with respect to ground.

or S A t A atb = − +( cos )ω 1

2

2
Ans.

Type 10. Distance travelled in a given time interval.

Concept

Linear speed of particle in SHM is not constant. Therefore, we cannot apply,

distance = speed time×

How to Solve?

From the given x t- equation, find the starting point, amplitude and time period of oscillations.

V Example 19 x t- equation of a particle in SHM is

x cm t= 





( ) cos4
2

π

Here, t is in seconds. Find the distance travelled by the particle in first three seconds.

Solution A =4 cm

ω π= 



2

rad/s

∴ T
T

= =2
4

π
sec

The given equation is x A t= cosω .

Therefore, the particle starts from x A= + .

The given time t =3 sec is
3

4

T
. So, the particle moves from + A to − A and then from − A to O.

So, distance travelled in the given time interval is 3A or 12 cm. Ans.
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Type 11. Graph Based problems.

V Example 20 For a particle executing SHM, the displacement x is given by

x A t= cos .ω Identify the graph which represents the variation of potential energy

(PE) as a function of time t and displacement x. (JEE 2003)

(a) I, III (b) II, IV (c) II, III (d) I, IV

Solution Potential energy is minimum (in this case zero) at mean position ( )x = 0 and

maximum at extreme positions ( )x A= + .

At time t x A= =0, . Hence, PE should be maximum. Therefore, graph I is correct. Further in

graph III, PE is minimum at x = 0. Hence, this is also correct.

V Example 21 x t- graph of a particle in SHM is

At time t t= 0, what are the signs of v and a of the particle?

Solution v
dx

dt
= =slope of x t- graph.

At time t t= 0, slope is positive. So, velocity is positive.

a x∝ −
At time t t= 0, x is positive. Hence, acceleration is negative because ‘a’ and ‘x’ are always of

opposite signs.

Note At time t0 , velocity is positive and acceleration is negative. So, speed of the particle at this instant is

decreasing or the particle is moving towards the extreme position.

Type 12. Based on two body oscillator system.

Concept

As discussed in the theory, if the spring is compressed or elongated by x0 and released then
both blocks execute SHM with same time period T (and ωalso) but different amplitudes in
the inverse ratio of their masses.
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PE

t

I II

PE

III

IV

x

t0
t

x

m1 m2K



T
k

= 2π µ

Here, µ = reduced mass =
+

m m

m m

1 2

1 2

A
m

∝ 1
or

A

A

m

m

1

2

2

1

=

∴ A
m

m m
x1

2

1 2
0=

+








and A
m

m m
x2

1

1 2
0=

+








V Example 22 The system shown in the figure can move on a smooth surface.

They are initially compressed by 6 cm and then released, then choose the correct

options.

(a) The system performs, SHM with time period
π

10
s

(b) The block of mass 3 kg perform SHM with amplitude 4 cm

(c) The block of mass 6 kg will have maximum momentum of 2.40 kg-m/s

(d) The time periods of two blocks are in the ratio of 1 2:

Solution µ = Reduced mass

=
+

m m

m m

1 2

1 2

= 2 kg

T
k

= 2π µ

= = = =2
2

800 10
3 6π π

s T T

A
m

∝ 1

∴ A

A

3

6

6

3

2

1
= =

∴ A3 = 4 cm and A6 2= cm

( ) ( )max maxP m v6 6 6=
= m A6 6( )ω

=






 ×

−
( )

/
( )6

2

10
2 10

2π
π

= 2.4 kg-m/s

∴ The correct options are (a, b, c)
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Type 13. Change in variable force method for finding time period of SHM.

Concept

(i) Two types of forces may act on a body: constant and variable.

Weight of a body (for small heights) and the upthrust force on a solid when it is
completely immersed in a liquid are constant forces.

Spring force, upthrust force when the body is partially immersed in a liquid, tension and
normal reaction are variable forces. Tension and normal reaction seem to be constant
forces but actually they are variable forces.

In the figure shown,

N mg= if a = 0

N m g a= +( ) if a is upwards and

N m g a= −( ) if a is downwards.

So, normal reaction N is not a constant force.

(ii) In equilibrium, summation of all constant and variable forces is zero.

(iii) When displaced from the mean position, constant forces do not contribute in the net
restoring force (therefore in time period). They can only change the mean position.

So, just forget the constant forces. Only change in variable force becomes the net
restoring force.

∴ Fnet = − =∆F net restoring force.

where, F is the variable force.

(iv) If two or more than two variable forces are acting on a body and both either increase or
decrease (when displaced from the mean position), then

F F Fnet = − +[ ]∆ ∆1 2

If one variable force increases and the other decreases then,

F F Fnet = − [ ~ ]∆ ∆1 2

Let us understand this concept with an example.

In the above figures, F1 is a constant force and F2 is a variable force. In equilibrium,

F F1 2 10= = N(say)

or Fnet = 0

When displaced from the mean position, F1 being a constant force remains 10 N.

But, suppose F2 becomes F ′ =2 8 N .

Then, net force is 2 1 2N( )= − ′F F in upward direction or towards the mean position. We
can see that this net force is also equal to change (here decrease) in variable force F2.
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N

mg

a

F1

F2

Equilibrium
position

F F1 2= = 10N (say)

Fnet = 0 F1 = 10N

Displaced position

Fnet

F2 = 8N′



How to Solve?

• Consider a mean or equilibrium position of the body.

• Displace the body from the mean position and find the change(s) in variable force(s) and calculate the net
restoring force by the method discussed above. This net restoring force should be of type

F kx= − ⇒ Now, T
m

k
= 2π

V Example 23 A plank of mass ‘m’ and area of cross-section A is floating in a

non-viscous liquid of density ρ. When displaced slightly from the mean position, it

starts oscillating. Prove that oscillations are simple harmonic and find its time

period.

Solution Two forces are acting on the plank: weight and upthrust. Weight is a constant force.

So, forget it. Upthrust (if partially immersed) is a variable force. When displaced downwards by

a distance x, then

Net restoring force F
net

= − [change or increase in variable force upthrust]

= − [( )( ) ( )]extra immersed volume density of liquid g

= − [( ) ( ) ( )]Ax gρ
This force is of type F kx= − .

So, motion is simple harmonic, where k Ag=ρ

∴ T
m

k
=2π or T

m

Ag
=2π

ρ
Ans.

Note (i) Upthrust force is given by

F immersed volume of solid density of liquid g= ( ) ( ) ( )

= V gi ρ ⇒ ∴ ∆ ∆F V gi=( ) ρ [as ρ and g are constant]

(ii) In the above problem, upthrust is just like a spring force of force constant:

k Ag=ρ

V Example 24 A plank of mass ‘m’ and area of cross-section A is floating as

shown in figure. When slightly displaced from mean position, plank starts

oscillations. Find time period of these oscillations.
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Solution Three forces are acting on the plank :

(i) weight (ii) spring force

(iii) upthrust

Weight is a constant force. So, it will not contribute in the time period. Spring force and

upthrust are variable forces. When displaced downwards from the mean position, both forces

increase.

So, their force constants are additive

∴ k k Age = + ρ

∴ T
m

ke

=2π

=
+

2π
ρ

m

k Ag
Ans.

Note If the plank oscillates with fully immersed position, then upthrust also becomes a constant force. So, the only

varibale force remains kx. Therefore,

T
m

k
=2π

V Example 25 Figure shows a system consisting of a massless pulley, a spring of

force constant k and a block of mass m. If the block is slightly displaced vertically

down from its equilibrium position and released, find the period of its vertical

oscillation in cases (a) and (b).

Solution (a)
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Two forces are acting on the block :

(i) weight

(ii) tension

Weight is a constant force which does not contribute in time period. Tension is a variable force.

Let tension increases by F when displaced from the equilibrium position by x. This increase in

tension is the change in variable force. So, this is also the net restoring force. The distribution

of this increase in tension F is as shown in figure.

Spring gets an extra stretching force 2F. Let x0 is the extra extension in the spring by this extra

force 2F. Then,

2 0F kx=

or x
F

k
0

2= …(i)

Now, we can see that by this extra extension of spring, pulley will also come down by the same

distance x0 and

x x
F

k
= = 



2 2

2
0

⇒ F
k

x=
4

But F is also the net restoring force on block. So, we can write

F
k

x= − 



4

∴ T
m

k
=2

4
π

/
(as k ke = /4)

= 2π 4m

k
Ans.

(b) Using the same concepts as discussed above,

F
kx

2
0=

or x
F

k
0

2
=

But this time,

x0 = extra extension on spring.

= extra increase in length ABCD

= 2x

or
F

k
x

2
2=

or F kx=4

Due to the restoring nature of F we can write,

F k x= − ( )4

∴ T
m

k
=2

4
π (as k ke =4 )
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V Example 29 For a two body oscillator system, prove the relation,

T
k

= 2π µ

where, µ =
+

=m m

m m

1 2

1 2

reduced mass

Solution A system of two bodies connected by a spring so that both are free to oscillate simple

harmonically along the length of the spring constitutes a two body harmonic oscillator.

Suppose, two masses m1 and m2 are connected by a horizontal massless spring of force constant

k, so as to be free to oscillate along the length of the spring on a frictionless horizontal surface.

Let l0 be the natural length of the spring and let x1 and x2 be the coordinates of the two masses

at any instant of time. Then,

Extension of the spring x x x l= − −( )1 2 0 …(i)

For x > 0, the spring force F kx= acts on the two masses in the directions shown in above figure.

Thus, we can write

m
d x

dt
kx1

2
1
2

= − …(ii)

m
d x

dt
kx2

2
2

2
= …(iii)

Multiplying Eq. (ii) by m2 and Eq. (iii) by m1 and subtracting the latter from the former, we

have

m m
d x

dt
m m

d x

dt
m m kx1 2

2
1
2 1 2

2
2

2 2 1− = − +( )

or m m
d x x

dt
kx m m1 2

2
1 2

2 1 2

( )
( )

− = − +

or
m m

m m

d

dt
x x kx1 2

1 2

2

2 1 2+






 − = −( ) …(iv)

Differentiating Eq. (i), twice with respect to time, we have

d x

dt

d

dt
x x

2

2

2

2 1 2= −( )

m2 m1

F

O

y

x

F

x2

x1

Miscellaneous Examples



Also,
m m

m m

1 2

1 2+
= =µ reduced mass of the two blocks

Substituting these values in Eq. (iv), we have

µ d x

dt
kx

2

2
= −

or µa kxr = − (Here, a
d x

dt

d x

dt

d x

dt
r = = − =

2

2

2
1
2

2
2

2
Relative acceleration)

This, is the standard differential equation of SHM. Time period of which is

T
x

ar

= 

 


2π or T

k
= 2π µ

V Example 30 Two particles move parallel to x-axis about the origin with the

same amplitude and frequency. At a certain instant they are found at distance
A

3

from the origin on opposite sides but their velocities are found to be in the same

direction. What is the phase difference between the two ?

Solution Let equations of two SHM be

x A t1 = sin ω K (i)

x A t2 = + φsin ( )ω K (ii)

Give that
A

A t
3

= sin ω

and − = + φA
A t

3
sin ( )ω

Which gives sin ωt = 1

3
K (iii)

sin ( )ωt + φ = −1

3
K (iv)

From Eq. (iv),

sin cos cos sinω ωt tφ + φ = −1

3

⇒ 1

3
1

1

9

1

3
cos sinφ + − φ = −

Solving this equation, we get

or cos ,φ = −1
7

9

⇒ φ = π or cos− 





1 7

9

Differentiating Eqs. (i) and (ii), we obtain

v A t1 = ω ωcos and v A t2 = + φω ωcos ( )

If we put φ = π, we find v1 and v2 are of opposite signs. Hence, φ = πis not acceptable.

∴ φ = 





−cos 1 7

9
Ans.
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V Example 31 For the arrangement shown in figure, the spring is initially

compressed by 3 cm. When the spring is released the block collides with the wall

and rebounds to compress the spring again.

(a) If the coefficient of restitution is
1

2
, find the maximum compression in the spring after

collision.

(b) If the time starts at the instant when spring is released, find the minimum time after

which the block becomes stationary.

Solution (a) Velocity of the block just before collision,

1

2

1

2

1

2
0
2 2

0
2mv kx kx+ =

or v
k

m
x x0 0

2 2= −( )

Here, x0 = 0.03 m, x = 0.01 m, k = 104 N/m, m = 1 kg

∴ v0 2 2= m/s

After collision, v ev= = =0

1

2
2 2 2 m/s

Maximum compression in the spring is

1

2

1

2

1

2

2 2 2kx kx mvm = +

or x x
m

k
vm = +2 2

= +( )
( ) ( )

0.01 m2
2

4

1 2

10
= 2.23 cm Ans.

(b) In the case of spring-mass system, since the time period is independent of the amplitude of
oscillation.

Time = + + +t t t tAB BC CB BD

= + 









 + 





− −T T T0 0 1 0 1

4 2

1

3 2

1

π π
sin sin

2.23

 + T0

4

Here, T
m

k
0 2= π

Substituting the values, we get

Total time = + 



 + 











− −m

k
π sin sin1 11

3

1

2.23
Ans.
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V Example 32 A long uniform rod of length L and mass M is

free to rotate in a horizontal plane about a vertical axis

through its one end ‘ ’O . A spring of force constant k is

connected between one end of the rod and PQ. When the rod

is in equilibrium it is parallel to PQ.

(a) What is the period of small oscillation that result when the rod

is rotated slightly and released?

(b) What will be the maximum speed of the displaced end of the rod, if the amplitude of

motion is θ0?

Solution (a) Restoring torque about ‘O’ due to elastic force of the spring

τ = − = −FL kyL ( )F ky=
τ θ= − kL2 (as y L= θ)

τ α θ= =I ML
d

dt

1

3

2
2

2

1

3

2
2

2

2ML
d

dt
kL

θ θ= −

d

dt

k

M

2

2

3θ θ= −

ω = 3k

M

⇒ T
M

k
= 2

3
π Ans.

(b) In angular SHM, maximum angular velocity

d

dt

θ θ ω



 =

max
0 = θ0

3k

M

v r
d

dt
= 





θ

So , v L
d

dt
L

k

M
max

max

= 



 =θ θ0

3
Ans.

V Example 33 A block with a mass of 2 kg hangs without vibrating at the end of

a spring of spring constant 500 N/m, which is attached to the ceiling of an

elevator. The elevator is moving upwards with an acceleration
g

3
. At time t = 0, the

acceleration suddenly ceases.

(a) What is the angular frequency of oscillation of the block after the acceleration ceases?

(b) By what amount is the spring stretched during the time when the elevator is

accelerating?

(c) What is the amplitude of oscillation and initial phase angle observed by a rider in the

elevator in the equation, x A t= + φsin( )ω ? Take the upward direction to be positive.

Take g = 10.0 m/s2.
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Solution (a) Angular frequency

ω = k

m
or ω = 500

2

or ω =15.81 rad/s Ans.

(b) Equation of motion of the block (while elevator is accelerating) is,

kx mg ma m
g− = =
3

∴ x
mg

k
= 4

3

= ( )( )( )

( )( )

4 2 10

3 500
= 0.053 m

or x = 5.3 cm Ans.

(c) (i) In equilibrium when the elevator has zero acceleration, the equation of  motion is,

kx mg0 =

or x
mg

k
0 = = ( )( )2 10

500

= 0.04 m = 4 cm

∴ Amplitude A x x= − 0 = 5.3 4.0–

= 1.3 cm Ans.

(ii) At time t = 0, block is at x A= − . Therefore, substituting x A= − and t = 0 in equation,

x A t= + φsin ( )ω

We get initial phase φ =3

2

π
Ans.
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mg

x A= +
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V Example 34 Calculate the angular frequency of the system shown in figure.

Friction is absent everywhere and the threads, spring and pulleys are massless.

Given that m m mA B= = .

Solution Let x0 be the extension in the spring in equilibrium. Then, equilibrium of A and B

give,

T kx mg= +0 sin θ …(i)

and 2T mg= …(ii)

Here, T is the tension in the string. Now, suppose A is further displaced by a distance x from its

mean position and v be its speed at this moment. Then, B lowers by
x

2
and speed of B at this

instant will be
v

2
. Total energy of the system in this position will be,

E k x x m v m
v

m gh m g hA B A A B B= + + + 



 + −1

2

1

2

1

2 2
0

2 2
2

( )

or E k x x mv mv mgx mg
x= + + + + −1

2

1

2

1

8 2
0

2 2 2( ) sin θ

or E k x x mv mgx mg
x= + + + −1

2

5

8 2
0

2 2( ) sin θ

Since, E is constant,
dE

dt
= 0

or 0
5

4
0= + + 



 + 



 −k x x

dx

dt
mv

dv

dt
mg

dx

dt

mg
( ) (sin )θ

2

dx

dt







Substituting,
dx

dt
v= ⇒ dv

dt
a=

and kx mg
mg

0
2

+ =sin θ [From Eqs. (i) and (ii)]

We get,
5

4
m a kx= −

Since, a x∝ −

Motion is simple harmonic, time period of which is,

T
x

a
= 


 


2π

= 2
5

4
π m

k

∴ ω π= =2 4

5T

k

m
Ans.
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V Example 35 A solid sphere (radius = R) rolls without slipping in a cylindrical

through (radius = 5R). Find the time period of small oscillations.

Solution For pure rolling to take place,

v R= ω
ω′ = angular velocity of COM of sphere C about O

= = =v

R

R

R4 4 4

ω ω

∴ d

dt

d

dt

ω ω′ = 1

4

or α α′ =
4

α = a

R
for pure rolling

where, a
g

I

mR

=
+

sin θ

1
2

= 5

7

g sin θ

as, I mR= 2

5

2

∴ α θ′ = 5

28

g

R

sin

For small θ,sin ,θ θ≈ being restoring in nature,

α θ′ = − 5

28

g

R

∴ T =
′



 


2π θ

α

= 2
28

5
π R

g
Ans.
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V Example 36 Consider the earth as a uniform sphere of mass M and radius R.

Imagine a straight smooth tunnel made through the earth which connects any

two points on its surface. Show that the motion of a particle of mass m along this

tunnel under the action of gravitation would be simple harmonic. Hence,

determine the time that a particle would take to go from one end to the other

through the tunnel.

Solution Suppose at some instant, the particle is at radial distance r from centre of earth O.
Since, the particle is constrained to move along the tunnel, we define its position as distance x
from C. Hence, equation of motion of the particle is,

ma Fx x=
The gravitational force on mass m at distance r is,

F
GMmr

R
=

3
(towards O)

Therefore,

F Fx = − sin θ

= − 





GMmr

R

x

r3

= − ⋅GMm

R
x

3

Since, F xx ∝ − , motion is simple harmonic in nature. Further,

ma
GMm

R
xx = − ⋅

3

or a
GM

R
xx = − ⋅

3

∴ Time period of oscillation is,

T
x

ax

= 

 


2π

= 2
3

π R

GM

The time taken by particle to go from one end to the other is
T

2
⋅

∴ t
T=
2

= π R

GM

3

Ans.
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LEVEL 1
Assertion and Reason

Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : In x A t= cos ω , x is the displacement measured from extreme position.

Reason : In the above equation x A= at time t = 0.

2. Assertion : A particle is under SHM along the x-axis. Its mean position is x = 2, amplitude is

A = 2 and angular frequency ω. At t = 0, particle is at origin, then x-co-ordinate versus time

equation of the particle will be x t= − +2 2cos .ω

Reason : At t = 0, particle is at rest.

3. Assertion : A spring block system is kept over a smooth surface as shown in figure. If a

constant horizontal force F is applied on the block it will start oscillating simple harmonically.

Reason : Time period of oscillation is less than 2π m

k
.

4. Assertion : Time taken by a particle in SHM to move from x A= to x
A= 3

2
is same as the time

taken by the  particle to move from x
A= 3

2
to x

A=
2

.

Reason : Corresponding angles rotated in the reference circle are same in the given time
intervals.

5. Assertion : Path of a particle in SHM is always a straight line.

Reason : All straight line motions are not simple harmonic.

6. Assertion : In spring block system if length of spring and mass of block both are halved, then

angular frequency of oscillations will remain unchanged.

Reason : Angular frequency is given by ω = k

m

7. Assertion : All small oscillations are simple harmonic in nature.

Reason : Oscillations of spring block system are always simple harmonic whether amplitude is
small or large.

Exercises

Fk
m



8. Assertion : In x A t= cos ω , the dot product of acceleration and velocity is positive for time

interval 0
2

< <t
π
ω

.

Reason : Angle between them is 0°.

9. Assertion : For a given simple harmonic motion displacement (from the mean position) and
acceleration have a constant ratio.

Reason : T = 2π displacement

acceleration

10. Assertion : We can call circular motion also as simple harmonic motion.

Reason : Angular velocity in uniform circular motion and angular frequency in simple
harmonic motion have the same meanings.

Objective Questions
Single Correct Option

1. A simple harmonic oscillation has an amplitude A and time period T . The time required to

travel from x A= to x
A=
2

is

(a)
T

6
(b)

T

4
(c)

T

3
(d)

T

12

2. The potential energy of a particle executing SHM varies sinusoidally with frequency f. The
frequency of oscillation of the particle will be

(a)
f

2
(b)

f

2
(c) f (d) 2 f

3. For a particle undergoing simple harmonic motion, the velocity is plotted against displacement.
The curve will be

(a) a straight line (b) a parabola

(c) a circle (d) an ellipse

4. A simple pendulum is made of bob which is a hollow sphere full of sand suspended by means of a
wire. If all the sand is drained out, the period of the pendulum will

(a) increase (b) decrease

(c) remain same (d) become erratic

5. Two simple harmonic motions are given by y a t1
2

= 





+ φ





sin

π
and y b t2

2

3
= 





+ φ





sin

π
. The

phase difference between these after 1 s is

(a) zero (b) π/2

(c) π/4 (d) π/6

6. A particle starts performing simple harmonic motion. Its amplitude is A. At one time its speed
is half that of the maximum speed. At this moment the displacement is

(a)
2

3

A
(b)

3

2

A

(c)
2

3

A
(d)

3

2

A
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7. Which of the following is not simple harmonic function?

(a) y a t b t= +sin cos2 2ω ω (b) y a t b t= +sin cosω ω2

(c) y t= −1 2 2sin ω (d) y a b t t= +( ) sin cos2 2 ω ω

8. The displacement of a particle varies according to the relation y t t= +4 (cos sin ).π π The
amplitude of the particle is

(a) 8 units (b) 2 units (c) 4 units (d) 4 2 units

9. Two pendulums X Yand of time periods 4 s and 4.2 s are made to vibrate simultaneously. They
are initially in same phase. After how many vibrations of X , they will be in the same phase
again?

(a) 30 (b) 25

(c) 21 (d) 26

10. A mass M is suspended from a massless spring. An additional mass m stretches the spring
further by a distance x. The combined mass will oscillate with a period

(a) 2π ( )M m x

mg

+







(b) 2π mg

M m x( )+








(c) 2π ( )M m

mgx

+







(d)
π
2

mg

M m x( )+








11. Two bodies P Qand of equal masses are suspended from two separate massless springs of force
constants k k1 2and respectively. If the two bodies oscillate vertically such that their maximum
velocities are equal. The ratio of the amplitude of P to that of Q is

(a)
k

k

1

2

(b)
k

k

1

2

(c)
k

k

2

1

(d)
k

k

2

1

12. A disc of radius R is pivoted at its rim. The period for small oscillations about an axis
perpendicular to the plane of disc is

(a) 2π R

g
(b) 2

2π R

g

(c) 2
2

3
π R

g
(d) 2

3

2
π R

g

13. Identify the correct variation of potential energyU as a function of displacement x from mean

position (or x2) of a harmonic oscillator (U at mean position = 0)

(a) (b)

(c) (d) None of these
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14. If the length of a simple pendulum is equal to the radius of the earth, its time period will be

(a) 2π R g/ (b) 2 2π R g/

(c) 2 2π R g/ (d) infinite

15. The displacement-time ( )x t- graph of a particle executing simple harmonic motion is shown in
figure. The correct variation of net force F acting on the particle as a function of time is

(a) (b)

(c) (d)

16. In the figure shown the time period and the amplitude respectively, when m is left from rest
when spring is relaxed are (the inclined plane is smooth)

(a) 2π θm

k

mg

k
,

sin
(b) 2

2π θ θm

k

mg

k

sin
,

sin

(c) 2π θm

k

mg

k
,

cos
(d) None of these

17. The equation of motion of a particle of mass 1 g is
d x

dt
x

2

2

2 0+ =π ,where x is displacement (in m)

from mean position. The frequency of oscillation is (in Hz)

(a) 1/2 (b) 2 (c) 5 10 (d) 1 5 10/
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18. The spring as shown in figure is kept in a stretched position with extension x when the system
is released. Assuming the horizontal surface to be frictionless, the frequency of oscillation is

(a)
1

2π
k M m

Mm

( )+





(b)
1

2π
mM

k M m( )+










(c)
1

2π
kM

m M+








 (d)

1

2π
km

M m+










19. The mass and diameter of a planet are twice those of earth. What will be the period of
oscillation of a pendulum on this planet. It is a second’s pendulum on earth?

(a) 2 s (b) 2 2 s (c)
1

2
s (d)

1

2 2
s

20. The resultant amplitude due to superposition of three simple harmonic motions x t1 3= sin ω ,
x t2 5 37= + °sin ( )ω and x t3 15= − cos ω is

(a) 18 (b) 10 (c) 12 (d) None of these

21. Two SHMs s a t s b t1 2= =sin and sinω ω are superimposed on a particle. The s s1 2and are
along the directions which makes 37° to each other

(a) the particle will perform SHM

(b) the path of particle is straight line

(c) Both (a) and (b) are correct

(d) Both (a) and (b) are wrong

22. The amplitude of a particle executing SHM about O is 10 cm. Then

(a) when the KE is 0.64 times of its maximum KE, its displacement is 6 cm from O

(b) its speed is half the maximum speed when its displacement is half the maximum displacement

(c) Both (a) and (b) are correct

(d) Both (a) and (b) are wrong

23. A particle is attached to a vertical spring and is pulled down a distance 4 cm below its

equilibrium and is released from rest. The initial upward acceleration is 0 5 2. ms− . The angular

frequency of oscillation is

(a) 3.53 rad/s (b) 0.28 rad/s

(c) 1.25 rad/s (d) 0.08 rad/s

24. A block of mass 1 kg is kept on smooth floor of a truck. One end of a spring of force constant
100 N/m is attached to the block and other end is attached to the body of truck as shown in the

figure. At t = 0, truck begins to move with constant acceleration 2 2m /s . The amplitude of

oscillation of block relative to the floor of truck is

(a) 0.06 m (b) 0.02 m (c) 0.04 m (d) 0.03 m
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Subjective Questions

1. Find the period of oscillation of the system shown in figure.

2. A block of mass 0.2 kg is attached to a massless spring of force constant 80 N/m as shown in

figure. Find the period of oscillation. Take g = 10 m/s2. Neglect friction.

3. A body of weight 27 N hangs on a long spring of such stiffness that an extra force of 9 N
stretches the spring by 0.05 m. If the body is pulled downward and released, what is the period ?

4. A clock with an iron pendulum keeps correct time at 20°C. How much time will it lose or gain in
a day if the temperature changes to 40°C. Thermal coefficient of linear expansion
α = 0 000012. per°C.

5. A 50 g mass hangs at the end of a massless spring. When 20 g more are added to the end of the
spring, it stretches 7.0 cm more. (a) Find the spring constant. (b) If the 20 g are now removed,
what will be the period of the motion ?

6. An object suspended from a spring exhibits oscillations of period T. Now, the spring is
cut in half and the two halves are used to support the same object, as shown in figure.
Show that the new period of oscillation is T/2.

7. The string, the spring and the pulley shown in figure are light. Find the time period of
the mass m.

8. A simple pendulum with a solid metal bob has a period T. What will be the period of the same
pendulum if it is made to oscillate in a non-viscous liquid of density one-tenth of the metal of the
bob?
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9. A particle moves under the force F x x x( ) ( )= −2 6 N, where x is in metres. For small
displacements from the origin what is the force constant in the simple harmonic motion
approximation?

10. The initial position and velocity of a body moving in SHM with period T = 0 25. s are x = 5 0. cm
and v = 218 cm/s. What are the amplitude and phase constant of the motion?

11. A point particle of mass 0.1 kg is executing SHM of amplitude 0.1 m. When the particle passes

through the mean position, its kinetic energy is 8 10 3× − J. Write down the equation of motion of

this particle when the initial phase of oscillation is 45°.

12. Potential energy of a particle in SHM along x-axis is given by

U x= + −10 2 2( )

Here, U is in joule and x in metre. Total mechanical energy of the particle is 26 J. Mass of the
particle is 2 kg. Find

(a) angular frequency of SHM,

(b) potential energy and kinetic energy at mean position and extreme position,

(c) amplitude of oscillation,

(d) x-coordinates between which particle oscillates.

13. A simple pendulum is taken at a place where its separation from the earth’s surface is equal to
the radius of the earth. Calculate the time period of small oscillations if the length of the string

is 1.0 m. Take g = π2 m s/ 2 at the surface of the earth.

14. A solid cylinder of mass M = 10kg and cross-sectional area A = 20 2cm is suspended by a spring
of force constant k = 100 N/m and hangs partially immersed in water. Calculate the period of
small oscillations of the cylinder.

15. A simple pendulum of length l and mass m is suspended in a car that is moving with constant
speed v around a circle of radius r. Find the period of oscillation and equilibrium position of the
pendulum.

16. A body of mass 0.10 kg is attached to a vertical massless spring with force constant
4 0 103. × N m/ . The body is displaced 10.0 cm from its equilibrium position and released. How
much time elapses as the body moves from a point 8.0 cm on one side of the equilibrium position
to a point 6.0 cm on the same side of the equilibrium position?

17. A body of mass 200 g is in equilibrium at x = 0 under the influence of a force

F x x x( ) (= − +100 10 2
)N.

(a) If the body is displaced a small distance from equilibrium, what is the period of its oscillations?

(b) If the amplitude is 4.0 cm, by how much do we error in assuming that F x kx( ) = − at the end

points of the motion.

18. A ring of radius r is suspended from a point on its circumference. Determine its angular
frequency of small oscillations.
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19. A spring mass system is hanging from the ceiling of an elevator in equilibrium.
The elevator suddenly starts accelerating upwards with acceleration a. Find

(a) the frequency and

(b) the amplitude of the resulting SHM.

20. A body makes angular simple harmonic motion of amplitude π / 10 rad and time period 0.05 s.
If the body is at a displacement θ π /= 10 rad at t = 0, write the equation giving angular
displacement as a function of time.

21. A particle executes simple harmonic motion of period 16 s. Two seconds later after it passes
through the centre of oscillation its velocity is found to be 2 m/s. Find the amplitude.

22. A simple pendulum consists of a small sphere of mass m suspended by a thread of length l. The
sphere carries a positive charge q. The pendulum is placed in a uniform electric field of strength
E directed vertically upwards. With what period will pendulum oscillate if the electrostatic
force acting on the sphere is less than the gravitational force?

Hint: Electrostatic force is given by F E= q

23. Find the period of oscillation of a pendulum of length l if its point of suspension is

(a) moving vertically up with acceleration a.

(b) moving vertically down with acceleration a g( )< .

(c) falling freely under gravity

(d) moving horizontally with acceleration a.

24. A block with mass M attached to a horizontal spring with force constant k is moving with simple
harmonic motion having amplitude A1. At the instant when the block passes through its
equilibrium position a lump of putty with mass m is dropped vertically on the block from a very
small height and sticks to it.

(a) Find the new amplitude and period.

(b) Repeat part (a) for the case in which the putty is dropped on the block when it is at one end

of its path.

25. A bullet of mass m strikes a block of mass M. The bullet remains embedded in the block. Find
the amplitude of the resulting SHM.

26. An annular ring of internal and outer radii r and R respectively oscillates in a vertical plane
about a horizontal axis perpendicular to its plane and passing through a point on its outer edge.

Calculate its time period and show that the length of an equivalent simple pendulum is
3

2

R
as

r → 0 and 2 R as r R→ .

27. A body of mass 200 g oscillates about a horizontal axis at a distance of 20 cm from its centre of
gravity. If the length of the equivalent simple pendulum is 35 cm, find its moment of inertia
about the point of suspension.

28. Show that the period of oscillation of simple pendulum at depth h below earth’s surface is
inversely proportional to R h− , where R is the radius of earth. Find out the time period of a
second pendulum at a depth R/2 from the earth’s surface ?
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29. The period of a particle in SHM is 8 s. At t = 0 it is in its equilibrium position.

(a) Compare the distance travelled in the first 4 s and the second 4 s.

(b) Compare the distance travelled in the first 2 s and the second 2 s.

30. (a) The motion of the particle in simple harmonic motion is given by x a t= sin ω . If its speed is

u , when the displacement is x1 and speed is v, when the displacement is x2 , show that the

amplitude of the motion is

A
v x x

v u
= −

−










2
1
2 2

2
2

2 2

1 2
u

/

(b) A particle is moving with simple harmonic motion in a straight line. When the distance of

the particle from the equilibrium position has the values x1 and x2 , the corresponding

values of velocity are u1 and u2, show that the period is

T
x x

u u
= −

−








2 2

2
1
2

1
2

2
2

1 2

π
/

31. Show that the combined spring energy and gravitational energy for a mass m hanging from a

light spring of force constant k can be expressed asU ky0
21

2
+ ,where y is the distance above or

below the equilibrium position and U 0 is constant.

32. The masses in figure slide on a frictionless table. m1 but not m2 , is fastened to the spring. If now

m1 and m2 are pushed to the left, so that the spring is compressed a distance d, what will be the

amplitude of the oscillation of m1 after the spring system is released ?

33. The spring shown in figure is unstretched when a man starts pulling on the cord. The mass of
the block is M. If the man exerts a constant force F, find

(a) the amplitude and the time period of the motion of the block,

(b) the energy stored in the spring when the block passes through the equilibrium position and

(c) the kinetic energy of the block at this position.

34. In figure, k = 100 N/m, M = 1 kg and F = 10 N.
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(a) Find the compression of the spring in the equilibrium position.

(b) A sharp blow by some external agent imparts a speed of 2 m/s to the block towards left. Find the

sum of the potential energy of the spring and the kinetic energy of the block at this instant.

(c) Find the time period of the resulting simple harmonic motion.

(d) Find the amplitude.

(e) Write the potential energy of the spring when the block is at the left extreme.

(f) Write the potential energy of the spring when the block is at the right extreme.

The answers of (b), (e) and (f) are different. Explain why this does not violate the principle of
conservation of energy?

35. Pendulum A is a physical pendulum made from a thin, rigid and uniform rod whose length is d.
One end of this rod is attached to the ceiling by a frictionless hinge, so that the rod is free to
swing back and forth. Pendulum B is a simple pendulum whose length is also d. Obtain the

ratio
T

T

A

B

of their periods for small angle oscillations.

36. A solid cylinder of mass m is attached to a horizontal spring with force constant k. The cylinder
can roll without slipping along the horizontal plane. (See the accompanying figure.) Show that

the centre of mass of the cylinder executes simple harmonic motion with a periodT
m

k
= 2

3

2
π , if

displaced from mean position.

37. A cord is attached between a 0.50 kg block and a spring with force constant k = 20 N/m. The

other end of the spring is attached to the wall and the cord is placed over a pulley ( . )I MR= 0 60 2

of mass 5.0 kg and radius 0.50 m. (See the accompanying figure). Assuming no slipping occurs,
what is the frequency of the oscillations when the body is set into motion?

38. Two linear SHM of equal amplitudes A and frequencies ω and 2ω are impressed on a particle
along x and y-axes respectively. If the initial phase difference between them is π /2. Find the
resultant path followed by the particle.

39. A particle is subjected to two simple harmonic motions given by

x t1 2 0 100= . sin( )π and x t2 2 0 120 3= +. sin( / )π π

where, x is in cm and t in second. Find the displacement of the particle at

(a) t = 00125. , (b) t = 0025. .
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LEVEL 2

Objective Questions
Single Correct Option

1. A particle of mass 2 kg moves in simple harmonic motion and its potential

energy U varies with position x as shown. The period of oscillation of the

particle is

(a)
2

5

π
s (b)

2 2

5

π
s

(c)
2

5

π
s (d)

4

5

π
s

2. In the figure shown, a spring mass system is placed on a horizontal

smooth surface in between two vertical rigid walls W W1 2and . One end of

spring is fixed with wall W1 and other end is attached with mass m which

is free to move. Initially, spring is tension free and having natural length

l0. Mass m is compressed through a distance a and released. Taking the

collision between wall W2 and mass m as elastic and K as

spring constant, the average force exerted by mass m on wall W2 in one

oscillation of block is

(a)
2aK

π
(b)

2ma

π

(c)
aK

π
(d)

2aK

m

3. Two simple harmonic motions are represented by the following equations y t1 40= sin ω and

y t c t2 10= +(sin cos ).ω ω If their displacement amplitudes are equal, then the value of c

(in appropriate units) is

(a) 13 (b) 15

(c) 17 (d) 4

4. A particle executes simple harmonic motion with frequency 2.5 Hz and amplitude 2 m. The

speed of the particle 0.3 s after crossing, the equilibrium position is

(a) zero (b) 2π m/s

(c) 4π m/s (d) π m/s

5. A particle oscillates simple harmonically with a period of 16 s. Two second after crossing the

equilibrium position its velocity becomes 1 m s/ . The amplitude is

(a)
π
4

m (b)
8 2

π
m

(c)
8

π
m (d)

4 2

π
m

6. A seconds pendulum is suspended from the ceiling of a trolley moving horizontally with an

acceleration of 4 2m s/ . Its period of oscillation is

(a) 1.90 s (b) 1.70 s

(c) 2.30 s (d) 1.40 s

m

l0

W1 W2

k

x(m)

1.0

O 0.4

U(J)



7. A particle is performing a linear simple harmonic motion. If the instantaneous acceleration and

velocity of the particle are a vand respectively, identify the graph which correctly represents

the relation between a vand .

(a) (b)

(c) (d)

8. In a vertical U-tube a column of mercury oscillates simple harmonically. If the tube contains
1 kg of mercury and 1 cm of mercury column weighs 20 g, then the period of oscillation is

(a) 1 s (b) 2 s

(c) 2 s (d) Insufficient data

9. A solid cube of side a and density ρ0 floats on the surface of a liquid of density ρ. If the cube is
slightly pushed downward, then it oscillates simple harmonically with a period of

(a) 2 0π ρ
ρ

a

g
(b) 2

0

π ρ
ρ

a

g

(c) 2

1
0

π
ρ
ρ

a

g−








(d) 2

1
0

π
ρ
ρ

a

g+








10. A uniform stick of length l is mounted so as to rotate about a horizontal axis perpendicular to
the stick and at a distance d from the centre of mass. The time period of small oscillations has a
minimum value when d l/ is

(a)
1

2
(b)

1

12

(c)
1

3
(d)

1

6

11. Three arrangements of spring-mass system are shown in figures (A), (B) and (C). If

T T T1 2 3, and represent the respective periods of oscillation, then correct relation is

(a) T T T1 2 3> > (b) T T T3 2 1> > (c) T T T2 1 3> > (d) T T T2 3 1> >
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12. Three arrangements are shown in figure.

(a) A spring of mass m and stiffness k

(b) A block of mass m attached to massless spring of stiffness k

(c) A block of mass
m

2
attached to a spring of mass

m

2
and stiffness k

If T T T1 2 3, and represent the period of oscillation in the three cases respectively, then identify
the correct relation.

(a) T T T1 2 3< < (b) T T T1 3 2< <
(c) T T T1 3 2> > (d) T T T3 1 2< <

13. A block of mass M is kept on a smooth surface and touches the two springs as shown in the
figure but not attached to the springs. Initially springs are in their natural length. Now, the
block is shifted ( / )l0 2 from the given position in such a way that it compresses a spring and
released. The time-period of oscillation of mass will be

(a)
π
2

M

k
(b) 2

5
π M

k

(c)
3

2

π M

k
(d) π M

k2

14. A particle moving on x-axis has potential energy U x x= − +2 20 5 2 joule along x-axis. The

particle is released at x = − 3. The maximum value of x will be (x is in metre)

(a) 5 m (b) 3 m

(c) 7 m (d) 8 m

15. A block of mass m, when attached to a uniform ideal spring with force constant kand free length
L executes SHM. The spring is then cut in two pieces, one with free length n L and other with
free length ( ) .1 − n L The block is also divided in the same fraction. The smaller part of the block
attached to longer part of the spring executes SHM with frequency f1. The bigger part of the
block attached to smaller part of the spring executes SHM with frequency f2. The ratio f f1 2/ is

(a) 1 (b)
n

n1 −

(c)
1 + n

n
(d)

n

n1 +
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16. A body performs simple harmonic oscillations along the straight line ABCDE with C as the
midpoint of AE. Its kinetic energies at B Dand are each one fourth of its maximum value. If
AE R= 2 , the distance between B Dand is

(a)
3

2
R (b)

R

2
(c) 3 R (d) 2R

17. In the given figure, two elastic rods P Qand are rigidly joined to end supports. A small mass m
is moving with velocity v between the rods. All collisions are assumed to be elastic and the
surface is given to be smooth. The time period of small mass m will be (A = area of cross section,
Y = Young’s modulus, L = length of each rod)

(a)
2

2
L

v

mL

AY
+ π (b)

2
2

2L

v

mL

AY
+ π

(c)
2L

v

mL

AY
+ π (d)

2L

v

18. A particle executes SHM of period 1.2 s and amplitude 8 cm. Find the time it takes to travel

3 cm from the positive extremity of its oscillation. [cos ( / ) .− =1 5 8 0 9 rad]

(a) 0.28 s (b) 0.32 s (c) 0.17 s (d) 0.42 s

19. A wire frame in the shape of an equilateral triangle is hinged at one vertex so that it can swing
freely in a vertical plane, with the plane of the triangle always remaining vertical. The side of

the frame is 1 3/ m. The time period in seconds of small oscillations of the frame will be

( )g = 10 2m s/

(a) π/ 2 (b) π/ 3

(c) π/ 6 (d) π/ 5

20. A particle moves along the x-axis according to x A t= +[ sin ]1 ω . What distance does is travel in
time interval from t = 0 to t = 2 5. /π ω?

(a) 4 A (b) 6 A (c) 5 A (d) 3 A

21. A small bob attached to a light inextensible thread of length l has a periodic time T when
allowed to vibrate as a simple pendulum. The thread is now suspended from a fixed end O of a
vertical rigid rod of length 3 4l/ . If now the pendulum performs periodic oscillations in this
arrangement, the periodic time will be

(a) 3 4T / (b) 4 5T / (c) 2 3T / (d) 5 6T /
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22. A stone is swinging in a horizontal circle of diameter 0.8 m at 30 rev/min. A distant light causes
a shadow of the stone on a nearly wall. The amplitude and period of the SHM for the shadow of
the stone are

(a) 0.4 m, 4s (b) 0.2 m, 2s

(c) 0.4 m, 2s (d) 0.8 m, 2s

23. Part of SHM is graphed in the figure. Here, y is displacement from mean position. The correct
equation describing the SHM is

(a) y t= 4 cos ( )0.6 (b) y t= −



2

10

3 2
sin

π

(c) y t= −



2

2

10

3
sin

π
(d) y t= +



2

2
cos 0.6

π

24. A particle performs SHM with a period T and amplitude a. The mean velocity of particle over
the time interval during which it travels a distance a/ 2 from the extreme position is

(a) 6 a T/ (b) 2 a T/

(c) 3 a T/ (d) a T/2

25. A man of mass 60 kg is standing on a platform executing SHM in the vertical plane. The
displacement from the mean position varies as y ft= 0 5 2. sin ( )π . The value of f, for which the man
will feel weightlessness at the highest point, is ( y in metre)

(a) g/4π (b) 4πg (c)
2

2

g

π
(d) 2 2π g

26. A particle performs SHM on a straight line with time period T and amplitude A. The average
speed of the particle between two successive instants, when potential energy and kinetic energy
become same is

(a)
A

T
(b)

4 2A

T

(c)
2A

T
(d)

2 2A

T

27. The time taken by a particle performing SHM to pass from point A to B where its velocities
are same is 2 s. After another 2 s it returns to B. The ratio of distance OB to its amplitude
(where O is the mean position) is

(a) 1 2: (b) ( ) :2 1 1−
(c) 1 : 2 (d) 1 2 2:

28. A particle is executing SHM according to the equation x A t= cos ω . Average speed of the

particle during the interval 0
6

≤ ≤t
π
ω

is

(a)
3

2

Aω
(b)

3

4

Aω

(c)
3 Aω

π
(d)

3
2 3

Aω
π

( )−
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More than One Correct Options

1. A simple pendulum with a bob of mass m is suspended from the roof of a car moving with
horizontal acceleration a

(a) The string makes an angle of tan ( / )−1 a g with the vertical

(b) The string makes an angle of sin− 





1 a

g
with the vertical

(c) The tension in the string is m a g2 2+

(d) The tension in the string is m g a2 2−

2. A particle starts from a point P at a distance of A/ 2 from the mean position O and travels
towards left as shown in the figure. If the time period of SHM, executed about O is T and
amplitude A then the equation of the motion of particle is

(a) x A
T

t= +



sin

2

6

π π
(b) x A

T
t= +



sin

2 5

6

π π

(c) x A
T

t= +



cos

2

6

π π
(d) x A

T
t= +



cos

2

3

π π

3. A spring has natural length 40 cm and spring constant 500 N/m. A block of mass 1 kg is
attached at one end of the spring and other end of the spring is attached to a ceiling. The block is
released from the position, where the spring has length 45 cm

(a) the block will perform SHM of amplitude 5 cm

(b) the block will have maximum velocity 30 5 cm/s

(c) the block will have maximum acceleration 15 2m/s

(d) the minimum elastic potential energy of the spring will be zero

4. The displacement-time graph of a particle executing SHM is shown in figure. Which of the
following statements is/are true?

(a) The velocity is maximum at t T= /2

(b) The acceleration is maximum at t T=
(c) The force is zero at t T= 3 4/

(d) The kinetic energy equals the total oscillation energy at t T= /2

5. For a particle executing SHM, x = displacement from mean position, v = velocity and
a = acceleration at any instant, then

(a) v -x graph is a circle (b) v -x graph is an ellipse

(c) a-x graph is a straight line (d) a-x graph is a circle
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6. The acceleration of a particle is a x= − +100 50. It is released from x = 2. Here, a and x are in
SI units

(a) the particle will perform SHM of amplitude 2 m

(b) the particle will perform SHM of amplitude 1.5 m

(c) the particle will perform SHM of time period 0.63 s

(d) the particle will have a maximum velocity of 15 m/s

7. Two particles are performing SHM in same phase. It means that

(a) the two particles must have same distance from the mean position simultaneously

(b) two particles may have same distance from the mean position simultaneously

(c) the two particles must have maximum speed simultaneously

(d) the two particles may have maximum speed simultaneously

8. A particle moves along y-axis according to the equation

y (in cm) = + −3 100 8 50 62sin sinπ πt t

(a) the particle performs SHM

(b) the amplitude of the particle’s oscillation is 5 cm

(c) the mean position of the particle is at y = −2 cm

(d) the particle does not perform SHM

Comprehension Based Questions

Passage (Q Nos. 1 to 2)

A 2 kg block hangs without vibrating at the bottom end of a spring with a force constant of
400 N/m. The top end of the spring is attached to the ceiling of an elevator car. The car is rising
with an upward acceleration of 5 2m s/ when the acceleration suddenly ceases at time t = 0 and

the car moves upward with constant speed ( / )g m s= 10 2

1. What is the angular frequency of oscillation of the block after the acceleration ceases?

(a) 10 2 rad/s (b) 20 rad/s

(c) 20 2 rad/s (d) 32 rad/s

2. The amplitude of the oscillation is

(a) 7.5 cm (b) 5 cm

(c) 2.5 cm (d) 1 cm

Match the Columns

1. For the x t- equation of a particle in SHM along x-axis, match the following two columns.

x t= +2 2 cos ω

Column I Column II

(a) Mean position (p) x = 0

(b) Extreme position (q) x = 2

(c) Maximum potential energy at (r) x = 4

(d) Zero potential energy at (s) Can’t tell
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2. Potential energy of a particle at mean position is 4 J and at extreme position is 20 J. Given that
amplitude of oscillation is A.  Match the following two columns.

Column I Column II

(a) Potential energy at x
A=
2

(p) 18 J

(b) Kinetic energy at x
A=
4

(q) 16 J

(c) Kinetic energy at x = 0 (r) 8 J

(d) Kinetic energy at x
A=
2 (s) None

3. Acceleration-time graph of a particle in SHM is as shown in figure. Match the following two
columns.

Column I Column II

(a) Displacement of particle at t1 (p) zero

(b) Displacement of particle at t2 (q) positive

(c) Velocity of particle at t1 (r) negative

(d) Velocity of particle at t2 (s) maximum

4. Mass of a particle is 2 kg. Its displacement-time equation in SHM is

x t= 2 4sin ( )π (SI Units)

Match the following two columns for 1 second time interval.

Column I Column II

(a) Speed becomes 30 m/s (p) two times

(b) Velocity becomes + 10 m/s (q) four times

(c) Kinetic energy becomes 400 J (r) one time

(d) Acceleration becomes− 100 2m/s (s) None

5. x t- equation of a particle in SHM is, x t= +4 6 sin π . Match the following tables corresponding
to time taken  in moving from

Column I Column II

(a) x = 10 m to x = 4 m (p)
1

3
second

(b) x = 10 m to x = 7 m (q) 1

2
second

(c) x = 7 m to x = 1 m (r) 1 second

(d) x = 10 m to x = −2 m (s) None
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Subjective Questions

1. A 1 kg block is executing simple harmonic motion of amplitude 0.1 m on a smooth horizontal
surface under the restoring force of a spring of spring constant 100 N/m. A block of mass 3 kg is
gently placed on it at the instant it passes through the mean position. Assuming that the two
blocks move together. Find the frequency and the amplitude of the motion.

2. Two particles are in SHM along same line. Time period of each is T and amplitude is A. After

how much time will they collide if at time t = 0. (a) first particle is at x
A

1
2

= + and moving

towards positive x-axis and second particle is at x
A

2
2

= − and moving towards negative x-axis,

(b) rest information are same as mentioned in part (a) except that particle first is also moving
towards negative x-axis.

3. A particle that hangs from a spring oscillates with an angular frequency of 2 rad/s. The spring
particle system is suspended from the ceiling of an elevator car and hangs motionless (relative
to the elevator car) as the car descends at a constant speed of 1.5 m/s. The car then stops
suddenly. (a) With what amplitude does the particle oscillate ? (b) What is the equation of
motion for the particle ? (Choose upward as the positive direction)

4. A 2 kg mass is attached to a spring of force constant 600 N/m and rests on a smooth horizontal
surface. A second mass of 1 kg slides along the surface toward the first at 6 m/s.

(a) Find the amplitude of oscillation if the masses make a perfectly inelastic collision and remain

together on the spring. What is the period of oscillation ?

(b) Find the amplitude and period of oscillation if the collision is perfectly elastic.

(c) For each case, write down the position x as a function of time t for the mass attached to the

spring, assuming that the collision occurs at time t = 0. What is the impulse given to the 2 kg

mass in each case?

5. A block of mass 4 kg hangs from a spring of force constant k = 400N/m. The block is pulled down
15 cm below equilibrium and released. How long does it take the block to go from 12 cm below
equilibrium (on the way up) to 9 cm above equilibrium?

6. A plank with a body of mass m placed on it starts moving straight up according to the law
y a t= −( cos ),1 ω where y is the displacement from the initial position, ω =11 rad/s. Find

(a) The time dependence of the force that the body exerts on the plank.

(b) The minimum amplitude of oscillation of the plank at which the body starts falling behind the

plank.

7. A particle of mass m free to move in the x-y plane is subjected to a force whose components are
F kxx = − and F kyy = − , where k is a constant. The particle is released when t = 0 at the point
(2, 3). Prove that the subsequent motion is simple harmonic along the straight line 2 3 0y x− = .

8. Determine the natural frequency of vibration of the 100 N disk. Assume the disk does not slip
on the inclined surface.
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9. The disk has a weight of 100 N and rolls without slipping on the horizontal surface as it
oscillates about its equilibrium position. If the disk is displaced, by rolling it counterclockwise
0.4 rad, determine the equation which describes its oscillatory motion when it is released.

10. A solid uniform cylinder of mass m performs small oscillations due to the action of two springs

of stiffness k each (figure). Find the period of these oscillations in the absence of sliding.

11. A block of mass m is attached to one end of a light inextensible string passing over a smooth
light pulley B and under another smooth light pulley A as shown in the figure. The other end of
the string is fixed to a ceiling. A and B are held by springs of spring constants k1 and k2. Find
angular frequency of small oscillations of the system.

12. In the shown arrangement, both the springs are in their natural lengths. The coefficient of
friction between m2 and m1 isµ.There is no friction between m1 and the surface. If the blocks are
displaced slightly, they together perform simple harmonic motion. Obtain

(a) Frequency of such oscillations.

(b) The condition if the frictional force on block m2 is to act in the direction of its displacement from

mean position.

(c) If the condition obtained in (b) is met, what can be maximum amplitude of their oscillations?
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13. Two blocks A and B of masses m1 3= kg and m2 6= kg respectively
are connected with each other by a spring of force constant k = 200
N/m as shown in figure. Blocks are pulled away from each other by
x0 3= cm and then released. When spring is in its natural length
and blocks are moving towards each other, another block C of mass
m = 3 kg moving with velocity v0 = 0.4 m/ s (towards right) collides with A and gets stuck to it.
Neglecting friction, calculate

(a) velocities v1 and v2 of the blocks A and B respectively just before collision and their angular

frequency.

(b) velocity of centre of mass of the system, after collision,

(c) amplitude of oscillations of combined body,

(d) loss of energy during collision.

14. A rod of length l and mass m, pivoted at one end, is held by a spring at its mid-point and a spring
at far end. The springs have spring constant k. Find the frequency of small oscillations about
the equilibrium position.

15. In the arrangement shown in figure, pulleys are light and springs are ideal. k k k1 2 3, , and k4 are
force constants of the springs. Calculate period of small vertical oscillations of block of mass m.

16. A light pulley is suspended at the lower end of a spring of constant k1 , as shown in figure. An
inextensible string passes over the pulley. At one end of string a mass m is suspended, the other
end of the string is attached to another spring of constant k2.The other ends of both the springs
are attached to rigid supports, as shown. Neglecting masses of springs and any friction, find the
time period of small oscillations of mass m about equilibrium position.
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17. Figure shows a solid uniform cylinder of radius R and mass M, which is free to rotate about a
fixed horizontal axis O and passes through centre of the cylinder. One end of an ideal spring of
force constant k is fixed and the other end is hinged to the cylinder at A. Distance OA is equal to
R

2
. An inextensible thread is wrapped round the cylinder and passes over a smooth, small

pulley. A block of equal mass M and having cross sectional area A is suspended from free end of
the thread. The block is partially immersed in a non-viscous liquid of density ρ.

If in equilibrium, spring is horizontal and line OA is vertical, calculate frequency of small
oscillations of the system.

18. Find the natural frequency of the system shown in figure. The pulleys are smooth and
massless.
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Answers
Introductory Exercise 14.1

1. π 2.
1

16

15

16
, 3. (a) 15.0 cm (b) 0.726 s (c) 1.38 Hz (d) 1.69 J (e) 1.30 m/s

4. 0.101 m/s, 1.264 m/s
2
, 0.632 N 5. No

Introductory Exercise 14.2

1. (a) 1.39 J (b) 1.1 s 2. ± 0.58 m/s, − 0.45 ms
2
, ± 0.60 m/s, zero 3.

π
6

4. (a) 0.08 m (b) 1.57 rad/s (c) 1.97 N/m (d) Zero (e) 0.197 m/s
2

5. (a)
π

120
sec (b)

π
30

sec (c)
π

30
sec 6. See the hints.

Introductory Exercise 14.3

1.
π
2







sec 2. 3.2 kg 3. 1 sec 4. p 5.
16

9
6. 11 % 7.

3

2π

Introductory Exercise 14.4
1. (a) 7.0 cm  (b) 6.1 cm   (c) 5.0 cm   (d) 1.0 cm

2. (a) 2.6 unit (b) 1917unit  (c) 6 0 10
5

. × unit 3. 2 A 4.
2

3

π

Exercises

LEVEL 1

Assertion and Reason

1. (d) 2. (b) 3. (c) 4. (a) 5. (d) 6. (d) 7. (d) 8. (a) 9. (a) 10. (d)

Objective Questions

1. (a) 2. (a) 3. (d) 4. (c) 5. (d) 6. (b) 7. (b) 8. (d) 9. (c) 10. (a)

11. (c) 12. (d) 13 (c) 14. (b) 15. (b) 16. (a) 17. (a) 18. (a) 19. (b) 20. (d)

21. (c) 22. (a) 23. (a) 24. (b)

Subjective Questions

1. T
m

k
= 2π 2. 0.314 s 3. 0.78 s 4. The clock will lose 10.37s 5. (a) 2.8 N/m (b) 0.84 s

7. T
m

k
= 2π 8.

10

9









 T 9. 6.0 N/m 10. 10.0 cm,

π
6

rad 11. y t= +





−
(0.1 m) sin ( )4

4

1s
π

12. (a) 1 rad/s (b) Umean = 10 J, Kmean = 16 J, Uextreme = 26 J, Kextreme = 0 (c) 4 m  (d) x = 6 m and x = − 2 m

13. 4 s 14. 1.8 s

15. 2

2
2

2
1 2

π l

g
v

r
+ 




















/
and inclined to the vertical at an angle θ = 






−

tan
1

2v

rg
away from the centre

16. 1.4 10 s
3× − 17. (a) 0.28 s (b) 0.4% 18.

g

r2
19.(a)

1

2π
k

m
(b)

ma

k
20. θ π π= 





−

10
40

1
rad scos [( ) ]t



21. 7.2 m 22. 2π l

g
qE

m
−

23. (a) 2π l

( )g a+
(b) 2π l

( )g a−
(c) Infinite (d) 2

2 2 1 2
π l

( )
/g a+

24. (a) A A
M

M m
2 1=

+
, T

M m

k
=

+
2π (b) A A T

M m

k
2 1 2= =

+
, π 25.

mv

k M m

0

( )+

26. T

R r

R
g

=
+

2

3

2 2

2

π 27. 1.4 10
5× g-cm

2 28. 2 2 s 29. (a) equal (b) equal

32. A d
m

m m
=

+
1

1 2

33. (a)
F

k

M

k
, 2π (b)

F

k

2

2
(c)

F

k

2

2

34. (a) 10 cm (b) 2.5 J (c)
π
5

sec (d) 20 cm (e) 4.5 J (f) 0.5 J 35. 0.816 37. 0.38 Hz

38. Parabola, y A
x

A
= −






1

2
2

2
39. (a) –2.41 cm (b) 0.27 cm

LEVEL 2
Single Correct Option

1. (d) 2. (a) 3. (b) 4. (a) 5. (b) 6. (a) 7. (c) 8. (a) 9. (a) 10. (b)

11. (c) 12. (b) 13. (c) 14. (c) 15. (a) 16. (c) 17. (a) 18. (c) 19. (d) 20. (c)

21. (a) 22. (c) 23. (b) 24. (c) 25. (c) 26. (b) 27. (a) 28. (d)

More than One Correct Options

1. (a,c) 2. (b,d) 3. (b,c,d) 4. (b, c) 5. (b,c) 6. (b,c, d) 7. (b,c) 8. (a, b, c)

Comprehension Based Questions
1. (a) 2. (c)

Match the Columns
1. (a) → q (b) → p,r (c) → p,r (d) → s

2. (a) → r (b) → s (c) → q (d) → s

3. (a) → r (b) → p (c) → r (d) → r,s

4. (a) → s (b) → q (c) → s (d) → q

5. (a) → q (b) → p (c) → p (d) → r

Subjective Questions

1. 0.8 Hz, 0.05 m 2. (a)
19

48
T (b)

11

48
T 3. (a) A = 0.75 m (b) x t= − 0.75 sin 2

4. (a) 14.1 cm, 0.44 s (b) 23 cm, 0.36 s (c) x= ± (14.1cm) sin(10 2 )t , x=± (23 cm) sin (10 3 t), 4 N-s, 8 N-s

5.
π

20
s = 0.157 s 6. (a) N m g a t= +( cos )ω ω2

(b) 8.1 cm 8. 0.56 Hz 9. θ = 0.4 (16.16 )cos t

10. T
m

k
= π

2

3
11.

k k

m k k

1 2

1 24 ( )+
12. (a)

1

2

1 2

1 2π
k k

m m

+
+

(b)
k

k

m

m
1

2

1

2

< (c)
µ ( )m m m g

mk m k

1 2 2

1 2 2 1

+
−

13. (a) 0.2 m/s, 0.1 m/s, 10 rad/s (b) 0.1 m/s (towards right) (c) 4.8 cm (d) 0.03 J

14.
1

2

15

4π
k

m
15. T m

k k k k
= + + +






4

1 1 1

1 2 3 4

π |
16. T

m k k

k k
=

+
2

4 2 1

1 2

π
( )

17. f
k A g

M
=

+1

2

4

6π
ρ

18.
1 2

π
k

M
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15.1 Introduction
The properties of material under the action of external deforming forces are very essential, for an

engineer, to enable him, in designing him all types of structures and machines.

Whenever a load is attached to a thin hanging wire it elongates and the load moves downwards

(sometimes through a negligible distance). The amount by which the wire elongates depends upon

the amount of load and the nature of wire material. Cohesive force, between the molecules of the

hanging wire offer resistance against the deformation, and the force of resistance increases with the

deformation. The process of deformation stops when the force of resistance is equal to the external

force (i.e. the load attached). Sometimes the force of resistance offered by the molecules is less than

the external force. In such a case, the deformation continues until the wire breaks.

Thus, we may conclude that if some external deforming force is applied to a body it has two effects on

it, namely :

(i) deformation of the body,

(ii) internal resistance (restoring) forces are developed.

15.2 Elasticity
As we have already discussed that whenever a single force (or a system of forces) acts on a body it

undergoes some deformation and the molecules offer some resistance to the deformation. When the

external force is removed, the force of resistance also vanishes and the body returns back to its

original shape. But it is only possible if the deformation is within a certain limit. Such a limit is called

elastic limit. This property of materials of returning back to their original position is called the

elasticity.

A body is said to be perfectly elastic if it returns back completely to its original shape and size after

removing the external force. If a body remains in the deformed state and does not even partially

regain its original shape after the removal of the deforming forces, it is called a perfectly inelastic or

plastic body. Quite often, when the external forces are removed, the body partially regains the

original shape. Such bodies are partially elastic. If the force acting on the body is increased and the

deformation exceeds the elastic limit, the body loses to some extent, its property of elasticity. In this

case, the body will not return to its original shape and size even after removal of the external force.

Some deformation is left permanently.

15.3 Stress and Strain

Stress
When an external force is applied to a body then at each cross-section of the body an internal restoring
force is developed which tends to restore the body to its original state. The internal restoring force per
unit area of cross-section of the deformed body is called stress. It is usually denoted by σ (sigma).

Thus, Stress
Restoring force

Area
( )σ =

Note In equilibrium, when further deformation stops, the restoring force is equal to the external force (or the

suspended load from a hanging wire). Therefore, the stress is also sometime called the external deforming

force per unit area.
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Strain
When the size or shape of a body is changed under an external force, the body is said to be strained.

The change occurred in the unit size of the body is called strain. Usually, it is denoted by ε. Thus,

ε =
∆x

x

Here, ∆x is the change (may be in length, volume etc.) and x the original value of the quantity in which

change has occurred. For example, when the length of a suspended wire increases under an applied

load, the value of strain is,

ε =
∆l

l

15.4 Hooke's Law and the Modulus of Elasticity
According to Hooke’s law,

“For small deformation, the stress in a body is proportional to the corresponding strain.” i.e.

stress strain∝ or stress = ( ) (strain)E

Here, E =
stress

strain
is a constant called the modulus of elasticity. Now, depending upon the nature of

deforming force applied on the body, stress, strain and hence modulus of elasticity are classified in

following three types:

Young’s Modulus of Elasticity (Y )
When a wire is acted upon by two equal and opposite forces in the direction of its length,

the length of the body is changed. The change in length per unit length
∆l

l







is called the

longitudinal strain and the restoring force (which is equal to the applied force in

equilibrium) per unit area of cross section of the wire is called the longitudinal stress.

For small change in the length of the wire, the ratio of the longitudinal stress to the

corresponding strain is called the Young’s modulus of elasticity ( )Y of the wire. Thus,

Y
F A

l l
=

/

/∆
or Y

Fl

A l
=

∆

Let there be a wire of length l and radius r. Its one end is clamped to a rigid support and a mass M is

attached at the other end. Then,

F Mg= and A r= π 2

Substituting in above equation, we have

Y
Mgl

r l
=

( )π 2 ∆
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Bulk Modulus of Elasticity (B)

When a uniform pressure (normal force) is applied all over the surface of a body, the volume of the

body changes. The change in volume per unit volume of the body is called the ‘volume strain’ and

the normal force acting per unit area of the surface (pressure) is called the normal stress or volume

stress. For small strains, the ratio of the volume stress to the volume strain is called the ’bulk

modulus’ of the material of the body. It is denoted by B. Then,

B
p

V V
=

−
∆ /

or
−∆

∆
p

V V( / )

Here, negative sign implies that, when the pressure increases volume decreases and vice-versa.

Compressibility

The reciprocal of the bulk modulus of the material of a body is called the ‘compressibility’ of that

material. Thus,

Compressibility =
1

B

Modulus of Rigidity ( )η
When a body is acted upon by an external force tangential to a surface of the

body, the opposite surface being kept fixed, it suffers a change in shape, its

volume remaining unchanged. Then, the body is said to be sheared.

The ratio of the displacement of a layer in the direction of the tangential

force and the distance of the layer from the fixed surface is called the

shearing strain and the tangential force acting per unit area of the surface is

called the “shearing stress”.

For small strain the ratio of the shearing stress to the shearing strain is called

the “modulus of rigidity” of the material of the body. It is denoted by η.

Thus, η =
′

F A

KK KN

/

/

Here,
KK

KN

′
= ≈tan θ θ

∴ η
θ

=
F A/

or η
θ

=
F

A
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Extra Points to Remember

� If a spring is stretched or compressed by an amount ∆l, the restoring force produced in it is,

F ks = ∆l …(i)

Here, k = force constant of spring

Similarly, if a wire is stretched by an amount ∆ l, the restoring force produced in it is,

F
YA= 



l

l∆ …(ii)

as, Y
F A

l l
= /

/∆

Comparing Eqs. (i) and (ii), we can see that force constant of a wire is,

k
YA=
l

…(iii)

i.e. a wire is just like a spring of force constant
YA

l
. So, all

formulae which we use in case of a spring can be applied

to a wire also.

From Eq. (iii), we may also conclude that force constant of

a spring is inversely proportional to the length of the spring

l or

k ∝ 1

l

i.e. if a spring is cut into two equal pieces its force constant is doubled.

V Example 15.1 Determine the elongation of the steel bar 1m long and 1.5 cm2

cross-sectional area when subjected to a pull of 1.5 × 104 N.

(Take Y N m= ×2.0 1011 2/ )

Solution Y
F A

l l
= /

/∆

∴ ∆l
Fl

AY
=

Substituting the values,

∆l = ×
× ×
(1.5 10 )(1.0)

(1.5 10 )(2.0 10 )

4

–4 11

= ×0.5 10 m–3

or ∆l = 0.5 mm Ans.

V Example 15.2 The bulk modulus of water is 2.3 × 109 N/m2 .

(a) Find its compressibility in the units atm−1.

(b) How much pressure in atmospheres is needed to compress a sample of water by

0.1% ?
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Solution Here, B = ×2.3 109 N/m 2

= ×
×

= ×

2.3

1.01

2.27 atm

10

10

10

9

5

4

(a) Compressibility = =
×

1 1

104B 2.27
= × − −4.4 atm10 5 1 Ans.

(b) Here,
∆V

V
= − = −0.1 0.001%

Required increase in pressure,

∆ ∆
p B

V

V
= × −





= × ×2.27 0.001104

= 22.7 atm Ans.

1. Two wires A and B of same dimensions are stretched by same amount of force. Young’s

modulus of A is twice that of B. Which wire will get more elongation?

2. A rod 100 cm long and of 2 2cm cm× cross-section is subjected to a pull of 1000 kg force. If the

modulus of elasticity of the material is 2.0 × 106 kg/cm2, determine the elongation of the rod.

3. A cast iron column has internal diameter of 200 mm. What should be the minimum external

diameter so that it may carry a load of 1.6 MN without the stress exceeding90 2N/mm ?

4. Find the dimensions of stress, strain and modulus of elasticity.

15.5 The Stress-Strain Curve
A plot of longitudinal stress (either tensile or compressive)

versus longitudingal strain for a typical solid is shown in figure.

The strain is directly proportional to the applied stress for values

of stress upto σP . In this linear region, the material returns to its

original size when the stress is removed. Point P is known as the

proportional limit of the solid. For stresses between σP and σE ,

where point E is called the elastic limit, the material also returns

to its original size.

However, notice that stress and strain are not proportional in this region. For deformations beyond the

elastic limit, the material does not return to its original size when the stress is removed, it is

permanently distorted. Finally, further stretching beyond the elastic limit leads to the eventual

fracture of the solid. The proportionality constant for linear region or the slope of stress-strain curve

in this curve is called the Young’s modulus of elasticity Y.
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15.6 Potential Energy Stored in a Stretched Wire
When a wire is stretched, work is done against the inter atomic forces. This work is stored in the wire

in the form of elastic potential energy. Suppose on applying a force F on a wire of length l, the

increase in length is ∆l. The area of cross-section of the wire is A. The potential energy stored in the

wire should be,

U k l=
1

2

2( )∆

Here, k
YA

l
=

∴ U
YA

l
l=

1

2

2( )∆

Elastic potential energy per unit volume of the wire (also called energy density) is,

u
U

=
volume

or u

YA

l
l

Al
=

1

2

2( )∆

or u
l

l
Y

l

l
= 





⋅





1

2

∆ ∆
or u Y= ×

1

2
( ) ( )strain strain

or u = ×
1

2
( (strain) stress)

15.7 Thermal Stresses or Strains
Whenever there is some increase or decrease in the temperature of the body, it causes the body to

expand or contract. If the body is allowed to expand or contract freely, with the rise or fall of the

temperature, no stresses are induced in the body. But if the deformation of the body is prevented,

some stresses are induced in the body. Such stresses are called thermal stresses or temperature

stresses. The corresponding strains are called thermal strains or temperature strains.

Consider a rod AB fixed at two supports as shown in figure.

Let l = length of rod

A = area of cross-section of the rod

Y = Young’s modulus of elasticity of the rod

and α = thermal coefficient of linear expansion of the rod

Let the temperature of the rod is increased by an amount t. The length of the rod would had increased

by an amount ∆l, if it were not fixed at two supports. Here

∆l l t= α
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But the rod is fixed at the supports. Hence a compressive strain will be produced in the rod. Because at

the increased temperature, the natural length of the rod is l l+ ∆ , while being fixed at two supports its

actual length is l. Hence, thermal strain

ε =
+ ∆

≈
∆

= =
∆l

l l

l

l

l t

l
t

α
α

or ε = αt

Therefore, thermal stress σ = εY ( )stress = strainY ×
or σ α=Y t

or force on the supports,

F A YA t= =σ α
This force F is in the direction shown below.

V Example 15.3 A steel wire 4.0 m in length is stretched through 2.0 mm. The

cross-sectional area of the wire is 2.0 mm2 . If Young’s modulus of steel is

2.0 × 1011 N/m2 . Find

(a) the energy density of wire,

(b) the elastic potential energy stored in the wire.

Solution Here, l = 4.0 m, ∆l = × −2 10 3 m, A = × −2.0 m10 6 2 , Y = ×2.0 1011 N/m 2

(a) The energy density of stretched wire

U = × ×1

2
stress strain

= × ×1

2

2Y ( )strain

= × × × ×









−
1

2
10

2 10

4

11
3

2

2.0
( )

= × = ×0.25 2.510 105 4 J/m3
Ans.

(b) Elastic potential energy = energy density × volume

= × × × ×−2.5 2.0 4.0 J10 104 6( )

= × =−20 10 2 0.20 J Ans.

V Example 15.4 A rubber cord has a cross-sectional area 1 2mm and total

unstretched length 10.0 cm. It is stretched to 12.0 cm and then released to
project a missile of mass 5.0 g. Taking Young’s modulus Y for rubber as

5.0 10× 8 2N m/ . Calculate the velocity of projection.
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Extra Points to Remember

Solution Equivalent force constant of rubber cord

k
YA

l
= = × ×(5.0 ) (1.0 )

(0.1)

8 –10 10 6

= ×5.0 N/m103

Now, from conservation of mechanical energy,

elastic potential energy of cord = kinetic energy of missile

∴ 1

2

1

2

2 2k l mv( )∆ = ⇒ ∴ v
k

m
l=









 ∆

= ×
×











 ×

−
−5.0

5.0
(12.0 – 10.0)

10

10
10

3

3

2 = 20 m/s Ans.

Note Following assumptions have been made in this problem :

(i) k has been assumed constant, even though it depends on the length ( ).l

(ii) The whole of the elastic potential energy is converting into kinetic energy of missile.

1. Find the dimensions of energy density.

2. (a) A wire 4m long and 03. mm in diameter is stretched by a force of 100N. If extension in the

wire is 03. mm, calculate the potential energy stored in the wire.

(b) Find the work done in stretching a wire of cross-section1 2mm and length2m through01. mm.

Young’s modulus for the material of wire is 2.0 N/m× 1011 2.

� Modulus of elasticity E (whether, it is Y, B or η ) is given by

E = stress

strain

Following conclusions can be made from the above expression :

(i) E ∝ stress (for same strain), i.e. if we want the equal amount of strain in two different materials, the one

which needs more stress is having more E.

(ii) E ∝ 1

strain
(for same stress), i.e. if the same amount of stress is applied on two different materials, the

one having the less strain is having more E. Rather we can say that the material which offers more

resistance to the external forces is having greater value of E. So, we can see that modulus of elasticity

of steel is more than that of rubber or

E Esteel rubber>

(iii) E = stress for unit strain
∆ ∆x

x
x x= =





1 or , i.e. suppose the length of a wire is 2 m, then the Young’s

modulus of elasticity( )Y is the stress applied on the wire to stretch the wire by the same length of 2 m.

� The material which has smaller value of Y is more ductile, i.e. it offers less resistance in framing it into a

wire. Similarly, the material having the smaller value of B is more malleable. Thus, for making wire we will

more concentrate on Y.
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� A solid will have all the three modulii of elasticity Y, B and η. But in case of a liquid or a gas only B can be

defined, as a liquid or a gas cannot be framed into a wire or no shear force can be applied on them.

� For a liquid or a gas,

B
dp

dV V
= −



/

or −






∆

∆
p

V V/

So, instead of p we are more interested in change in pressure dp or ∆p.

� In case of a gas, bulk modulus is process dependent and is given by,

B xp=
in the process pV x = constant

For example, for x = 1, or pV = constant (isothermal process), B p= .

i.e., isothermal bulk modulus of a gas (denoted by BT) is equal to the pressure of the gas at that instant of

time or

B pT =

Similarly, for x
C

C

p

V

= =γ or pVγ = constant (adiabatic process), B p= γ .

i.e., adiabatic bulk modulus of a gas (denoted by Bs) is equal to γ times the pressure of the gas at that

instant of time or B ps = γ

In general for a gas, B p∝ in all processes.

Physically this can be explained as under:

Suppose we have two containers A and B. Some gas is filled in both the containers. But the pressure in A is

more than the pressure in B, i.e. p p1 2>
So, bulk modulus of A should be more than the bulk modulus of B, or B B1 2>
and this is quiet obvious, because it is more difficult to compress the gas in chamber A, i.e. it provides

more resistance to the external forces. And as we have discussed earlier also, the modulus of elasticity is

more for a material which offers more resistance to external forces.

� When a pressure is applied on a substance, its density is changed. The change in density can be

calculated as under :

ρ = mass

volume
( )ρ = density

or ρ ∝ 1

V
(mass constant)=

ρ
ρ
′ =

′
=

+
V

V

V

V dV

or ρ ρ′ =
+







V

V dV
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=
−







ρ V

V dp B V( / )
as B

dp

dV V
= −



/

ρ ρ′ =
−1

dp

B

From this expression, we can see that ρ′ increases as pressure is increased (dp is positive) and
vice-versa.

We can also write the above equation as

ρ ρ′= −





−
1

1
dp

B

or ρ ρ′≈ +





1
dp

B
(ifdp B<< )

or ρ ρ ρ ρ′− = =∆ ( )dp

B

∴ ∆ ∆ρ=ρ p

B







� In the figure shown

Work done by gravity is

W Mg l=( )∆ …(i)

But potential energy stored in the stretched wire is

U =





energy

volume
or energy density volume( )

= ×





1

2
( ) ( ) [ ]stress strain volume

= 











1

2

Mg

A

l

l
Al

∆
( )

or U Mg l= 1

2
( )( )∆ …(ii)

From Eqs. (i) and (ii), we can see that half of the work done by gravity is stored as potential energy in
stretched wire and rest half (or 50%) is dissipated in the form of heat, sound etc. during stretching.
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TYPED PROBLEMS

Type 1. Based on change in length of a wire.

Concept

We have discussed in article 15.4 that change in length is given by ∆l
Fl

AY
=

Here, F is the internal restoring force in the wire. So, this is also the tension in the wire.
Therefore, we can also write the above equation as

∆l
Tl

AY
=

Now, the concept is, if tension is uniform then this equation can
be applied directly to find the change in length. If tension is
non-uniform then we will find change in length by integration.

In that case, ∆l dl
T dx

AY

x= =
⋅

∫ ∫
Here, Tx is the tension at some intermediate point x and

dl
T dx

AY

x= is the change in length in a small element dx, due to the tensionTx at this point.

Note To findTx at some intermediate point (if it is non-uniform) students can refer the chapter ‘Laws of motion’.

V Example 1 A bar of mass m and length l is hanging from point A as

shown in figure. Find the increase in its length due to its own weight. The

Young’s modulus of elasticity of the wire is Y and area of cross-section of

the wire is A.

Solution Consider a small section dx of the bar at a distance x from B.

Tension in the bar at this point is T W
mg

l
xx x= = 





Elongation in section dx will be dl
T dx

AY

x= = 





mg

lAY
x dx

Total elongation in the bar can be obtained by integrating this expression from x = 0
to x l= .

∴ ∆ l dl
x

x l
=

=

=

∫ 0
= 



 ∫

mg

lAY
x dx

l

0

or ∆l
mgl

AY
=

2
Ans.

Solved Examples

Tx Tx

dx

A

B

x

dx

A

B

x

dx



V Example 2 A rod PQ of mass m, area of cross section A,

length l and Young's modulus of elasticity Y is lying on a

smooth table as shown in figure. A force F is applied at P.

Find

(a) tension at a distance x from end P,

(b) longitudinal stress at this point,

(c) total change in length and

(d) total strain in the rod.

Solution (a) Acceleration of the rod, a
F

m
=

F T m a
m

l
x

F

m
x PM− = =









( )

∴ T F
x

l
x = −



1 Ans.

(b) Stress σ = = = −





F

A

T

A

F

A

x

l

x 1 Ans.

(c) Change in length ∆l
T dx

AY

x
l

= ∫0

=
−





∫
F

x

l
dx

AY

l
1

0

∆l
Fl

AY
=

2
Ans.

(d) Strain = =∆l

l

F

AY2
Ans.

Type 2. Based on thermal stresses.

Concept

As discussed in article 15.7, if temperature of a rod is increased or decreased, it has a
tendency to expand or contract. If rod is not fixed from its two ends and it is free to expand
or contract then no stresses will be developed in it. If rod is fixed from its two ends then it
means rod is not allowed to expand or contract. So stresses are developed. If temperature is
decreased, then its natural length is less but it is fixed from two ends. So, we can assume
that it has been stretched by ∆l from its natural length l l− ∆ ( )≈ l . So, tensile stresses will be
developed. Similarly, compressive stresses are developed if temperature is increased.

V Example 3 A steel rod of length 6.0 m and diameter

20 mm is fixed between two rigid supports. Determine the

stress in the rod, when the temperature increases by

80°C if

(a) the ends do not yield (b) the ends yield by 1 mm.

Take Y = ×2.0 106 kg/cm2 and α = × −12 10 6 per°C.
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Solution Given, length of the rod l = =6 600m cm

Diameter of the rod d = =20 2mm cm

Increase in temperature t = °80 C

Young’s modulus

Y = ×2.0 kg/cm106 2

and thermal coefficient of linear expansion α = × °−12 10 6 per C

(a) When the ends do not yield

Let, σ1 = stress in the rod

Using the relation σ α= tY

∴ σ 1 = × ×−(12 10 )(80)(2 10 )6 6

= 1920 kg/cm2
Ans.

(b) When the ends yield by 1 mm.

Increase in length due to increase in temperature ∆l l t= α
of this 1 mm or 0.1 cm is allowed to expand. Therefore, net compression in the rod

∆l l tnet 0.1= −( α )

or compressive strain in the rod,

ε = = −





∆l

l
t

l

net 0.1α

∴ stress
0.1σ ε α2 = = −



Y Y t

l

Substituting the values,

σ2
6 62 10 12 10 80

600
= × × × −





− 0.1

= 1587 2kg/cm Ans.

Note For more examples of thermal stresses, students can refer the topic thermal expansion.

Type 3. Based on breaking stress.

Concept

Every material has a limit of maximum stress which can be applied to this. This is called
breaking stress. Material breaks beyond this.

Now, the maximum force which can be applied across it depends on its area of
cross-section.

σ m
mF

A
= (σ m = breaking stress)

∴ Maximum force F Am m=( )σ

V Example 4 If the elastic limit of copper is 1.5 10× 8 2N m/ , determine the

minimum diameter a copper wire can have under a load of 10.0 kg, if its elastic

limit is not to be exceeded.
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Solution
F

A
m

min

= σ

∴ F

d
m

π
σ

min
2

4









= or d
F

m
min = 4

π σ

= × ×
× ×

4 10

108

9.8

3.14 1.5
= × −9.1 m10 4 = 091. mm Ans.

V Example 5 Find the greatest length of steel wire that can hang vertically

without breaking. Breaking stress of steel = × N m8.0 /108 2 . Density of steel

= × kg m8.0 /103 3 . Take g m s= 10 2/ .

Solution Let l be the length of the wire that can hang vertically without breaking. Then, the

stretching force on it is equal to its own weight. If therefore, A is the area of cross-section and ρ
the density, then

Maximum stress
weight

( )σm
A

= Stress
force

area
=







or σ ρ
m

Al g

A
= ( )

∴ l
g

m= σ
ρ

Substituting the values l = ×
×

=8.0

8.0
m

10

10 10
10

8

3

4

( )( )
Ans.

Type 4. Based on change in density due to change in pressure.

Concept

As discussed in extra touch points, if extra pressure ∆p is applied on a body its volume
decreases without change in its mass. So, its density increases. If ∆p B<< , where B is the

bulk modulus, then increase in density is given by ∆ ∆ρ= ρ p

B

V Example 6 Bulk modulus of water is 2.3 ×109 2N m/ . Taking average density of

water ρ =103 3kg m/ , find increase in density at a depth of 1km. Take g m s=10 2
/

Solution Pressure increases with depth of a liquid. At a depth ‘h’ below the water surface

increase in pressure is given by ∆p gh=ρ

Using the equation, ∆ ∆ρ ρ= p

B

we get ∆ρ = ρ ρ ρ( )gh

B

gh

B
=

2

Substituting the values we have,

∆ρ = ( ) ( ) ( )

.

10 10 10

23 10

3 2 3

9×
= 4.33 kg/m3

Ans.
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V Example 7 The pressure of a medium is changed from 101 105. × Pa to

1165 105. × Pa and change in volume is 10% keeping temperature constant. The

bulk modulus of the medium is

(a) 204 8 105. × Pa (b) 102 4 105. × Pa (c) 51 2 105. × Pa (d) 1 55 105. × Pa

Solution From the definition of bulk modulus, B
p

V V
= − ∆

∆( / )

Substituting the values, we have

B = − × = ×( . . )

( / )
.

1165 101 10

10 100
155 10

5
5 Pa

Therefore, the correct option is (d).

V Example 8 A light rod of length 2.00 m is suspended from the ceiling

horizontally by means of two vertical wires of equal length tied to its ends. One of

the wires is made of steel and is of cross-section 10 3 2− m and the other is of brass

of cross-section 2 10 3 2× − m . Find out the position along the rod at which a weight

may be hung to produce,

(a) equal stresses in both wires (b) equal strains on both wires.

Young’s modulus for steel is 2 1011 2× N m/ and for brass is 1011 2N m/ .

Solution (a) Given, stress in steel = stress in brass

∴ T

A

T

A

S

S

B

B

=

∴ T

T

A

A

S

B

S

B

=

=
×

=
−

−
10

2 10

1

2

3

3
…(i)

As the system is in equilibrium, taking moments about D, we have

T x T xS B⋅ = −( )2

∴ T

T

x

x

S

B

= −2
…(ii)

From Eqs. (i) and (ii), we get x = 1.33m Ans.

(b) Strain
Stress=

Y

Given, strain in steel = strain in brass

∴ T A

Y

T A

Y

S S

S

B B

B

/ /=

∴ T

T

A Y

A Y

S

B

S S

B B

= = × ×
×

=
−

−
( )( )

( )( )

1 10 2 10

2 10 10
1

3 11

3 11
…(iii)

From Eqs. (ii) and (iii), we have x = 1.0 m Ans.

Miscellaneous Examples

Steel Brass

TBTS

A C
D

x 2 – x



V Example 9 A sphere of radius 0.1m and mass 8π kg is attached to the lower end

of a steel wire of length 5.0 m and diameter 10 3− m. The wire is suspended from

5.22 m high ceiling of a room. When the sphere is made to swing as a simple

pendulum, it just grazes the floor at its lowest point. Calculate the velocity of the

sphere at the lowest position. Young’s modulus of steel is 1.994 /× 1011 2N m .

Solution Let ∆l be the extension of wire when the sphere is at mean position. Then, we have

l l r+ + =∆ 2 5.22

or ∆l l r= − −5.22 2

= ×5.22 0.1– –5 2

= 0.02 m

Let T be the tension in the wire at mean position during oscillations, then

Y
T A

l l
= /

/∆

∴ T
YA l

l

Y r l

l
= =∆ ∆π 2

Substituting the values, we have

T = × × × × ×( ) ( )–1.994 0.5 0.0210 10

5

11 3 2π

= 626.43 N

The equation of motion at mean position is,

T mg
mv

R
− =

2

…(i)

Here, R r= − = =5.22 5.22 0.1 5.12 m–

and m = =8π kg 25.13 kg

Substituting the proper values in Eq. (i), we have

( ) – ( ) =
( ) 2

626.43 25.13 9.8
25.13

5.12
× v

Solving this equation, we get

v = 8.8 m/s Ans.
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V Example 10 A thin ring of radius R is made of a material of density ρ and

Young’s modulus Y. If the ring is rotated about its centre in its own plane with

angular velocity ω, find the small increase in its radius.

Solution Consider an element PQ of length dl. Let T be the tension and A the area of

cross-section of the wire.

Mass of element dm = ×volume density

= A dl( )ρ
The component of T, towards the centre provides the necessary centripetal force to portion PQ.

∴ F T
d

dm R= 



 =2

2

2sin ( )
θ ω …(i)

For small angles sin
( / )d d dlRθ θ

2 2 2
≈ =

or d
dl

R
θ =

Substituting in Eq. (i), we have

T
dl

R
A dl R⋅ = ( )ρ ω2

or T A R= ρω2 2

Let ∆R be the increase in radius.

Longitudinal strain = = =∆ ∆ ∆l

l

R

R

R

R

( )2

2

π
π

Now, Y
T A

R R
= /

/∆

∴ ∆R
TR

AY
=

= ( )A R R

AY

ρω2 2

or ∆R
R

Y
= ρω2 3

Ans.
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LEVEL 1
Assertion and Reason

Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : Steel is more elastic than rubber.

Reason : For same strain, steel requires more stress to be produced in it.

2. Assertion : If pressure is increased, bulk modulus of gases will increase.

Reason : With increase in pressure, temperature of gas also increases.

3. Assertion : From the relation Y
Fl

A l
=

∆
, we can say that, if length of a wire is doubled, its

Young’s modulus of elasticity will also becomes two times.

Reason : Modulus of elasticity is a material property.

4. Assertion : Bulk modulus of elasticity can be defined for all three states of matter, solid
liquid and gas.

Reason : Young’s modulus is not defined for liquids and gases.

5. Assertion : Every wire is like a spring, whose spring constant, K
l

∝ 1
where l is length of

wire.

Reason : It follows from the relation

K
YA

l
=

6. Assertion : Ratio of stress and strain is always constant for a substance.

Reason : This ratio is called modulus of elasticity.

7. Assertion : Ratio of isothermal bulk modulus and adiabatic bulk modulus for a monoatomic

gas at a given pressure is
3

5
.

Reason : This ratio is equal to

γ =
C

C

p

V

.

Exercises



8. Assertion: A uniform elastic rod lying on smooth horizontal surface is pulled by a constant
horizontal force of magnitude F as shown in the figure. Another identical elastic rod is pulled
vertically upwards by a constant vertical force of magnitude F as shown in the figure. The
extensions in both the rods will be same.

Reason: In a uniform elastic rod, the extension depends only on forces acting at the ends of
rods.

9. Assertion: Identical springs of steel and copper are equally stretched. More work will be done
on the steel spring.

Reason: Steel is more elastic than copper.

Objective Questions
Single Correct Option

1. The bulk modulus for an incompressible liquid is

(a) zero (b) unity

(c) infinity (d) between 0 and 1

2. The Young’s modulus of a wire of length ( )L and radius ( )r is Y . If the length is reduced to
L

2
and

radius
r

2
, then its Young’s modulus will be

(a)
Y

2
(b) Y

(c) 2Y (d) 4Y

3. The maximum load that a wire can sustain is W . If the wire is cut to half its value, the
maximum load it can sustain is

(a) W (b)
W

2

(c)
W

4
(d) 2W

4. Identify the case when an elastic metal rod does not undergo elongation

(a) it is pulled with a constant acceleration on a smooth horizontal surface

(b) it is pulled with constant velocity on a rough horizontal surface

(c) it is allowed to fall freely

(d) All of the above

5. Vessel of 1 10 3 3× − m volume contains an oil. If a pressure of 1 2 105 2. × N m/ is applied on it, then

volume decreases by 0 3 10 3 3. × − m . The bulk modulus of oil is

(a) 6 1010 2× N m/ (b) 4 105 2× N m/

(c) 2 107 2× N m/ (d) 1 106 2× N m/
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6. A load of 4 kg is suspended from a ceiling through a steel wire of length 20 m and radius 2 mm.
It is found that the length of the wire increases by 0.031 mm, as equilibrium is achieved. If

g = × −31 2. π ms , the value of Young’s modulus of the material of the wire (in Nm−2) is

(a) 2 1012× (b) 4 1011×
(c) 2 1011× (d) 002 109. ×

7. A wire of length 1m and radius 1mm is subjected to a load. The extension is x. The wire is
melted and then drawn into a wire of square cross-section of side 2  mm. Its extension under the
same load will be

(a)
π2

8

x
(b)

π2

16

x

(c)
π2

2

x
(d)

x

2π

8. Figure shows the stress-strain curve of two metals P andQ. From the graph, it can be concluded
that

(a) P has greater Young’s modulus and lesser ductility

(b) Q has greater Young’s modulus and lesser ductility

(c) P has greater Young’s modulus and greater ductility

(d) Q has greater Young’s modulus and greater ductility

9. The bulk modulus of water is 2 0 109 2. × N m/ . The pressure required to increase the density of

water by 0.1% is

(a) 20 103 2. × N m/ (b) 20 106 2. × N m/

(c) 20 105 2. × N m/ (d) 20 107 2. × N m/

10. If the work done in stretching a wire by 1 mm is 2 J, then work necessary for stretching another
wire of same material but with double radius of cross-section and half of the length by 1 mm is

(a) 8 J (b) 16 J

(c) 4 J (d) 32 J

11. The graph shows the behaviour of a steel wire in the region for which the wire obeys Hooke’s
law. The graph is a parabola. The variables X andY -axes, respectively can be [ stress ( )σ , strain
( )ε and elastic potential energy ( )U ]

(a)U , σ (b) U , ε
(c) σ ε, (d) None of these
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12. Depth of sea is maximum at Mariana Trench in West Pacific Ocean. Trench has a maximum
depth of about 11 km. At bottom of trench water column above it exerts 1000 atm pressure.
Percentage change in density of sea water at such depth will be around

(Given, B = ×2 109 2Nm– and patm Nm= ×1 105 2– )

(a) about 5% (b) about 10%

(c) about 3% (d) about 7%

13. One end of a horizontal thick copper wire of length 2L and radius 2R is welded to an end of
another horizontal thin copper wire of length L and radius R. When the arrangement is
stretched by applying forces at two ends, the ratio of the elongation in the thin wire to that in the
thick wire is

(a) 0.25 (b) 0.50

(c) 2.00 (d) 4.00

14. An air filled balloon is at a depth of 1km below the water level in an ocean. The normal stress of
the balloon (in Pa) is

(Given, ρwater kgm= −103 3 , g = −9 8 2. ms and patm Pa=105 )

(a) 106 (b) 99 105. ×
(c) 99 107. × (d) 99 106. ×

15. A load of 10 kN is supported from a pulley, which in turn is supported by a rope of

cross-sectional area 103 2mm and modulus of elasticity 103 2Nmm− as shown in the figure.
Neglecting friction at the pulley, then downward deflection of the load (in mm) is

(a) 3.75 (b) 4.25 (c) 2.75 (d) 4.00

16. A body of mass 3.14 kg is suspended from one end of a wire of length 10 m. The radius of

cross-section of the wire is changing uniformly from 5 10 4× − m at the top (i.e. point of

suspension) to 9.8 m× −10 4 at the bottom. Young's modulus of elasticity is 2 1011 2× N/ m . The

change in length of the wire is

(a) 4 10 3× − m (b) 3 10 3× − m

(c) 10 3− m (d) 2 10 3× − m

Subjective Questions

1. What is the density of lead under a pressure of 2.0 N m× 108 2/ , if the bulk modulus of lead is

8.0 N m× 109 2/ and initially the density of lead is 11.4 g/cm3?

2. A cylindrical steel wire of 3 m length is to stretch no more than 0.2 cm when a tensile force of
400 N is applied to each end of the wire. What minimum diameter is required for the wire ?

Ysteel 2.1 N m= × 1011 2/
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3. The elastic limit of a steel cable is 3 0 108 2. × N m/ and the cross-section area is 4 cm2. Find the

maximum upward acceleration that can be given to a 900 kg elevator supported by the cable if
the stress is not to exceed one-third of the elastic limit.

4. Find the increment in the length of a steel wire of length 5 m and radius 6 mm under its own

weight. Density of steel = 8000 3kg m/ and Young’s modulus of steel = ×2 1011 2N m/ . What is

the energy stored in the wire ? (Take g = 9 8 2. m s/ )

5. Two wires shown in figure are made of the same material which has a breaking stress of

8 108 2× N m/ . The area of cross-section of the upper wire is 0.006 cm2 and that of the lower wire

is 0.003 cm2. The mass m1 10= kg, m2 20= kg and the hanger is light. Find the maximum load

that can be put on the hanger without breaking a wire. Which wire will break first if the load is

increased ? (Take g = 10 2m s/ )

6. A steel wire and a copper wire of equal length and equal cross-sectional area are joined end to
end and the combination is subjected to a tension. Find the ratio of

(a) the stresses developed in the two wires,

(b) the strains developed.  (Y of steel = ×2 1011 2N m/ and Y of copper = ×1.3 N m1011 2/ )

7. Calculate the approximate change in density of water in a lake at a depth of 400 m below the

surface. The density of water at the surface is 1030 kg m/ 3 and bulk modulus of water is

2 109 2× N m/ .

8. In taking a solid ball of rubber from the surface to the bottom of a lake of 180 m depth, reduction

in the volume of the ball is 0.1%. The density of water of the lake is 1 103 3× kg m/ . Determine

the value of the bulk modulus of elasticity of rubber. ( . )g = 9 8 2m s/

LEVEL 2
Single Correct Option

1. A wire elongates by l units, when a load w is suspended from it. If the wire gets over a pulley
(equally on both the sides) and two weights w each are hung at the two ends, the elongation of
wire (in units) will be

(a) zero (b)
l

2

(c) l (d) 2 l
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2. Maximum stress that can be applied to a wire which supports on elevator is σ. Mass of elevator
is m and it is moved upwards with an acceleration of g/ .2 Minimum diameter of wire
(Neglecting weight of wire) must be

(a)
2mg

πσ
(b)

3

2

mg

πσ

(c)
5

2

mg

πσ
(d)

6mg

πσ

3. A bob of mass 10 kg is attached to a wire 0.3 m long. Its breaking stress is 4 8 107 2. × N m/ . The

area of cross-section of the wire is10 6 2− m . What is the maximum angular velocity with which it

can be rotated in a horizontal circle?

(a) 8 rad/s (b) 4 rad/s

(c) 2 rad/s (d) 1 rad/s

4. A uniform steel rod of cross-sectional area A and length L is suspended so that it hangs
vertically. The stress at the middle point of the rod is

(a)
1

2
ρgL (b)

1

4
ρgL

(c) ρgL (d) None of these

5. The potential energy U of diatomic molecules as a function of separation r is shown in figure.
Identify the correct statement.

(a) The atoms are in equilibrium if r OA=
(b) The force is repulsive only if r lies between A Band

(c) The force is attractive if r lies between A Band

(d) The atoms are in equilibrium if r OB=

6. The length of a steel wire is l1 when the stretching force is T l1 2and when the stretching force is
T2. The natural length of the wire is

(a)
l T l T

T T

1 1 2 2

1 2

+
+

(b)
l T l T

T T

2 1 1 2

1 2

+
+

(c)
l T l T

T T

2 1 1 2

1 2

−
−

(d)
l T l T

T T

1 1 2 2

1 2

−
−

7. A mass m is suspended from a wire. Change in length of the wire is ∆l. Now the same wire is
stretched to double its length and the same mass is suspended from the wire. The change in
length in this case will become (it is assumed that elongation in the wire is within the
proportional limit)

(a) ∆l (b) 2∆l (c) 4∆l (d) 8∆l

8. A uniform metal rod fixed at its ends of 2 2mm cross-section is cooled from 40°C to 20°C. The

coefficient of the linear expansion of the rod is 12 10 6× − per degree celsius and its Young’s

modulus of elasticity is 1011 2N m/ . The energy stored per unit volume of the rod is

(a) 2880 3J m/ (b) 1500 3J m/

(c) 5760 3J m/ (d) 1440 3J m/
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9. A rod of length 1000 mm and coefficient of linear expansion α = −10 4 per degree celsius is placed

in horizontal smooth surface symmetrically between fixed walls separated by 1001 mm. The

Young’s modulus of rod is 1011 2N m/ . If the temperature is increased by 20°C, then the stress

developed in the rod is (in N m/ 2)

(a) 105 (b) 108

(c) 107 (d) 106

10. A uniform elastic plank moves due to a constant force F0 applied at one end whose area isS. The
Young’s modulus of the plank is Y . The strain produced in the direction of force is

(a)
F

SY

0

2
(b)

F

SY

0 (c)
2 0F

SY
(d)

2 0F

SY

More than One Correct Options

1. Figure shows the graph of elastic potential energy ( )U stored versus extension, for a steel wire

( )Y = ×2 1011 Pa of volume 200 cc. If area of cross-section A and original length L, then

(a) A = −10 4 2m (b) A = −10 3 2m (c) L = 15. m (d) L = 2m

2. A metal wire of length L , area of cross-section A and Young’s modulus Y is stretched by a
variable force F such that F is always slightly greater than the elastic forces of resistance in the
wire. When the elongation of the wire is l

(a) the work done by F is
YAl

L

2

2

(b) the work done by F is
YAl

L

2

(c) the elastic potential energy stored in the wire is
YAl

L

2

2

(d) the elastic potential energy stored in the wire is
YAl

L

2

4

3. Two wires A Band of same length are made of same material. The figure represents the load F
versus extension ∆x graph for the two wires. Then

(a) The cross sectional area of A is greater than that of B

(b) The elasticity of B is greater than that of A

(c) The cross-sectional area of B is greater than that of A

(d) The elasticity of A is greater than that of B

0.2

0.2
Extension (in mm)

E
la

s
ti
c
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o
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n
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J
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4. A body of mass M is attached to the lower end of a metal wire, whose upper end is fixed. The
elongation of the wire is l.

(a) Loss in gravitational potential energy of M is Mgl

(b) The elastic potential energy stored in the wire is Mgl

(c) The elastic potential energy stored in the wire is
1

2
Mgl

(d) Heat produced is
1

2
Mgl

5. Two light wires P andQ shown in the figure are made of same material and have radii rP

and rQ , respectively. The block between them has a mass m. When the force F
mg=
3

,

then one of the wires breaks. Choose the correct option(s).

(a) P breaks, if r rP Q=
(b) P breaks, if r rP Q< 2

(c) Either P or Q may break, if r rP Q= 2

(d) To predict, which wire will break, the lengths of P and Q must be known

6. Two wires A and B have equal lengths and are made of the same material, but diameter
of wire A is twice that of wire B. Then, for a given load,

(a) the extension of B will be four times that of A

(b) the extensions of A and B will be equal

(c) the strain in B is four times that in A

(d) the strains in A and B will be equal

7. A light rod of length 2 m is suspended from a ceiling horizontally by means of two vertical wires

of equal length tied to its ends. One of the wires is made of steel and is of cross-section 10 3 2− m

and the other is of brass of cross-section 2 10 3 2× − m . x is the distance from steel wire end, at

which a weight may be hung. Ysteel Pa= ×2 1011 and Y brass Pa= 1011

Which of the following statement(s) is/are correct?

(a) x = 1.2m, if the strains of both the wires are to be equal

(b) x = 1.42m, if the stresses of both the wires are to be equal

(c) x = 1 m, if the strains of both the wires are to be equal

(d) x = 1.33 m, if the stresses of both the wires are to be equal

8. A steel rod of cross-sectional area 16 2cm and two brass rods each of cross-sectional area 10 2cm

together support a load of 5000 kg as shown in the figure. (Given, Ysteel kg cm= × −2 106 2 and

Y brass kg cm= −106 2). Choose the correct option(s).

(a) Stress in brass rod = −121 2kg cm (b) Stress in steel rod = −161 2kg cm

(c) Stress in brass rod = −141 2kg cm (d) Stress in steel rod = −141 2kg cm
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Comprehension Based Questions

Passage 1 (Q. Nos. 1 to 3)

The axle of a pulley of mass 1 kg is attached to the end of an elastic string of length 1 m,
cross-sectional area 10 3 2− m and Young’s modulus 2 105 2× −Nm , whose other end is fixed to the

ceiling. A rope of negligible mass is placed on the pulley such that its left end is fixed to the
ground and its right end is hanging freely, from the pulley which is at rest in equilibrium. Now,
the free end A of the rope is subjected to pulling with constant force F = 10 N. Friction between
the rope and the pulley can be neglected. ( )Given g ms, = −10 2

1. The elongation of the string before applying force is

(a) 50 cm (b) 5 cm (c) 0.5 cm (d) 0.05 cm

2. The greatest elongation of the string is

(a) 35 cm (b) 30 cm (c) 25 cm (d) 20 cm

3. The maximum displacement of point A after applying F is

(a) 70 cm (b) 60 cm (c) 40 cm (d) 50 cm

Passage 2 (Q. Nos. 4 to 6)

On gradual loading, stress-strain relationship for a metal wire is as follows.

Within proportionality limit, stress ∝ strain or,
Stress

Strain
= a constant for the material of wire.

4. Two wires of same material have length and radius ( , )L r and 2
2

L
r

,





. The ratio of their

Young’s modulii is

(a) 1 : 2 (b) 2 : 3

(c) 2 : 1 (d) 1: 1

5. Just on crossing the yield region, the material will have

(a) increased and breaking stress (b) reduced and breaking stress

(c) constant stress (d) None of these
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6. If
Stress

Strain
is x in elastic region and y in the region of yield, then

(a) x y> (b) x y= (c) x y< (d) x y= 2

Match the Columns

1. Match the following two columns. (dimension wise)

Column I Column II

(a) Stress (p) coefficient of friction

(b) Strain (q) relative density

(c) Modulus of elasticity (r) energy density

(d) Force constant of a wire (s) None

2. A wire of length l, area of cross section A and Young’s modulus of elasticity Y is stretched by a
longitudinal force F. The change in length is ∆l. Match the following two columns.

Note In column I, corresponding to every option, other factors remain constant.

Column I Column II

(a) F is increased (p) ∆l will increase

(b) l is increased (q) stress will increase

(c) A is increased (r) ∆l will decrease

(d) Y is increased (s) stress will decrease

3. In Column I, a uniform bar of uniform cross-sectional area under the application of forces is
shown in the figure and in Column II, some effects/phenomena are given. Match the two
columns.

Column I Column II

(a) (p) Uniform stresses are developed in

the rod.

(b) (q) Non-uniform stresses are developed

in the rod.

(c) (r) Compressive stresses are developed

in the rod.

(d) (s) Tensile stresses are developed in the

rod.

Subjective Questions

1. A solid sphere of radius R made of a material of bulk modulus B is surrounded by a liquid in a
cylindrical container. A massless piston of area A (the area of container is also A) floats on the
surface of the liquid. When a mass M is placed on the piston to compress the liquid, fractional

change in radius of the sphere is
Mg

ABα
. Find the value of α.
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2. A 0.1 kg mass is suspended from a wire of negligible mass. The length of the wire is 1 m and its

cross-sectional area is 4 9 10 7 2. × − m . If the mass is pulled a little in the vertically downward

direction and released, it performs SHM with angular frequency 140 rad s−1. If the Young’s

modulus of the material of the wire is p × −109 2Nm , find the value of p.

3. A wire having a length L and cross-sectional area A is suspended at one of its ends from a
ceiling. Density and Young’s modulus of material of the wire areρ andY , respectively. Its strain

energy due to its own weight is
ρ

α

2 2 3g AL

Y
. Find the value of α.

4. A wire of length 3 m, diameter 0.4 mm and Young’s modulus 8 1010 2× N m/ is suspended from a

point and supports a heavy cylinder of volume 10 3 3− m at its lower end. Find the decrease in

length when the metal cylinder is immersed in a liquid of density 800 kg m/ 3 .

5. A sphere of radius 10 cm and mass 25 kg is attached to the lower end of a steel wire of length 5 m
and diameter 4 mm which is suspended from the ceiling of a room. The point of support is 521 cm
above the floor. When the sphere is set swinging as a simple pendulum, its lowest point just

grazes the floor. Calculate the velocity of the ball at its lowest position ( )Ysteel N m= ×2 1011 2/ .

6. A uniform ring of radius R and made up of a wire of cross-sectional radius r is rotated about its
axis with a frequency f. If density of the wire is ρ and Young’s modulus is Y. Find the fractional
change in radius of the ring.

7. A 6 kg weight is fastened to the end of a steel wire of unstretched length 60 cm. It is whirled in a
vertical circle and has an angular velocity of 2 rev/s at the bottom of the circle. The area of

cross-section of the wire is 0.05 cm2. Calculate the elongation of the wire when the weight is at

the lowest point of the path. Young’s modulus of steel = ×2 1011 2N m/ .

8. A homogeneous block with a mass m hangs on three vertical wires of equal length arranged
symmetrically. Find the tension of the wires if the middle wire is of steel and the other two are
of copper. All the wires have the same cross-section. Consider the modulus of elasticity of steel
to be double than that of copper.

9. A uniform copper bar of density ρ, length L, cross-sectional area S and Young’s modulus Y is
moving horizontally on a frictionless surface with constant acceleration a0. Find

(a) the stress at the centre of the wire,

(b) total elongation of the wire.

10. A 5 m long cylindrical steel wire with radius 2 10 3× − m is suspended vertically from a rigid

support and carries a bob of mass 100 kg at the other end. If the bob gets snapped, calculate the

change in temperature of the wire ignoring radiation losses. (Take g = 10 2m s/ )

(For the steel wire, Young’s modulus = ×21 1011 2. ;N m/ Density = 7860 3kg m/ ;

Specific heat = °420 J kg C/ - ).
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Answers
Introductory Exercise 15.1

1. Wire B 2. 0.0125 cm 3. 250.2 mm 4. [ ], [ ], [ ]ML T M L T ML T
1 0 0− − − −2 0 1 2

Introductory Exercise 15.2
1. [ ]ML T

− −1 2 2. (a) 0 015. J (b) 5.0 J× −
10

4
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1. (c) 2. (b) 3. (a) 4. (c) 5. (b) 6. (a) 7. (b) 8. (a) 9. (b) 10. (b)
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16.1 Definition of a Fluid
Fluid mechanics deals with the behaviour of fluids at rest and in motion. A fluid is a substance that

deforms continuously under the application of a shear (tangential) stress no matter how small the

shear stress may be.

Thus, fluids comprise the liquid and gas (or vapour) phases of the physical forms in which matter

exists. The distinction between a fluid and the solid state of matter is clear if you compare fluid and

solid behaviour. A solid deforms when a shear stress is applied but it does not continue to increase

with time. However, if a shear stress is applied to a fluid, the deformation continues to increase as

long as the stress is applied. We may alternatively define a fluid as a substance that cannot sustain

a shear stress when at rest.

Ideal Fluid
An ideal liquid is incompressible and non-viscous in nature. An incompressible liquid means the

density of the liquid is constant, it is independent of the variations in pressure. A non-viscous liquid

means that, parts of the liquid in contact do not exert any tangential force on each other. Thus, there is

no friction between the adjacent layers of a liquid. The force by one part of the liquid on the other part

is perpendicular to the surface of contact.

16.2 Density of a Liquid
Density ( )ρ of any substance is defined as the mass per unit volume or

ρ =
mass

volume
or ρ =

m

V

Relative Density (RD)

In case of a liquid, sometimes an another term Relative Density (RD) is defined. It is the ratio of

density of the substance to the density of water at 4°C. Hence,

RD =
Density of substance

Density of water at 4 C°

RD is a pure ratio. So, it has no units. It is also sometimes referred as specific gravity. Density of water

at 4°C in CGS is 1 g/cm 3 . Therefore, numerically the RD and density of substance (in CGS) are equal.

In SI units, the density of water at 4°C is 1000 kg/m 3 .
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Density of a Mixture of two or more Liquids
Here, we have two cases:

Case 1 Suppose two liquids of densities ρ1 and ρ2 having masses m1 and m2 are mixed together.

Then, the density of the mixture will be

ρ =
Total mass

Total volume
=

+
+

( )

( )

m m

V V

1 2

1 2

=
+

+








( )m m

m m

1 2

1

1

2

2ρ ρ

If m m1 2= , then ρ
ρ ρ

ρ ρ
=

+
2 1 2

1 2

Case 2 If two liquids of densities ρ1 and ρ2 having volumes V1 andV2 are mixed, then the density

of the mixture is,

ρ =
Total mass

Total volume
=

+
+

m m

V V

1 2

1 2

=
+
+

ρ ρ1 1 2 2

1 2

V V

V V

If V V1 2= , then ρ
ρ ρ

=
+1 2

2

Effect of Temperature on Density
As the temperature of a liquid is increased, the mass remains the same while the volume is increased

and hence, the density of the liquid decreases as ρ ∝





1

V
. Thus,

ρ
ρ γ θ
′

=
′

=
+

=
+

V

V

V

V dV

V

V V ∆

or
ρ
ρ γ θ
′

=
+

1

1 ∆

Here, γ = thermal coefficient of volume expansion

and ∆θ = rise in temperature

∴ ρ
ρ
γ θ

′ =
+1 ∆

We can also write ρ ρ θ′ = + γ∆ −( )1 1

or ρ ρ θ′ ≈ − γ∆( )1 (if γ∆ <<θ 1)
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Effect of Pressure on Density
As pressure is increased, volume decreases and hence density will increase. Thus,

ρ ∝
1

V

∴
ρ
ρ
′

=
′

=
+

=
− 





V

V

V

V dV

V

V
dp

B
V

or
ρ
ρ
′

=
−

1

1
dp

B

Here, dp = change in pressure

and B = bulk modulus of elasticity of the liquid

Therefore, ρ
ρ

′ =
−1

dp

B

⇒ ρ ρ′ = −





−

1

1
dp

B

or ρ ρ′ ≈ +





1
dp

B
(if dp B<< )

Further, ρ ρ ρ
ρ

′ − = ∆ =
( )dp

B
or

ρ(∆p

B

V Example 16.1 Relative density of an oil is 0.8. Find the absolute density of oil
in CGS and SI units.

Solution Density of oil (in CGS) = (RD) g /cm3

= 0.8 g/cm3

= 800 kg/m3
Ans.

16.3 Pressure in a Fluid
When a fluid (either liquid or gas) is at rest, it exerts a force perpendicular to any

surface in contact with it, such as a container wall or a body immersed in the

fluid.While the fluid as a whole is at rest, the molecules that makes up the fluid are in

motion, the force exerted by the fluid is due to molecules colliding with their

surroundings.

If we think of an imaginary surface within the fluid, the fluid on the two sides of the

surface exerts equal and opposite forces on the surface, otherwise the surface would

accelerate and the fluid would not remain at rest.
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Consider a small surface of area dA centered on a point on the fluid, the normal force exerted by the

fluid on each side is dF⊥ .The pressure p is defined at that point as the normal force per unit area, i.e.

p
dF

dA
= ⊥

If the pressure is the same at all points of a finite plane surface with area A, then

p
F

A
= ⊥

where, F⊥ is the normal force on one side of the surface. The SI unit of pressure is pascal, where

1 pascal = 1 Pa = 1.0 N /m 2

One unit used principally in meterology is the Bar which is equal to 105 Pa.

1 Bar = 10 Pa5

Atmospheric Pressure (p0 )
It is pressure of the earth’s atmosphere. This changes with weather and elevation. Normal

atmospheric pressure at sea level (an average value) is 1.013 10 Pa5× . Thus,

1 atm = 1.013 10 Pa5×

Note Fluid pressure acts perpendicular to any surface in the fluid no matter how that surface is oriented. Hence,

pressure has no intrinsic direction of its own, it is a scalar. By contrast, force is a vector with a definite

direction.

Absolute Pressure and Gauge Pressure
The excess pressure above atmospheric pressure is usually called gauge pressure and the total

pressure is called absolute pressure. Thus,

Gauge pressure absolute pressure – atmospheric pressure=
Absolute pressure is always greater than or equal to zero. While gauge pressure can be negative also.

Variation in Pressure with Depth
If the weight of the fluid can be neglected, the pressure in a

fluid is the same throughout its volume. But often the fluid’s

weight is not negligible and under such condition pressure

increases with increasing depth below the surface.

Let us now derive a general relation between the pressure p at

any point in a fluid at rest and the elevation y of that point.

We will assume that the density ρ and the acceleration due to

gravity g are the same throughout the fluid. If the fluid is in

equilibrium, every volume element is in equilibrium.

Consider a thin element of fluid with height dy. The bottom and top surfaces each have area A, and

they are at elevations y and y dy+ above some reference level where y =0. The weight of the fluid

element is

dw g A dy g= =(volume) (density) ( ) ( )( )( )ρ or dw gAdy= ρ
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What are the other forces in y-direction on this fluid element? Call the pressure at the bottom surface

p, the total y-component of upward force is pA. The pressure at the top surface is p dp+ and the total

y-component of downward force on the top surface is ( ) .p dp A+ The fluid element is in equilibrium,

so the total y-component of force including the weight and the forces at the bottom and top surfaces

must be zero.

ΣFy =0

∴ pA p dp A gA dy− + − =( ) ρ 0

or
dp

dy
g= − ρ …(i)

This equation shows that when y increases, p decreases, i.e. as we move upward in the fluid, pressure

decreases.

If p1 and p2 be the pressures at elevations y1 and y2 and if ρ and g are constant, then integrating

Eq. (i), we get

dp g dy
p

p

y

y

1

2

1

2∫ ∫= − ρ

or p p g y y2 1 2 1− = − −ρ ( ) …(ii)

It is often convenient to express Eq. (ii) in terms of the depth below the

surface of a fluid. Take point 1 at depth h below the surface of fluid and let p

represents pressure at this point. Take point 2 at the surface of the fluid, where

the pressure is p0 (subscript zero for zero depth). The depth of point 1 below

the surface is,

h y y= −2 1

and Eq. (ii) becomes p p g y y gh0 2 1− = − − = −ρ ρ( )

∴ p p gh= +0 ρ …(iii)

Thus, pressure increases linearly with depth, ifρand g are uniform. A graph between p and h is shown

below.

Further, the pressure is the same at any two points at the same level in the fluid. The shape of the

container does not matter.
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Pascal’s Law

Pascal’s law or the principle of transmission of fluid-pressure is a principle in fluid mechanics that

states that pressure exerted anywhere in a confined incompressible fluid is transmitted equally in all

directions throughout the fluid.

The simplest instance of this is stepping on a balloon; the balloon bulges out on all sides under the

foot and not just on one side. This is precisely what Pascal’s law is all about – the air which is the fluid

in this case, was confined by the balloon and you applied pressure with your foot causing it to get

displaced uniformly.

A well known application of Pascal’s law is the hydraulic lift used to support or lift heavy objects. It is

schematically illustrated in figure.

A piston with small cross section area A1 exerts a force F1 on the surface of a liquid such as oil. The

applied pressure p
F

A
= 1

1

is transmitted through the connecting pipe to a larger piston of area A2 . The

applied pressure is the same in both cylinders, so

p
F

A

F

A
= =1

1

2

2

or F
A

A
F2

2

1
1= .

Now, since A A2 1> , therefore, F F2 1> . Thus, hydraulic lift is a force multiplying device with a

multiplication factor equal to the ratio of the areas of the two pistons. Dentist’s chairs, car lifts and

jacks, many elevators and hydraulic brakes all use this principle.

� At same point on a fluid pressure is same in all directions. In the figure,

p p p p1 2 3 4= = =

� Forces acting on a fluid in equilibrium have to be perpendicular to its surface. Because it cannot sustain

the shear stress.
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� In the same liquid pressure will be same at all points at the same level

(provided their speeds are same).

For example, in the figure p p1 2≠ , p p3 4= and p p5 6=

Further, p p3 4=

∴ P gh P gh0 1 1 0 2 2+ = +ρ ρ

or ρ ρ1 1 2 2h h= or h ∝ 1

ρ

� Barometer It is a device used to  measure atmospheric pressure.

In principle, any liquid can be used to fill the barometer, but mercury is the

substance of choice because its great density makes possible an instrument

of reasonable size.

p p1 2=

Here, p1 = atmospheric pressure ( )p0

and p gh gh2 0= + =ρ ρ

Here, ρ = density of mercury

∴ p gh0 = ρ

Thus, the mercury barometer reads the atmospheric pressure ( )p0 directly from the height of the mercury

column. For example, if the height of mercury in a barometer is 760 mm, then atmospheric pressure will be

p gh0 = ρ = ×( )( )( )13.6 9.8 0.760103 = ×1.01 N/m105 2

� Manometer It is a device used to measure the pressure of a gas inside

a container.

The U-shaped tube often contains mercury.

p p1 2=

Here, p p1 = pressure of the gas in the container ( )

and p p gh2 0= +atmospheric pressure ( ) ρ

∴ p p h g= +0 ρ

This can also be written as p p h g− = =0 gauge pressure ρ

Here, ρ is the density of the liquid used in U-tube.

Thus, by measuring h we can find absolute (or gauge) pressure in the vessel.

� Free body diagram of a liquid The free body diagram of the liquid (showing the vertical forces only) is

shown in Fig. 16.12 (b). For the equilibrium of liquid,

net downward force = net upward force

∴ p A W pA0 + = here, W ghA= ρ ∴ p p gh= +0 ρ
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V Example 16.2 For the arrangement shown in the figure, what is the density of
oil ?

Solution p pB A=
∴ p gl p l d gw0 0+ = + +ρ ρoil ( )

⇒ ρ
ρ

oil =
+
w l

l d
=

+
( ) ( )

( )

1000 135

135 12.3
= 916 kg/m 3 Ans.

V Example 16.3 A U-tube of uniform cross-sectional area and open to the
atmosphere is partially filled with mercury. Water is then poured into both
arms. If the equilibrium configuration of the tube is as shown in figure with
h cm2 = 1.0 , determine the value of h1.

Solution p p1 2=

∴ p g h h hw0 1 2+ + +ρ ( ) = + +p gh ghw0 2ρ ρHg

∴ h
hw

w

1

2=
−( )ρ ρ
ρ

Hg

= −( ) ( )13.6 1.0

1

1

= 12.6cm Ans.
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V Example 16.4 A U-shaped tube open to the air at both
ends contains some mercury. A quantity of water is
carefully poured into the left arm of the U-shaped tube
until the vertical height of the water column is 15.0 cm.

(a) What is the gauge pressure at the water mercury interface ?

(b) Calculate the vertical distance h from the top of the

mercury in the right hand arm of the tube to the top of the

water in the left-hand arm.

Solution (a) Gauge pressure = ρw wgh

= ( ) ( ) ( )103 9.8 0.15

= 1470 2N/m Ans.

(b) Let us calculate pressure or two sides at the level of water and mercury interface.

p g h p ghw w0 0+ = +ρ ρHg Hg

ρ ρw wh h= Hg Hg

∴ ( ) ( ) ( ) ( )1 15 15= −13.6 h

h = 13.9cm Ans.

V Example 16.5 For the system shown in figure, the cylinder on the left, at L,

has a mass of 600 kg and a cross-sectional area of 800 cm2 . The piston on the

right, at S, has cross-sectional area 25 cm2 and negligible weight. If the

apparatus is filled with oil (ρ = 0.78 g/cm3 ), what is the force F required to hold

the system in equilibrium?

Solution Let A1 = area of cross-section on LHS and

A2 = area of cross-section on RHS

Equating the pressure on two sides of the dotted line.

Then,
F

A
gh

Mg

A2 1

+ =ρ (M = 600 kg)

∴ F A
Mg

A
gh= −









2

1

ρ

= × 6 ×
×

− × ×












−
−

( )25 10
00

800 10
780 84

4

9.8
9.8

= 31N Ans.
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1. Water and oil are poured into the two limbs of a U-tube containing mercury.

The interfaces of the mercury and the liquids are at the same height in both

limbs.

Determine the height of the water columnh1 if that of the oilh2 20= cm. The

density of the oil is 0.9.

2. The liquids shown in figure in the two arms are mercury (specific

gravity = 136. ) and water. If the difference of heights of the mercury

columns is 2 cm, find the height h of the water column.

3. The heights of mercury surfaces in the two arms of the manometer shown

in Fig.16.20 are 2 cm and 8 cm. Atmospheric pressure is1.01 Nm× −105 2.

Find (a) the pressure of the gas in the cylinder and (b) the pressure of

mercury at the bottom of the U tube.

4. A cylinderical vessel containing a liquid is closed by a smooth piston of

mass m as shown in the Fig. 16.21. The area of cross section of the

piston is A. If the atmospheric pressure is p0, find the pressure of the

liquid just below the piston.

5. The area of cross section of the two arms of a hydraulic press are 1 cm2

and10 2cm respectively (Fig.16.22). A force of 5 N is applied on the water

in the thinner arm. What force should be applied on the water in the

thicker arm so that the water may remain in equilibrium?

6. The area of cross section of the wider tube shown in Fig. (16.23) is900 2cm . If the body standing

on the position weighs 45 kg, find the difference in the levels of water in the two tubes.

Chapter 16 Fluid Mechanics � 413

Fig. 16.21

h1

h2

Fig. 16.18

INTRODUCTORY EXERCISE 16.1

gas

Fig. 16.20

5N F

Fig. 16.22

A B

2 cm

Fig. 16.19

Fig. 16.23



16.4 Pressure Difference in Accelerating Fluids
If fluids are at rest then pressure does not change in horizontal direction.

It changes only in vertical direction.

At a height difference ‘h’, difference in pressure (or change in pressure) is

∆p gh= ±ρ
Pressure increases with depth. So, ∆p gh= +ρ in moving downwards and ∆p gh= −ρ in moving

upwards.

If fluids are accelerated then pressure changes in both horizontal and vertical directions.

In Horizontal Direction
(i) Pressure decreases in the direction of acceleration.

(ii) At a horizontal distance x change in pressure is

∆p ax= ±ρ (a = horizontal acceleration)

Take ∆p ax= +ρ , while moving in opposite direction of acceleration. Because pressure increases in

the opposite direction of acceleration and take ∆P ax= −ρ while moving in the direction of

acceleration.

In Vertical Direction
Instead of ‘g’ in the equation, ∆p gh= ±ρ take effective value of g or ge . Thus,

∆p g he= ±ρ

Here, g ge = if vertical acceleration of fluid is zero.

g g ae = + if vertical acceleration of fluid ‘a’ is upwards and

g g ae = − if vertical acceleration ‘a’ is downwards.

In equation form, all above statements can be explained as below.

Consider a liquid kept at rest in a beaker as shown in Fig. 16.24 (a). In this case, we know that

pressure do not change in horizontal direction (x-direction), it decreases upwards along y-direction.

So, we can write the equations,

dp

dx
=0 and

dp

dy
g= − ρ …(i)
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But, suppose the beaker is accelerated and it has components of acceleration ax and a y in x and y

directions respectively, then the pressure decreases along both x and y-directions. The above

equations in that case become,

dp

dx
ax= − ρ

and
dp

dy
g a y= − +ρ( ) …(ii)

These equations can be derived as under :

Consider a beaker filled with some liquid of density ρ accelerating upwards with an acceleration a y

along positive y-direction. Let us draw the free body diagram of a small element of fluid of area A and

length dy as shown in figure.

Equation of motion for this fluid element is,

pA W p dp A a y− − + =( ) ( )( )mass or − − =W dp A A dy a y( ) ( )( )ρ

or − − =( ) ( ) ( )( )A g dy dp A A dy a yρ ρ or
dp

dy
g a y= − +ρ( )

Similarly, if the beaker moves along positive x-direction with an acceleration ax , the equation of

motion for the fluid element shown in figure is,

pA p dp A ax− + =( ) ( )( )mass

or − =( ) ( )dp A A dx axρ

or
dp

dx
ax= − ρ
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Note (i)
dp

dx
ax= −ρ , ∆p a xx= − =ρ pressure difference in a horizontal distance x.

Here, negative sign implies that pressure decreases with x or in the direction of acceleration.

(ii) In Fig. 16.26, pressure on left hand side of the fluid element should be more than the pressure on right

hand side of this element. This is because this element is accelerated only due to this pressure difference.

(iii)
dp

dy
g ay= − +ρ ( )

⇒ ∆ p g a yy= − +ρ ( )

or ∆p g he= −ρ
Here, negative sign implies that pressure decreases with ‘y’ or in moving upwards.

Free Surface of a Liquid Accelerated in Horizontal Direction
Consider a liquid placed in a beaker which is accelerating horizontally with

an acceleration ‘a’. Let A and B be two points in the liquid at a separation x

in the same horizontal line. As we have seen in this case

dp

dx
a= − ρ

or dp a dx= − ρ
Integrating this with proper limits, we get

p p axA B− = ρ …(iii)

Further, p p ghA = +0 1ρ
and p p ghB = +0 2ρ
Substituting in Eq. (iii), we get

ρ ρg h h ax( )1 2− =

∴
h h

x

a

g

1 2−
= = tan θ

∴ tan θ =
a

g

Pressure Difference in Rotating Fluids

In a rotating fluid (also accelerating) pressure increases in moving away from the rotational axis. At a

distance ‘x’ from the rotational axis, pressure difference is

∆p
x

= ±
ρω2 2

2

Take ∆p
x

= +
ρω2 2

2
in moving away from the rotational axis, as pressure increases in this direction

and take ∆p
x

= −
ρω2 2

2
in moving towards the rotational axis.
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Proof

Suppose that liquid of densityρkept inside a tube of area of cross-section A is rotating with an angular

velocity ‘ω’ as shown.

Consider a small element of length ‘dx’ at a distance x from the axis of rotation. Mass of this element

is,

dm = ( ) ( )density volume

or dm Adx= ( )ρ
This element is rotating in a circle of radius ‘x’. So, this is accelerated towards centre with a

centripetal acceleration

a x= ω2 (as a R= ω2)

To provide this acceleration, pressure on right hand side of the element should be more.

∴ ( ) ( ) ( ) ( ) ( )p dp A p A dm a Adx x+ − = = ρ ω2

or dp x dx= ( )ρ ω2

∴ ∆ p xdx
x

= ∫ ( )ρω2

0

or ∆p
x

=
ρω2 2

2
Hence proved.

V Example 16.6 A closed container shown in figure is filled with water

( / )ρ =103 3kg m

This is accelerated in horizontal direction with an acceleration, a m s= 2 2/ . Find

(a) p pC D− and (b) p pA D−
Solution (a) In horizontal direction, pressure decreases in the direction of acceleration.

Thus, p pC D>
or p p axC D− = +ρ
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Substituting the values, we have

p pC D− = ( )( )( )10 2 23

or p pC D− = ×4.0 N/m103 2 Ans.

(b) In vertical direction, pressure increases with depth.

∴ p pC A>
or p p ghA C− = −ρ (g ge = )

= − ( ) ( ) ( )10 10 63

= − ×60 103 2N/m

Now, p p p p p pA D A C C D− = − + −( ) ( )

= − × + ×( ) ( . )60 10 4 0 103 3

= − ×56 103 2N/m

= − ×56 104 2. N/m Ans.

Note Container is closed. So, nowhere inside the container pressure is atmospheric pressure p0.

V Example 16.7 A closed tube is filled with

AB = 2 m

BC = 4 cm

water ( / ).ρ=103 3kg m It is rotating about an axis shown in figure with an angular

velocity ω =2 rad s/ . Find, p pA C− .

Solution Pressure decreases in moving towards the axis of rotation and increases in moving

away from the axis ∆p
x= ±









ρω2 2

2

∴ p pA B> and p pB C<
p p p p p pA C A B B C− = − + −( ) ( )

= +








 +

−









ρω ρω2
1
2 2

2
2

2 2

x x

Here, x AB1 2= = m

and x BC2 4= = m
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Substituting the values we have,

p pA C− = −( ) ( ) ( ) ( ) ( ) ( )10 2 2

2

10 2 4

2

3 2 2 3 2 2

= − ×2.4 N/m103 2 Ans.

V Example 16.8 A liquid of density ρ is in a bucket that spins with angular
velocity ‘ω’ as shown in figure. Prove that the free surface of the liquid has a
parabolic shape. Find equation of this.

Solution In the figure shown, suppose the coordinates of point M are (x, y) with respect to the

coordinate axes.

Then, MN y= , NQ x=
Points M and Q are open to atmosphere.

∴ p pM Q= = atmospheric pressure p0

Now, p p gyM N− = −ρ
⇒ p p gyN0 − = −ρ …(i)

p p
x

N Q− =ρω2 2

2

∴ p p
x

N − =0

2 2

2

ρω
…(ii)
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Adding Eqs. (i) and (ii), we have

0
2

2 2

= − +ρ ρω
gy

x

y
x

g
= ω2 2

2

This is the required equation of free surface of the liquid and we can see that this is an equation

of a parabola.

1. In example 16.6, which point has the maximum pressure and which has the minimum pressure.

2. A cubical closed vessel of side 5 m filled with a liquid is accelerated with an accelerationa. Find

the value of a so that pressure at mid point M of AC is equal to pressure at N.

3. Water ( )ρ =103 3kg/m is filled in tube AB as shown in figure. ω =10rad/s. Tube is open at end A.

Atmospheric pressure is p0
5 210= N/m . Find absolute pressure at end B.

16.5 Archimedes’ Principle
If a heavy object is immersed in water, it seems to weightless than when it is in air. This is because the

water exerts an upward force called buoyant force. It is equal to the weight of the fluid displaced by

the body.

A body wholly or partially submerged in a fluid is buoyed up by a force equal to the weight of the

displaced fluid.

This result is known as Archimedes’ principle.

Thus, the magnitude of buoyant force ( )F is given by,

F V gi L
= ρ

Here, Vi = immersed volume of solid, ρ
L

=density of liquid

and g = acceleration due to gravity
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Proof

Consider an arbitrarily shaped body of volume V placed in a container filled with a fluid of densityρ
L

.

The body is shown completely immersed, but complete immersion is not essential to the proof. To

begin with, imagine the situation before the body was immersed. The region now occupied by the

body was filled with fluid, whose weight wasV g
L

ρ . Because the fluid as a whole was in hydrostatic

equilibrium, the net upwards force (due to difference in pressure at different depths) on the fluid in

that region was equal to the weight of the fluid occupying that region.

Now, consider what happens when the body has displaced the fluid. The

pressure at every point on the surface of the body is unchanged from the value at

the same location when the body was not present. This is because the pressure at

any point depends only on the depth of that point below the fluid surface. Hence,

the net force exerted by the surrounding fluid on the body is exactly the same as

that exerted on the region before the body was present. But we know the latter to

beV g
L

ρ , the weight of the displaced fluid. Hence, this must also be the buoyant

force exerted on the body. Archimedes’ principle is thus proved.

Law of Floatation
Consider an object of volume V and density ρ

S
floating in a liquid of density

ρ
L

. LetVi be the volume of object immersed in the liquid.

For equilibrium of object,

Weight Upthrust=
∴ V g V g

S i L
ρ ρ=

∴
V

V

i S

L

=
ρ
ρ

…(i)

This is the fraction of volume immersed in liquid.

Percentage of volume immersed in liquid = ×
V

V

i
100 = ×

ρ
ρ

S

L

100

Three possibilities may now arise:

(i) If ρ ρ
S L

< , only fraction of body will be immersed in the liquid. This fraction will be given by

the above equation.

(ii) Ifρ ρ
S L

= , the whole of the rigid body will be immersed in the liquid. Hence, the body remains

floating in the liquid wherever it is left.

(iii) If ρ ρ
S L

> , the body will sink.

Buoyant Force in Accelerating Fluids
Suppose a body is dipped inside a liquid of density ρL placed in an elevator moving with an

acceleration a. The buoyant force F in this case becomes,

F V gL= ρ
eff (V = immersed volume of solid orVi )

Here, geff = −| |g a
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Extra Points to Remember

For example, if the lift has an upward acceleration a, the value of geff is g a+ and if it has a downward

acceleration a, the geff is g a− . In a freely falling lift geff is zero (as a g= ) and hence, net buoyant

force is zero. This is why, in a freely falling vessel filled with some liquid, the air bubbles do not rise

up (which otherwise move up due to buoyant force). The above result can be derived as follows.

Suppose a body is dipped inside a liquid of density ρ
L

in an elevator moving up with an acceleration

a. As was done earlier also, replace the body into the liquid by the same liquid of equal volume. The

replaced liquid is at rest with respect to the elevator. Thus, this replaced liquid is also moving up with

an acceleration a together with the rest of the liquid.

The forces acting on the replaced liquid are,

(i) the buoyant force F and

(ii) the weight mg of the substituted liquid.

From Newton’s second law,

F mg ma− = or F m g a= +( )

Here, m V
L

= ρ
∴ F V g a V g

L L
= + =ρ ρ( ) eff

where g g aeff = +

� In weight of a solid, take total volume of solid, density of solid and g. In upthrust (or buoyant force) take

immersed volume of solid, density of liquid and geff . Thus,

W V gs= ρ

F V gi L= ρ eff

� Upthrust force also makes a pair of equal and opposite forces. On solid it is upwards and on liquid, it is

downwards.

V Example 16.9 Density of ice is 900 kg/m3 . A piece of ice is floating in water of

density 1000 3kg m/ . Find the fraction of volume of the piece of ice outside the

water.

Solution Let V be the total volume and Vi the volume of ice piece immersed in water. For

equilibrium of ice piece,

weight upthrust=
∴ V g V gi i wρ ρ=
Here, ρi = density of ice = 900 kg/m3

and ρw = density of water =1000 kg/m3

Substituting in above equation, we get

V

V

i = =900

1000
0.9

i.e. the fraction of volume outside the water,

f = − =1 0.9 0.1 Ans.
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V Example 16.10 A metallic sphere floats in an immiscible mixture of water

( / )ρw kg m=103 3 and a liquid ( / )ρL kg m= ×13.5 103 3 such that its
4

5
th volume is

in water and
1

5
th volume in the liquid. Find the density of metal.

Solution Total upthrust = weight of metal sphere

∴ 4

5
10

5
103 5V g V g







+ 1





×( ) ( )13.5 = ( ) ( ) ( )V gρmetal

∴ ρ metal
33.5 10 kg m= × / 3 Ans.

V Example 16.11 A block of mass 1 kg and density 0.8 g/cm3 is held stationary
with the help of a string as shown in figure. The tank is accelerating vertically

upwards with an acceleration a m s= 1.0 / 2 . Find

(a) the tension in the string,

(b) if the string is now cut find the acceleration of block.

(Take g m s= 10 2/ and density of water = 103 kg/m3 ).

Solution (a) Free body diagram of the block is shown in Fig. 16.38.

In the figure,

F = upthrust force

= +V g aρω ( )

=






 +mass of block

density of block
ρω ( )g a

= 





+ =1

800
1000 10 1( )( ) 13.75 N

w mg= =10 N
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Equation of motion of the block is,

F T w ma− − =
∴ 13.75 − − = ×T 10 1 1

∴ T = 2.75 N Ans.

(b) When the string is cut, T = 0

∴ a
F w

m
= −

= −13.75 10

1

= 3.75 m/s 2 Ans.

V Example 16.12 The tension in a string holding a solid block below the surface
of a liquid (of density greater than that of solid) as shown in figure is T0 when
the system is at rest. What will be the tension in the string if the system has an
upward acceleration a ?

Solution Let m be the mass of block.

Initially for the equilibrium of block,

F T mg= +0 …(i)

Here, F is the upthrust on the block.

When the lift is accelerated upwards, g eff becomes g a+ instead of g. Hence,

F F
g a

g
′ = +






 …(ii)
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From Newton’s second law,

F T mg ma′ − − = …(iii)

Solving Eqs. (i), (ii) and (iii), we get

T T
a

g
= +







0 1 Ans.

1. A block of material has a density ρ1 and floats three-fourth submerged in a liquid of unknown

density. Show that the densityρ2 of the unknown liquid is given byρ ρ2 1

4

3
= .

2. A block of wood weighing 71.2 N and of specific gravity 0.75 is tied by a string to the bottom of a

tank of water in order to have the block totally immersed. What is the tension in the string?

3. A beaker when partly filled with water has total mass 20.00 g. If a piece of metal with density

3.00 g/cm3 and volume 1.00 cm3 is suspended by a thin string, so that it is submerged in the

water but does not rest on the bottom of the beaker, how much does the beaker then appear to

weigh if it is resting on a scale?

4. A small block of wood of density0.4 kg/m× 103 3 is submerged in water at a depth of 2.9 m. Find

(a) the acceleration of the block towards the surface when the block is released and

(b) the time for the block to reach the surface. Ignore viscosity.

16.6 Flow of Fluids

Steady Flow
If the velocity of fluid particles at any point does not vary with time, the flow is said to be steady.

Steady flow is also called streamlined or laminar flow. The velocity at different points may be

different. Hence, in the figure,

v1 =constant, v 2 =constant, v 3 =constant but v v v1 2 3≠ ≠

Principle of Continuity
It states that, when an incompressible and non-viscous liquid flows in

a stream lined motion through a tube of non-uniform cross-section,

then the product of the area of cross section and the velocity of flow is

same at every point in the tube.

Thus, A v A v1 1 2 2= or Av =constant or v
A

∝
1

This is basically the law of conservation of mass in fluid dynamics.
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Proof
Let us consider two cross sections P and Q of area A1 and A2 of a tube through which a fluid is

flowing. Let v1 and v2 be the speeds at these two cross sections. Then, being an incompressible fluid,

mass of fluid going through P in a time interval ∆t = mass of fluid passing through Q in the same

interval of time ∆t.

∴ A v t A v t1 1 2 2ρ ρ∆ ∆=
or A v A v1 1 2 2= Proved.

Therefore, the velocity of the liquid is smaller in the wider parts of the tube and larger in the narrower

parts.

or v v2 1> as A A2 1<

Note The product Av is the volume flow rate
dV

dt
, the rate at which volume crosses a section of the tube.

Hence,

dV

dt
Av= =volume flow rate

The mass flow rate is the mass flow per unit time through a cross-section. This is equal to density (ρ)

times the volume flow rate
dV

dt
.

We can generalize the continuity equation for the case in which the fluid is not incompressible. If ρ1

and ρ2 are the densities at sections 1 and 2 then,

ρ ρ1 1 1 2 2 2A v A v=
So, this is the continuity equation for a compressible fluid.

Bernoulli’s Equation

Bernoulli’s equation relates the pressure, flow speed and height for flow of an ideal (incompressible

and non-viscous) fluid. The pressure of a fluid depends on height as in the static situation and it also

depends on the speed of flow.
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The dependence of pressure on speed can be understood from the continuity equation. When an

incompressible fluid flows along a tube with varying cross section, its speed must change, and so, an

element of fluid must have an acceleration. If the tube is horizontal, the force that causes this

acceleration has to be applied by the surrounding fluid. This means that the pressure must be different

in regions of different cross section.

When a horizontal flow tube narrows and a fluid element speeds up, it must be moving towards a

region of lower pressure in order to have a net forward force to accelerate it. If the elevation also

changes, this causes additional pressure difference.

To derive Bernoulli’s equation, we apply the work-energy theorem to the fluid in a section of the

fluid element. Consider the element of fluid that at some initial time lies between two cross sections a

and b. The speeds at the lower and upper ends are v1 and v2 . In a small time interval, the fluid that is

initially at a moves to a ′ a distance aa ds v dt′ = =1 1 and the fluid that is initially at b moves to b′ a

distance bb ds v dt′ = =2 2 .The cross-section areas at the two ends are A1 and A2 as shown. The fluid

is incompressible, hence, by the continuity equation, the volume of fluid dV passing through any

cross-section during time dt is the same.

That is, dV A ds A ds= =1 1 2 2

Work Done on the Fluid Element

Let us calculate the work done on this fluid element during time interval dt. The pressure at the two

ends are p1 and p2 , the force on the cross section at a is p A1 1 and the force at b is p A2 2 . The net work

done dW on the element by the surrounding fluid during this displacement is,

dW p A ds p A ds p p dV= − = −1 1 1 2 2 2 1 2( ) …(i)

The second term is negative, because the force at b opposes the displacement of the fluid.

This work dW is due to forces other than the conservative force of gravity, so it equals the change in

total mechanical energy (kinetic plus potential). The mechanical energy for the fluid between

sections a and b does not change.

Change in Potential Energy

At the beginning of dt the potential energy for the mass between a and a ′ is dmgh dVgh1 1= ρ . At the

end of dt the potential energy for the mass between b and b′ is dmgh dVgh2 2= ρ . The net change in

potential energy dU during dt is,

dU dV g h h= −ρ( ) ( )2 1 …(ii)

Change in Kinetic Energy

At the beginning of dt the fluid between a and a ′ has volume A ds1 1 , mass ρA ds1 1 and kinetic energy
1

2
1 1 1

2ρ( ) .A ds v At the end of dt the fluid between b and b′ has kinetic energy
1

2
2 2 2

2ρ( ) .A ds v The net

change in kinetic energy dK during time dt is,

dK dV v v= −
1

2
2
2

1
2ρ( )( ) …(iii)
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Extra Points to Remember

Combining Eqs. (i), (ii) and (iii) in the energy equation,

dW dK dU= +
We obtain,

( ) ( ) ( ) ( )p p dV dV v v dV g h h1 2 2
2

1
2

2 1

1

2
− = − + −ρ ρ

or p p v v g h h1 2 2
2

1
2

2 1

1

2
− = − + −ρ ρ( ) ( ) …(iv)

This is Bernoulli’s equation. It states that the work done on a unit volume of fluid by the surrounding

fluid is equal to the sum of the changes in kinetic and potential energies per unit volume that occur

during the flow. We can also express Eq. (iv) in a more convenient form as,

p gh v p gh v1 1 1
2

2 2 2
21

2

1

2
+ + = + +ρ ρ ρ ρ Bernoulli’s equation

The subscripts 1 and 2 refer to any two points along the flow tube, so we can also write

p gh v+ + =ρ ρ
1

2

2 constant

� In Bernoulli's equation, there are three terms; p,
1

2

2ρv and ρgh. Under following three cases, this equation

reduces to a two term Bernoulli.

Case 1 If all points are open to atmosphere then pressure at every point may be assumed to be constant

( )= p0 and the Bernoulli equation can be written as,

1

2

2ρ ρv gh+ =constant

At greater heights ‘h’, speed ‘v’ will be less as ρ and g are constants.

Case 2 If the liquid is passing through a pipe of uniform cross-section, then from continuity equation

( )Av =constant , speed v is same at all points. Therefore, the Bernoulli equation becomes,

p gh+ =ρ constant

or p gh p gh1 1 2 2+ = +ρ ρ
or p p g h h1 2 2 1− = −ρ ( )

This is the pressure relation we have already derived for a fluid at rest or pressure decreases with height of

liquid and increases with depth of liquid.

Case 3 If a liquid is flowing in a horizontal pipe, then height ‘h’ of the liquid at every point may be

assumed to be constant. So, the two term Bernoulli becomes,

p v+ =1

2

2ρ constant

From this equation, we may conclude that pressure decreases at a point where speed increases.

V Example 16.13 Water is flowing through a horizontal tube of non-uniform
cross section. At a place, the radius of the tube is 1.0 cm and the velocity of water
is 2 m/s. What will be the velocity of water where the radius of the pipe is 2.0 cm?
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Solution Using equation of continuity, A v A v1 1 2 2=

v
A

A
v2

1

2

1=








or v
r

r
v

r

r
v2

1
2

2
2 1

1

2

2

1=








 =









π
π

Substituting the values, we get

v2

2

2

2
10

10
2= ×

×











−

−
1.0

2.0
( )

or v2 = 0.5 m/s Ans.

V Example 16.14 Calculate the rate of flow of glycerine of density

1.25 × 103 3kg m/ through the conical section of a pipe, if the radii of its ends

are 0.1 m and 0.04 m and the pressure drop across its length is 10 2N m/ .

Solution From continuity equation,

A v A v1 1 2 2=

or
v

v

A

A

r

r

r

r

1

2

2

1

2
2

1
2

2

1

2

= = =








π
π

= 





=0.04

0.1

2
4

25
…(i)

From Bernoulli’s equation,

p v p v1 1
2

2 2
21

2

1

2
+ = +ρ ρ or v v

p p
2
2

1
2 1 22

− =
−( )

ρ

or v v2
2

1
2

3

22 10

10
10− = ×

×
= × −

1.25
1.6 m /s2 2 …(ii)

Solving Eqs. (i) and (ii), we get v2 ≈ 0.128 m/s

∴ Rate of volume flow through the tube

Q A v= 2 2 = ( )πr v2
2

2

= π( (0.04) 0.128)2

= × −6.43 m /s310 4
Ans.
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V Example 16.15 Water is flowing smoothly through a closed-pipe system. At
one point the speed of the water is 3.0 m/s, while at another point 1.0 m higher
the speed is 4.0 m/s. If the pressure is 20 kPa at the lower point, what is the
pressure at the upper point ? What would the pressure at the upper point be if
the water were to stop flowing and the pressure at the lower point were 18 kPa ?

Solution (i) p v gh p v gh1 1
2

1 2 2
2

2

1

2

1

2
+ + = + +ρ ρ ρ ρ

( ) ( )20 10
1

2
10 3 03 3 2× + × × + = + × × + × ×p2

3 2 31

2
10 4 10 10 1( )

∴ p2 = ×6.5 10 N m3 2/

= 6.5 kPa Ans.

(ii) Again applying the same equation, we have

( ) ( ) ( ) ( )18 10 0 0 0 10 10 13
2

3× + + = + +p

⇒ p2
3 28 10= × N m/

= 8 kPa Ans.

1. Water flows through a tube shown in figure. The areas of cross

section at A and B are 1 2cm and 05 2. cm respectively. The

height difference between A and B is 5 cm. If the speed of

water at A is 10 1cms− , find (a) the speed at B and (b) the

difference in pressures at A and B.

2. Water flows through a horizontal tube of variable cross section as

shown in figure. The area of cross section at A and B are 4 2mm and

2 2mm respectively. If 1 cc of water enters per second through A, find (a)

the speed of water at A, (b) the speed of water at B and (c) the pressure

difference p pA B− .

3. Water from a tap emerges vertically downwards with an initial speed of 1.0 m/s. The

cross-sectional area of tap is 10 4 2− m . Assume that the pressure is constant throughout the

stream of water and that the flow is steady, the cross-sectional area of stream 0.15 m below the

tap is (JEE 1998)

(a) 50 10 4 2. × − m (b) 10 10 4 2. × − m

(c) 50 10 5 2. × − m (d) 2 0 10 5 2. × − m

4. A horizontal pipeline carries water in a streamline flow. At a point along the pipe, where the

cross-sectional area is 10 2cm , the water velocity is 1 ms−1 and the pressure is 2000 Pa. The

pressure of water at another point where the cross-sectional area is 5 cm2, is ...…Pa. (Density

of water = 103 kg-m3) (JEE 1994)
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16.7 Application Based on Bernaulli’s Equation

Atomizer or Spray Gun

Fig. 16.48 shows the essential parts of spray gun. When the piston is pressed, the air rushes out of the

horizontal tube B decreasing the pressure to p2 which is less than the pressure p1 in the container. As

a result, the liquid rises up in the vertical tube A. When it collides with the high speed air in tube B, it

breaks up into a fine spray. Filter pumps, bunsen burner and sprayers used for perfumes or to spray

insecticides work on the same principle.

Principle of Lifting of an Aircraft

We all know that airplanes fly. This is a result of a lift force acting on the wings of the aircraft. Lift can

be generated when an asymmetric object moves through a fluid. The asymmetry of the object requires

the fluid particles to travel different distances along different paths as they pass around the object.

The molecules will either speed up or slowdown in order to remain even with the fluid molecules on

the other side. For example, in Fig. 16.49, the air particles passing along the top of the body must

travel a greater distance than those travelling below.

In order to arrive at the other side of the foil at the same time, these particles must travel more quickly

than those travelling below the foil. The difference in the velocities of the fluid molecules results in a

pressure difference according to the Bernoulli principle: high velocities are associated with relatively

low pressure regions, while low velocities are associated with relatively high pressure regions. This

pressure difference produces a force in upward direction.
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Magnus Effect and Spinning of a Ball
Spinning objects can also generate force. When an object spins in a fluid medium, the fluid boundary

layer spins along with the object. This results in a difference in velocity on two sides. A pressure

difference is created from one side of the object to the other and the object curves towards the area of

low pressure. This influence of rotation of an object on its flight path is termed the magnus effect.

This magnus force changes the path of a rotating cricket ball. This is called spinning of ball.

Blowing Off the Roof during Wind Storm

During certain wind storm or cyclone, the roofs of some houses are blown off without damaging the

other parts of the house. The high wind blowing over the roof creates a low pressure p2 in accordance

with Bernoulli's principle. The pressure p1 below the roof is equal to the atmospheric pressure which

is larger than p2 . The difference of pressure ( )p p1 2− causes an upward thrust and the roof is lifted

up. Once the roof is lifted up, it is blown off with the wind.

Venturimeter
Figure shows a venturimeter used to measure flow speed in

a pipe of non-uniform cross-section. We apply Bernoulli’s

equation to the wide and narrow parts of the pipe, with

h h1 2=

p v p v1 1
2

2 2
21

2

1

2
+ = +ρ ρ

From the continuity equation v
A v

A
2

1 1

2

=

Substituting and rearranging, we get

p p v
A

A
1 2 1

2 1
2

2
2

1

2
1− = −









ρ …(i)

Because A1 is greater than A2 , v2 is greater than v1 and hence the pressure p2 is less than p1 . A net

force to the right accelerates the fluid as it enters the narrow part of the tube (called throat) and a net

force to the left slows as it leaves.
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The pressure difference is also equal to ρgh, where h is the difference in liquid level in the two tubes.

Substituting in Eq. (i), we get

v
gh

A

A

1

1

2

2

2

1

=






 −

Note The discharge or volume flow rate can be obtained as,

dV

dt
A v A

gh

A

A

= =






 −

1 1 1

1

2

2

2

1

Speed of Efflux
Suppose, the surface of a liquid in a tank is at a height h from the orifice O on its sides, through which

the liquid issues out with velocity v. The speed of the liquid coming out is called the speed of efflux. If

the dimensions of the tank be sufficiently large, the velocity of the liquid at its surface may be taken to

be zero. Applying Bernoulli’s equation at the surface and just outside the orifice.

1

2

2ρ ρv gh p+ + =constant

with h =0 at the orifice, we have

ρ ρgh p v p+ = +0
2

0

1

2
or v gh= 2

Evangelista Torricelli show that this velocity is the same as the liquid will attain in falling freely

through the vertical height ( )h from the surface to the orifice. This is known as Torricelli’s theorem

and may be stated as, “The velocity of efflux of a liquid issuing out of an orifice is the same as it would

attain if allowed to fall freely through the vertical height between the liquid surface and orifice. ”

Range (R)

Let us find the range R on the ground.

Considering the vertical motion of the liquid,

( )H h gt− =
1

2

2 or t
H h

g
=

−2( )
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Now, considering the horizontal motion,

R vt=

or R gh
H h

g
=

−







( )

( )
2

2

or R h H h= −2 ( )

From the expression of R, following conclusions can be drawn,

(i) R Rh H h= − as R h H hh = −2 ( ) and R H h hH h− = −2 ( )

This is shown in Fig. 16.53.

(ii) R is maximum at h
H

=
2

and R Hmax .=

Proof R Hh h2 24= −( )

For R to be maximum,
dR

dh

2

0= or H h− =2 0 or h
H

=
2

That is, R is maximum at h
H

=
2

and R
H

H
H

Hmax = −





=2
2 2

Hence Proved.

Time Taken to Empty a Tank

We are here interested in finding the time required to empty a tank if a hole is made at the bottom of

the tank.

Consider a tank filled with a liquid of densityρupto a height H. A small hole of area of cross section a

is made at the bottom of the tank. The area of cross-section of the tank is A.

Let at some instant of time the level of liquid in the tank is y. Velocity of efflux at this instant of time

would be,

v gy= 2

Now, at this instant volume of liquid coming out of the hole per second is
dV

dt

1





.
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Volume of liquid coming down in the tank per second is
dV

dt

2





.

dV

dt

dV

dt

1 2=

∴ av A
dy

dt
= −





∴ a gy A
dy

dt
2 = −





or dt
A

a g
y dy

t

H0

0 1 2

2
∫ ∫= − − / …(i)

∴ t
A

a g
y

H=
2

2
0

[ ]

∴ t
A

a

H

g
=

2

V Example 16.16 Water flows through a horizontal tube
as shown in figure . If the difference of heights of water
column in the vertical tubes is 2 cm and the areas of

cross-section at A and B are 4cm2 and 2 2cm respectively.

Find the rate of flow of water across any section.

Solution Applying Bernoulli’s equation at A and B

p v gh p v ghA A A B B B+ + = + +1

2

1

2

2 2ρ ρ ρ ρ ( )h hA B=

or
1

2

1

2

2 2ρ ρ ρv v gB A− = ( )h hA B−

or v v g h hB A A B
2 2 2− = −( )

= × ×2 10 0.02

or v vB A
2 2 2− = 0.4 m /s 2 …(i)

v A v AA A B B=
or 4 2v vA B=
∴ v vB A= 2 …(ii)

Solving Eqs. (i) and (ii), we get

vA = 0.363 m/s

Volume flow rate = v AA A

= × −( ) ( )0.365 4 10 4

= × −1.4 m /s36 10 4 = 146 3cm s/ Ans.

Chapter 16 Fluid Mechanics � 435

A
B

Fig. 16.55

a
v

y

A

Fig. 16.54



V Example 16.17 Water flows through the tube as shown in figure. The areas of

cross-section of the wide and the narrow portions of the tube are 5 cm2 and

2 2cm respectively. The rate of flow of water through the tube is 500 3cm s/ . Find

the difference of mercury levels in the U-tube.

Solution Applying continuity equation

A v A v1 1 2 2= = rate of flow of water

5 2 5001 2
3v v= = cm s/

∴ v1 100= cm/s = 1.0 m/s

v2 250= cm s = 2.5 m/s/

Now, applying Bernoulli’s equation at 1 and 2

p v gh p v ghw w w w1 1
2

1 2 2
2

2

1

2

1

2
+ + = + +ρ ρ ρ ρ ( )h h1 2=

⇒ 1

2
2
2

1
2

1 2ρ ρw v v p p gh( )− = − = Hg Hg

or
1

2
2
2

1
2ρ ρw v v g h( )− = Hg Hg

∴ h
v v

g

w
Hg

Hg

=
−ρ

ρ
( )2

2
1
2

2

= −
× × ×
10 1

2 10

3

3

( )6.25

13.6 9.8

= 0.0196 m

= 1.96cm Ans

V Example 16.18 A tank is filled with a liquid upto a height H. A small hole is
made at the bottom of this tank. Let t1 be the time taken to empty first half of

the tank and t2 the time taken to empty rest half of the tank. Then find
t

t

1

2

.

Solution Substituting the proper limits in Eq. (i), derived in the theory, we have

dt
A

a g
y dy

t

H

H

0

1 221

2
∫ ∫= − − //
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or t
A

a g
y

H

H

1 2

2

2
= [ ]

/

or t
A

a g
H

H
1

2

2 2
= −











or t
A

a

H

g
1 2 1= −( ) …(ii)

Similarly, dt
A

a g
y dy

t

H0 2

0 1 22

2
∫ ∫= − −

/

/

or t
A

a

H

g
2 = …(iii)

From Eqs. (ii) and (iii), we get

t

t

1

2

2 1= −

or
t

t

1

2

= 0.414 Ans.

Note From the above example we can see that t t1 2< . This is because initially the pressure is high and the liquid

comes out with greater speed.

1. There is a small hole at the bottom of tank filled with water. If total pressure at the bottom is

3 atm (1 atm = −105 2Nm ), then find the velocity of water flowing from hole.

2. Liquid is filled in a container upto a height of H. A small hole is made at the bottom of the tank.

Time taken to empty from H to
H

3
is t0. Find the time taken to empty the tank from

H

3
to zero.

3. Water is filled in a cylindrical container to a height of 3 m. The ratio of the cross-sectional area of

the orifice and the beaker is 0.1. The square of the speed of the liquid coming out from the orifice

is ( )g = 10 2m/s (JEE 2005)

(a) 50 2 2m /s (b) 50.5 m /s2 2

(c) 51 2 2m /s (d) 52 2 2m /s
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16.8 Viscosity
Viscosity is internal friction in a fluid. Viscous forces oppose the motion of one portion of a fluid

relative to the other.

The simplest example of viscous flow is motion of a fluid between two parallel plates.

The bottom plate is stationary and the top plate moves with constant velocity v. The fluid in contact

with each surface has same velocity at that surface. The flow speeds of intermediate layers of fluid

increase uniformly from bottom to top, as shown by arrows. So, the fluid layers slide smoothly over

one another.

According to Newton, the frictional force F (or viscous force) between two layers depends upon the

following factors,

(i) Force F is directly proportional to the area ( )A of the layers in contact, i.e.

F A∝

(ii) Force F is directly proportional to the velocity gradient
dv

dy







 between the layers. Combining

these two, we have

F A
dv

dy
∝ or F A

dv

dy
= − η

Here, η is constant of proportionality and is called coefficient of viscosity. Its value depends on the

nature of the fluid. The negative sign in the above equation shows that the direction of viscous force F

is opposite to the direction of relative velocity of the layer.

The SI unit of η is N-s/m 2 . It is also called decapoise or pascal second. Thus,

1 decapoise = 1 N-s /m 2 = 1 Pa-s = 10 poise

The SI unit of viscosity is sometimes referred to as the poiseuille (symbol Pl).

Thus, 1 Pl =1 N-s/m 2

Dimensions of η are [ML T ]–1 –1 .

Coefficient of viscosity of water at 10°C is η = × −1.3 10 3 N-s/m 2 .Experiments show that coefficient

of viscosity of a liquid decreases as its temperature rises.
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Stoke’s Law and Terminal Velocity
When an object moves through a fluid, it experiences a viscous force which acts in opposite direction

of its velocity. The mathematics of the viscous force for an irregular object is difficult, we will

consider here only the case of a small sphere moving through a fluid.

The formula for the viscous force on a sphere was first derived by the English physicist G. Stokes in

1843. According to him, a spherical object of radius r moving at velocity v experiences a viscous

force given by

F rv=6πη (η = coefficient of viscosity)

This law is called Stoke’s law.

Terminal Velocity ( )v
T

Consider a small sphere falling from rest through a large column of viscous fluid. The

forces acting on the sphere are,

(i) Weight w of the sphere acting vertically downwards

(ii) Upthrust Ft acting vertically upwards

(iii) Viscous force Fv acting vertically upwards, i.e. in a direction opposite to velocity

of the sphere.

Initially, Fv =0 (as v =0)

and w Ft>
and the sphere accelerates downwards. As the velocity of the sphere increases, Fv increases.

Eventually a stage in reached when

w F Ft v= + …(i)

After this net force on the sphere is zero and it moves downwards with a constant velocity called

terminal velocity ( )v .T

Substituting proper values in Eq. (i) we have,

4

3

4

3
63 3π ρ π σ πηr g r g rvT= + …(ii)

Here, ρ =density of sphere, σ =density of fluid

and η = coefficient of viscosity of fluid

From Eq. (ii), we get v
r g

T =
−2

9

2 ( )ρ σ
η

Figure shows the variation of the velocity v of the sphere with time.
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Extra Points to Remember
� Terminal velocity v rT ∝ 2

� If the fluid is air, then its density σ is negligible compared to density of sphere. So, in that case upthrust will

be zero and terminal velocity will be

v
r g

T =2

9

2ρ
η

In this case, weight is equal to the viscous force when terminal velocity is attained.

� If density of fluid is greater than density of sphere (σ>ρ) then terminal velocity comes out to be negative.

So, in this case terminal velocity is upwards. In the beginning upthrust is greater than the weight. Viscous

force in this case will be downwards.

v
r g

T = −2

9

2( )σ ρ
η

When terminal velocity is attained,

F W Ft v= +
This is the reason why, air bubbles rise up in water.

V Example 16.19 A plate of area 2 2m is made to move horizontally with a
speed of 2 m/s by applying a horizontal tangential force over the free surface of
a liquid. If the depth of the liquid is 1 m and the liquid in contact with the bed
is stationary. Coefficient of viscosity of liquid is 0.01 poise. Find the tangential
force needed to move the plate.

Solution Velocity gradient = ∆
∆

v

y
= −

−
=2 0

1 0
2

m/s

m

From, Newton’s law of viscous force,

| |F A
v

y
= η ∆

∆
= × −( )( )( )0.01 10 2 21

= × −4 10 3 N.

So, to keep the plate moving, a force of 4 10 3× − N must be applied. Ans.
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V Example 16.20 Two spherical raindrops of equal size are falling vertically
through air with a terminal velocity of 1 m/s. What would be the terminal
speed if these two drops were to coalesce to form a large spherical drop?

Solution v rT ∝ 2 …(i)

Let r be the radius of small rain drops and R the radius of large drop.

Equating the volumes, we have

4

3
2

4

3

3 3π πR r= 





∴ R r= ( ) ./2 1 3 or
R

r
= ( ) /2 1 3

∴
v

v

R

r

T

T

′
= 





=
2

2 32( ) /

∴ v vT T′ = ( ) /2 2 3 = ( ) /2 2 3 (1.0) m/s

= 1.587 m/s Ans.

V Example 16.21 With what terminal velocity will an air bubble 0.8 mm in

diameter rise in a liquid of viscosity 0.15 N-s/m2 and specific gravity 0.9 ?

Density of air is 1.293 kg m/ 3 .

Solution The terminal velocity of the bubble is given by,

v
r g

T = −2

9

2 ( )ρ σ
η

Here, r = × −0.4 m10 3 , σ = ×0.9 kg /m103 3 , ρ = 1.293 kg /m3 , η = 0.15 N-s/m2

and g .= 98 2m/s

Substituting the values, we have

vT = × × − × ×−
2

9

10 103 2 3( ) ( )0.4 1.293 0.9 9.8

0.15

= −0.0021 m/s

or vT = − 0.21cm Ans.

Note Here, negative sign implies that the bubble will rise up.

V Example 16.22 A spherical ball of radius 3.0 × −10 4 m and density 104 kg/m3

falls freely under gravity through a distance h before entering a tank of water. If
after entering the water the velocity of the ball does not change, find h. Viscosity

of water is 9.8 -× −10 6 2N s m/ .

Solution Before entering the water the velocity of ball is 2gh. If after entering the water this

velocity does not change then this value should be equal to the terminal velocity. Therefore,

2
2

9

2

gh
r g= −( )ρ σ

η
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∴ h

r g

g
=

−







2

9

2

2
2

( )ρ σ
η

= × −2

81

4 2

2

r g( )ρ σ
η

= × × − ×
×

−

−
2

81

3 10 10 10 98

98 10

4 4 4 3 2

6 2

( ) ( ) .

( . )

= × m165 103. Ans.

V Example 16.23 A small sphere falls from rest in a viscous liquid. Due to
friction, heat is produced. Find the relation between the rate of production of
heat and the radius of the sphere at terminal velocity. (JEE 2004)

Solution Terminal velocity v
r g

T S L= −2

9

2

η
ρ ρ( )

and viscous force F rvT= 6πη
Rate of production of heat (power) : as viscous force is the only dissipative force. Hence,

dQ

dt
Fv rv vT T T= = ( )( )6πη

= 6 2πηrvT

= −








6
2

9

2
2

πη
η

ρ ρr
r g

S L( )

= −8

27

2
2 5π

η
ρ ρg

rS L( ) or
dQ

dt
r∝ 5

Ans.

1. A typical riverborne silt particle has a radius of 20 µm and a density of 2 103 3× kg/m .

The viscosity of water is 1.0 mPl. Find the terminal speed with which such a particle will settle to

the bottom of a motionless volume of water.

2. Two equal drops of water are falling through air with a steady velocity v. If the drops coalesced,

what will be the new velocity ?

3. A large wooden plate of area 10 m2 floating on the surface of a river is made to move

horizontally with a speed of 2 m/s by applying a tangential force. If the river is 1 m deep and the

water in contact with the bed is stationary, find the tangential force needed to keep the plate

moving. Coefficient of viscosity of water at the temperature of the river = −10 2 poise.

4. The velocity of water in a river is 18 km/h near the surface. If the river is 5 m deep, find the

shearing stress between the horizontal layers of water. The coefficient of viscosity of

water = −10 2 poise.
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16.9 Surface Tension
A needle can made to float on a water surface if it is placed there carefully. The forces that support the

needle are not buoyant forces but are due to surface tension. The surface of a liquid behaves like a

membrane under tension. The molecules of the liquid exert attractive forces on each other. There is

zero net force on a molecule inside the volume of the liquid.But a surface molecule has a net force

towards inside of the liquid. Thus, the liquid tends to minimize its surface area, just as a stretched

membrane does.

Freely falling raindrops are spherical because a sphere has a smaller surface area for a given volume

than any other shape. Hence, the surface tension can be defined as the property of a liquid at rest by

virtue of which its free surface behaves like a stretched membrane under tension and tries to occupy

as small area as possible.

Let an imaginary line AB be drawn in any direction in a liquid surface. The surface on

either side of this line exerts a pulling force on the surface on the other side. This force

is at right angles to the line AB. The magnitude of this force per unit length of AB is

taken as a measure of the surface tension of the liquid. Thus, if F be the total force

acting on either side of the line AB of length L, then the surface tension is given by,

T
F

L
=

Hence, the surface tension of a liquid is defined as the force per unit length in the plane of the liquid

surface, acting at right angles on either side of an imaginary line drawn on that surface.

Examples of Surface Tension

Example 1 Take a ring of wire and dip it in a soap solution. When the ring is taken out, a soap

film is formed. Place a loop of thread gently on the soap film. Now, prick a hole inside the loop.

The thread is radially pulled by the film surface outside and it takes a circular shape.

Reason Before the pricking, there were surfaces both inside and outside the thread loop. Surfaces

on both sides pull it equally and the net force is zero. Once the surface inside was punctured, the

outside surface pulled the thread to take the circular shape so that area outside the loop becomes

minimum (because for given perimeter area of circle is maximum).
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Example 2 A piece of wire is bent into a U-shape and a second

piece of wire slides on the arms of the U. When the apparatus is

dipped into a soap solution and removed, a liquid film is formed.

The film exerts a surface tension force on the slider and if the frame

is kept in a horizontal position, the slider quickly slides towards the

closing arm of the frame. If the frame is kept vertical, one can have

some weight to keep it in equilibrium. This shows that the soap

surface in contact with the slider pulls it parallel to the surface.

Example 3 Needle supported on water surface Take a greased needle of steel on a piece of

blotting paper and place it gently over the water surface. Blotting paper soaks water and soon sinks

down but the needle keeps floating. The floating needle causes a little depression. The forces F and F

due to surface tension of the curved surface are inclined as shown in Fig.16.67. The vertical

components of these two forces support the weight of the needle.

Example 4 Small mercury droplets are spherical and larger ones tend to flatten.

Reason Small mercury droplets are spherical because the

forces of surface tension tend to reduce their area to a

minimum value and a sphere has minimum surface area for a

given volume.

Larger drops of mercury are flattened due to the large gravitational force acting on them. Here the

shape is such that the sum of the gravitational potential energy and the surface potential energy must

be minimum. Hence the centre of gravity moves down as low as possible. This explains flattening of

the larger drops.

Example 5 The hair of a painting brush cling together when taken out of water.

Reason This is because the water films formed on them tend to contract to minimum area.

Note The surface tension of a particular liquid usually decreases as temperature increases. To wash clothing

thoroughly, water must be forced through the tiny spaces between the fibers. This requires increasing the

surface area of the water ,which is difficult to do because of surface tension. Hence, hot water and soapy

water is better for washing.

444 � Mechanics - II

W

Water

F F

Fig. 16.67

Fig. 16.68

w

Fig. 16.66

Fig. 16.69



Surface Energy
When the surface area of a liquid is increased, the molecules from the interior rise to the surface. This

requires work against force of attraction of the molecules just below the surface. This work is stored

in the form of potential energy. Thus, the molecules in the surface have some additional energy due to

their position. This additional energy per unit area of the surface is called ‘surface energy’. The

surface energy is related to the surface tension as discussed below.

Let a liquid film be formed on a wire frame and a straight wire of length l can slide on this wire frame

as shown in figure. The film has two surfaces and both the surfaces are in contact with the sliding wire

and hence, exert forces of surface tension on it. If T be the surface tension of the solution, each surface

will pull the wire parallel to itself with a force Tl. Thus, net force on the wire due to both the surfaces

is 2Tl. One has to apply an external force F equal and opposite to it to keep the wire in equilibrium.

Thus,

F Tl=2

Now, suppose the wire is moved through a small distance dx, the work done by the force is,

dW F dx Tl dx= = ( )2

But ( ) ( )2l dx is the total increase in area of both the surfaces of the film. Let it be dA. Then,

dW T dA=

or T
dW

dA
= or

∆
∆
W

A

Thus, the surface tension T can also be defined as the work done in increasing the surface area by unity.

Further, since there is no change in kinetic energy, the work done by the external force is stored as the

potential energy of the new surface.

∴ T
dU

dA
= or

∆
∆
U

A
(as dW dU= )

Thus, the surface tension of a liquid is equal to the surface energy per unit surface area.

Excess Pressure inside a Bubble or Liquid Drop
Surface tension causes a pressure difference between the inside and outside of a soap bubble or a

liquid drop.

Excess Pressure Inside Soap Bubble

A soap bubble consists of two spherical surface films with a thin layer of liquid between them.

Because of surface tension, the film tend to contract in an attempt to minimize their surface area. But
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as the bubble contracts, it compresses the inside air, eventually increasing the interior pressure to a

level that prevents further contraction.

We can derive an expression for the excess pressure inside a bubble in terms of its radius R and the

surface tension T of the liquid.

Each half of the soap bubble is in equilibrium. The lower half is shown in figure. The forces at the flat

circular surface where this half joins the upper half are

(a) The upward force of surface tension. The total surface tension force for each surface (inner and

outer) is T R( )2π , for a total of ( )( )2 2T Rπ .

(b) downward force due to pressure difference.

The magnitude of this force is ( )( ).∆p Rπ 2 In equilibrium these two forces have equal

magnitude.

∴ ( )( ) ( )( )2 2 2T R P Rπ π= ∆

or ∆p
T

R
=

4

Note Suppose, the pressure inside the air bubble is P, then

p p
T

R
− =0

4

Excess Pressure Inside a Liquid Drop

A liquid drop has only one surface film. Hence, the surface tension force is T R( ),2π half that for a

soap bubble. Thus, in equilibrium,

T R p R( ) ( )2 2π π= ∆

or ∆p
T

R
=

2
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Note (i) If we have an air bubble inside a liquid, a single surface is formed. There is air

on the concave side and liquid on the convex side. The pressure in the concave

side (that is in the air) is greater than the pressure in the convex side (that is in

the liquid) by an amount
2T

R
.

∴ p p
T

R
2 1

2− =

The above expression has been written by assuming P1 to be constant from all sides of the bubble. For

small size bubbles this can be assumed.

(ii) From the above discussion, we can make a general statement. The pressure on the concave side of a

spherical liquid surface is greater than the convex side by
2T

R
.

� Radius of curvature of a curve :

To describe the shape of a curved surface or interface, it is necessary to know the radii of curvature to a

curve at some point. Consider the curve AB as shown in figure:

Let P be a point on this curve. The radius of curvature R of AB at P is defined as the radius of the circle

which is tangent to the curve at point P.

� Principal radii of curvature of a surface :

The spherical and cylindrical surfaces are rather simple cases for mathematical treatment. In many other

cases however, the shapes are more complicated.

Let us now consider a curved surface. At each point on a given surface, two radii of curvature (which are

denoted by r1 and r2) are required to describe the shape.

If we want to determine these radii at any point (say P), the normal to the surface at this point is drawn and

a plane is constructed through the surface containing the normal. This will intersect the surface in a plane

curve. The radius of curvature of the curve at point P is denoted by r1. An infinite number of such planes can

be constructed each of which intersects the surface at P. For each of these planes, a radius of curvature

can be obtained.

If we construct a second plane through the surface, containing the normal and perpendicular to the first

plane, the second line of intersection and hence the second radius of curvature at point P (i.e., r2) is

obtained. These two radii define the curvature at P completely. It can be shown that ( / / )1 11 2r r+ called

mean radius of curvature of the surface is constant, which is independent of the choice of the planes.

An infinite set of such pairs of radii is possible. For standardization, the first plane is rotated around the

normal until the radius of curvature in that plane reaches minimum. The other radius of curvature is

therefore maximum. These are the principal radii of curvature (denoted by R1 and R2).

� Young-Laplace Equation :

There exists a difference in pressure across a curved surface which is a consequence of surface tension.

The pressure is greater on the concave side. The Laplace equation relates the pressure difference to the

shape of the Young surface.
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This difference in pressure is given by

∆p T
R R

= +








1 1

1 2

The simplified forms of spherical, cylindrical and planar surfaces are given below

For a spherical surface:

R R R1 2= = (say), therefore ∆p
T

R
=2

For a cylindrical surface:

R R1 = and R2 = ∞, therefore ∆p
T

R
=

For a planer surface:

R R1 2= = ∞, therefore ∆p=0

� As we know that molecules of a liquid reach to its surface after struggling with the net inward force acting

on them from other liquid molecules. So, we can say that the surface molecules have some extra energy

compared to inner molecules and every system has a tendency to keep its energy minimum. So, a liquid

also has a tendency to keep its energy minimum by putting least number of molecules on the surface or by

making its surface area minimum. This property of a liquid is called surface tension.

� Surface tension is a property of a liquid. It does not depend on the surface area.

For example, both containers have the same liquid under same conditions. A A2 1> but surface tension will

be same in both cases.

V Example 16.24 How much work will be done in increasing the diameter
of a soap bubble from 2 cm to 5 cm ? Surface tension of soap solution is

3.0 × −10 2 N m/ .

Solution Soap bubble has two surfaces. Hence,

W T A= ∆ T
W

A
=





∆
∆

Here, ∆A = × − ×− −2 4 10 102 2 2 2[ ( ) ( ) ]π{ 2.5 1.0 }

= × −1.32 m10 2 2

∴ W = × ×− −( )( )3.0 1.32 J10 102 2

= ×3.96 10 J–4
Ans.

V Example 16.25 Calculate the energy released when 1000 small water drops

each of same radius 10 7− m coalesce to form one large drop. The surface tension

of water is 7.0 × −10 2 N/m.
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Solution Let r be the radius of smaller drops and R of bigger one. Equating the initial and final

volumes, we have

4

3
1000

4

3

3 3π πR r= 





( )

or R r= = −10 10 10 7( )( ) m

or R = −10 6 m

Further, the water drops have only one free surface. Therefore,

∆A R r= −4 1000 42 2π π( )( )

= −− −4 10 10 106 2 3 7 2π [( ) ( )( ) ]

= − −36 10 12 2π( ) m

Here, negative sign implies that surface area is decreasing. Hence, energy released in the process.

U T A= | |∆ = × ×− −( )( )7 10 36 102 12π J

= × −7.9 J10 12 Ans.

V Example 16.26 What should be the pressure inside a small air bubble of
0.1 mm radius situated just below the water surface. Surface tension of water

= × −7.2 10 2N/m and atmospheric pressure = ×1.013 105 N/m2 .

Solution Surface tension of water T = × −7.2 10 2 N/m

Radius of air bubble R = =0.1mm 10 m–4

The excess pressure inside the air bubble is given by,

p p
T

R
2 1

2− =

∴ Pressure inside the air bubble,

p p
T

R
2 1

2= +

Substituting the values, we have

p2
5

2

4
10

2 10

10
= × + × × −

−
( )

( )
1.013

7.2

= ×1.027 N/m105 2
Ans.

V Example 16.27 Two separate air bubbles (radii 0.004 m and 0.002 m) formed
of the same liquid (surface tension 0.07 N/m) come together to form a double
bubble. Find the radius and the sense of curvature of the internal film surface
common to both the bubbles.

Solution p p
T

r
1 0

1

4= + ⇒ p p
T

r
2 0

2

4= +

r r2 1<
∴ p p2 1>
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i.e. pressure inside the smaller bubble will be more. The excess pressure

p p p T
r r

r r
= − =

−





2 1

1 2

1 2

4 …(i)

This excess pressure acts from concave to convex side, the interface will be concave towards

smaller bubble and convex towards larger bubble. Let R be the radius of interface then,

p
T

R
= 4

…(ii)

From Eqs. (i) and (ii), we get

R
r r

r r
=

−
1 2

1 2

= ( )0.004 (0.002)

(0.004 – 0.002)

= 0.004 m Ans

V Example 16.28 Under isothermal condition two soap bubbles of radii r1 and r2

coalesce to form a single bubble of radius r. The external pressure is p0 . Find

the surface tension of the soap in terms of the given parameters.

Solution As mass of the air is conserved,

∴ n n n1 2+ = (as pV nRT= )

∴
p V

RT

p V

RT

pV

RT

1 1

1

2 2

2

+ =

As temperature is constant,

T T T1 2= =
∴ p V p V pV1 1 2 2+ =

∴ p
S

r
r p

S

r
r0

1

1
3

0

2

2
34 4

3

4 4

3
+







 





+ +






 





π π  = +











p
S

r
r0

34 4

3
π
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Solving, this we get

S
p r r r

r r r
=

− −
+ −

0
3

1
3

2
3

1
2

2
2 24

( )

( )
Ans.

Note To avoid confusion with the temperature, surface tension here is represented by S.

V Example 16.29 Assume that a drop of liquid evaporates by decrease in its
surface energy, so that its temperature remains unchanged. What should be the
minimum radius of the drop for this to be possible? The surface tension is T,
density of liquid is ρ and L is its latent heat of vaporization (2013 Main)

(a)
ρL

T
(b)

T

Lρ
(c)

T

Lρ
(d)

2 T

Lρ

Solution Decrease in surface energy = heat required in vaporization.

∴ T dS L dm( ) ( )=
∴ T r dr L r dr( ) ( ) ( )2 4 4 2π π ρ=

∴ r
T

L
= 2

ρ

The correct options is (d).

1. A mercury drop of radius 1 cm is sprayed into 106 droplets of equal size. Calculate the increase

in surface energy if surface tension of mercury is 35 10 3× − N/m.

2. A water film is made between two straight parallel wires of length 10 cm each and at a distance

of 0.5 cm from each other. If the distance between the wires is increased by 1 mm, how much

work will be done? Surface tension of water = × −7.2 N/m10 2

3. A soap bubble of radius R has been formed at normal temperature and pressure under

isothermal conditions. Compute the work done. The surface tension of soap solution is T.

4. A small air bubble of radius ‘r’ is at a depth ‘h’ below the water surface (density of water =ρ).

Surface tension of water is T, atmospheric pressure is p0. Find pressure inside the air bubble for

the condition r h<< .

16.10 Capillary Rise or Fall

Cohesive and Adhesive Forces
The force of attraction between the molecules of the same substance is called cohesion.

In case of solids, the force of cohesion is very large and due to this solids have definite shape and size.

On the other hand, the force of cohesion in case of liquids is weaker than that of solids. Hence, liquids

do not have definite shape but have definite volume. The force of cohesion is negligible in case of

gases. Because of this fact, gases have neither fixed shape nor volume.
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Examples

(i) Two drops of liquid coalesce into one when brought in mutual contact because of the cohesive

force.

(ii) It is difficult to separate two sticky plates of glass wetted with water because a large force has to

be applied against the cohesive force between the molecules of water.

(iii) It is very difficult to break a drop of mercury into small droplets because of large cohesive force

between mercury molecules.

The force of attraction between molecules of different substance is called adhesion.

Examples

(i) Adhesive force enables us to write on the black board with a chalk.

(ii) Due to force of adhesion, water wets the glass plate.

(iii) Fevicol and gum are used in gluing two surfaces together because of adhesive force.

Contact Angle
When a liquid surface touches a solid surface, the shape of the liquid surface near the contact is

generally curved. When a glass plate is immersed in water, the surface near the plate becomes

concave. On the other hand, if glass plate is immersed in mercury, the surface is depressed near the

plate.

The angle between the tangent planes at the solid surface and the liquid at the

contact is called the contact angle. In this case the tangent plane to the solid

surface is to be drawn towards the liquid and the tangent plane to the liquid is to

be drawn away from the solid.

Those liquids which wet the walls of the container (say in case of water and

glass) have meniscus concave upwards and their values of angle of contact is

less than 90° (also called acute angle). However, those liquids which don't wet

the walls of the container (say in case of mercury and glass) have meniscus

convex upwards and their value of angle of contact is greater than 90° (also called obtuse angle). The

angle of contact of mercury with glass is about 140°, whereas the angle of contact of water with glass

is about 8°. But, for pure water, the angle of contact θ with glass is taken as 0°.

Shape of Liquid Meniscus
When the adhesive force ( )P between solid and liquid molecules is more than the cohesive force ( )Q

between liquid-liquid molecules (as with water and glass), shape of the meniscus is concave and the

angle of contact θ is less than 90°. In this case, the liquid wets or adheres to the solid surface. The

resultant ( )R of P and Q passes through the solid.
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On the other hand when P Q< (as with glass and mercury), shape of the meniscus is convex and the

angle of contact θ > °90 . The resultant ( )R of P and Q in this case passes through the liquid.

Let us now see why the liquid surface bends near the contact with a solid. A liquid in equilibrium can

not sustain tangential stress. The resultant force on any small part of the surface layer must be

perpendicular to the surface at that point. Basically three forces are acting on a small part of the liquid

surface near its contact with solid. These forces are,

(i) P, attraction due to the molecule of the solid surface near it

(ii) Q, attraction due to liquid molecules near this part and

(iii) The weight w of the part considered.

We have considered very small part, so weight of that part can be ignored for better understanding. As

we have seen in the last figures, to make the resultant ( )R of P and Q perpendicular to the liquid

surface the surface becomes curved (convex or concave).

Capillarity

Surface tension causes elevation or depression of the liquid in a narrow tube. This effect is called

capillarity. When a glass capillary tube (A tube of very small diameter is called a capillary tube) open

at both ends is dipped vertically in water the water in the tube will rise above the level of water in the

vessel as shown in figure (a). In case of mercury, the liquid is depressed in the tube below the level of

mercury in the vessel as shown in figure (b).

When the contact angle is less than 90° the liquid rises in the tube. For a non-wetting liquid angle of

contact is greater than 90° and the surface is depressed, pulled down by the surface tension forces.

Explanation

When a capillary tube is dipped in water, the water meniscus inside the tube is concave. The pressure

just below the meniscus is less than the pressure just above it by
2T

R
, where T is the surface tension of

water and R is the radius of curvature of the meniscus. The pressure on the surface of water is p0 ,

the atmospheric pressure. The pressure just below the plane surface of water outside the tube is also
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p0 , but that just below the meniscus inside the tube is p
T

R
0

2
− .We know that pressure at all points in

the same level of water must be the same. Therefore, to make up the deficiency of pressure
2T

R
below

the meniscus water begins to flow from outside into the tube. The rising of water in the capillary stops

at a certain height h. In this position, the pressure of water column of height h becomes equal to
2T

R
,

i.e.

h g
T

R
ρ =

2

or h
T

R g
=

2

ρ

If r is the radius of the capillary tube and θ the angle of contact, then

R
r

=
cos θ

∴ h
T

r g
=

2 cos θ
ρ

Alternative Proof for the Formula of Capillary Rise

As we have already seen, when the contact angle is less than 90°, the total surface tension force just

balances the extra weight of the liquid in the tube.

The water meniscus in the tube is along a circle of circumference 2πr which is in contact with the

glass. Due to the surface tension of water, a force equal to T per unit length acts at all points of the

circle. If the angle of contact is θ, then this force is directed inward at an angle θ from the wall of the

tube.

In accordance with Newton’s third law, the tube exerts an equal and opposite force T per unit length

on the circumference of the water meniscus. This force which is directed outward, can be resolved

into two components T cos θ per unit length acting vertically upward and T sin θ per unit length

acting horizontally outward. Considering the entire circumference 2πr, for each horizontal

component T sin θ there is an equal and opposite component and the two neutralise each other. The

vertical components being in the same direction are added up to give a total upward force

( )( cos ).2π θr T It is this force which supports the weight of the water column so raised.
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Thus,

( cos )( )T rθ π2 = Weight of the liquid column.

= ( )π ρr gh2 …(i)

∴ h
T

r g
=

2 cos θ
ρ

The result has following notable features :

(i) If the contact angleθ is greater than 90°, the termcos θ is negative and hence, h is negative. The

expression then gives the depression of the liquid in the tube.

(ii) The correction due to weight of the liquid contained in the meniscus can be made for contact

angle θ = °0 . The meniscus is then hemispherical. The volume of the shaded part is

V r r r r= − 





=( )( )π π π2 3 31

2

4

3

1

3

The weight of this shaded part is
1

3

3π ρr g.

Therefore, we can write Eq. (i) as,

( cos )( )T r r gh r g0 2
1

3

2 3° = +π π ρ π ρ

or h
T

r g

r
= −

2

3ρ

(iii) Suppose a capillary tube is held vertically in a liquid which has a concave meniscus, then

capillary rise is given by,

h
T

r g

T

R g
= =

2 2cos θ
ρ ρ

as R
r

=








cos θ

or hR
T

g
=

2

ρ
…(ii)
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When the length of the tube is greater than h, the liquid rises in the tube, so as to satisfy the above

relation. But if the length of the tube is insufficient (i.e. less than h) say h′ , the liquid does not emerge

in the form of a fountain from the upper end (because it will violate the law of conservation of energy)

but the angle made by the liquid surface and hence, the R changes in such a way that the force

2π θrT cos equals the weight of the liquid raised. Thus,

2 2π θ π ρrT r ghcos ′ = ′

h
T

r g
′ =

′2 cos θ
ρ

or h
T

R g
′ =

′
2

ρ

or h R
T

g
′ ′ =

2

ρ
…(iii)

From Eqs. (ii) and (iii), we have hR h R
T

g
= ′ ′ =

2

ρ

Practical Applications of Capillarity

1. The oil in a lamp rises in the wick by capillary action.

2. The tip of nib of a pen is split up, to make a narrow capillary so that the ink rises upto the tin or nib

continuously.

3. If one end of the towel dips into a bucket of water and the other end hangs over the bucket, the

towel soon becomes wet throughout, due to capillary action.

4. Ink is absorbed by the blotter due to capillary action.

V Example 16.30 A capillary tube whose inside radius is 0.5 mm is dipped in

water having surface tension 7.0 × −10 2 N/m. To what height is the water

raised above the normal water level? Angle of contact of water with glass is 0°.

Density of water is 103 kg/m3 and g = 9.8 m/s2 .

Solution h
T

r g
= 2 cos θ

ρ

Substituting the proper values, we have

h = × °
×

−

−
( )( ) cos

( )( )( )

2 10 0

10 10

2

3 3

7.0

0.5 9.8

= ×2.86 10 m–2 = 2.86 cm Ans.

V Example 16.31 A glass tube of radius 0.4 mm is dipped vertically in water.
Find upto what height the water will rise in the capillary ? If the tube in
inclined at an angle of 60° with the vertical, how much length of the capillary is

occupied by water ? Surface tension of water = × −7.0 10 2 N/m, density of

water = 103 kg/m3 .
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Solution For glass-water, angle of contact θ = °0 .

Now, h
T

r g
= 2 cos θ

ρ

= × °
×

−

−
( )( ) cos

( )( )( )

2 10 0

10 10

2

3 3

7.0

0.4 9.8

= × −3.57 m10 2 = 3.57cm Ans.

l
h=

°
=

cos 60 1

2

3.57 = 7.14 cm Ans.

V Example 16.32 Mercury has an angle of contact of 120° with glass. A narrow
tube of radius 1.0 mm made of this glass is dipped in a trough containing
mercury. By what amount does the mercury dip down in the tube relative to the
liquid surface outside. Surface tension of mercury at the temperature of

the experiment is 0.5 N/m and density of mercury is 13.6 kg m× 103 3/ .

(Take g = 9.8 m/s2 ).

Solution h
T

r g
= 2 cos θ

ρ

Substituting the values, we get h = × × °
× × ×−

2 120

10 103 3

0.5

13.6 9.8

cos

= − × −3.75 m10 3

or h = − 3.75 mm Ans.

Note Here, negative sign implies that mercury suffers capillary depression.

V Example 16.33 If a 5 cm long capillary tube with 0.1 mm internal diameter
open at both ends is slightly dipped in water having surface tension

75 1dyne cm− , state whether (a) water will rise half way in the capillary,

(b) Water will rise up to the upper end of capillary and (c) water will overflow
out of the upper end of capillary? Explain your answer.

Solution Given that surface tension of water, T = 75 dyne/cm

Radius r = 01

2

.
mm = 005. mm = 0005. cm

Density ρ = 1gm/cm 3 , angle of contact, θ = °0
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Let h be the height to which water rises in the capillary tube. Then

h
T

r g
= 2 cos θ

ρ
= × × °

× ×
2 75 0

0005 1 981

cos

.
cm

= 30.58 cm

But length of capillary tube is h′ = 5 cm

(a) Because h
h> ′
2

therefore the first possibility does not exist.

(b) Because the tube is of insufficient length therefore the water will rise upto the upper end of

the tube.

(c) The water will not overflow of the upper end of the capillary. It will rise only up to the

upper end of the capillary.

The liquid meniscus will adjust its radius of curvature R ′ in such a way that

R h Rh′ ′ = QhR
T

g
= =











2

ρ
constant

where, R is the radius of curvature that the liquid meniscus would possess if the capillary

tube were of sufficient length.

∴ R
Rh

h

rh

h
′ =

′
=

′
= × =0005 3058

5
00306

. .
. cm QR

r r
r= =

°
=











cos cosθ 0

1. Water rises in a capillary tube to a height of 2.0 cm. In another capillary tube whose radius is

one third of it, how much the water will rise?

2. Water rises up in a glass capillary upto a height of 9.0 cm, while mercury falls down by 3.4 cm in

the same capillary. Assume angles of contact for water glass and mercury glass 0° and 135°

respectively. Determine the ratio of surface tension of mercury and water(cos . )135 071° = − .

3. A tube of insufficient length is immersed in water (surface tension = 0.7 N/m) with 1 cm of it

projecting vertically upwards outside the water. What is the radius of meniscus ?

Given, radius of tube = 1mm.

4. A capillary tube is dipped in a liquid. Let pressures at points A B C, and be p pA B, and pC

respectively, then

(a) p p pA B C= = (b) p p pA B C= < (c) p p pA C B= < (d) p p pA C B= >
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Final Touch Points

1. Application on Surface Tension

(i) When the detergent materials are added to liquids, the angle of contact decreases and hence the

wettability increases. On the other hand, when water proofing material is added to a fabric it

increases the angle of contact, making the fabric water-repellant.

(ii) Surface tension of all lubricating oils and paints is kept low so that they spread over a large area.

(iii) Oil spreads over the surface of water because the surface tension of oil is less than the surface

tension of cold water.

2. Effect of Temperature and Impurities on Surface Tension

The surface tension of a liquid decreases with the rise in temperature and vice-versa. Surface tension

becomes zero at a critical temperature. It is for this reason that hot soup tastes better. Surface tension

of a liquid changes appreciably with addition of impurities. For example, surface tension of water

increases with addition of highly soluble substances like Nacl, ZnSO4 etc. On the other hand surface

tension of water gets reduced with addition of sparingly soluble substances like phenol, soap etc.

3. Laminar and Turbulent Flow, Reynolds Number

When a liquid flowing in a pipe is observed carefully, it will be seen that the pattern of flow becomes

more disturbed as the velocity of flow increases. Perhaps this phenomenon is more commonly seen

in a river or stream. When the flow is slow the pattern is smooth, but when the flow is fast, eddies

develop and swirl in all directions.

At the low velocities, flow is calm. This is called “laminar flow”.
In a series of experiments, Reynolds showed this by injecting a

thin stream of dye into the fluid and finding that it ran in a smooth

stream in the direction of the flow at low speeds. As the velocity

of flow increased, he found that the smooth line of dye was

broken up, at high velocities, the dye was rapidly mixed into the

disturbed flow of the surrounding fluid. This is called “turbulent

flow”.
After many experiments Reynolds saw that the expression

ρ
η
ud

where, ρ = density, u = mean velocity, d = diameter and η = viscosity would help in predicting the

change in flow type. If the value is less than about 2000 then flow is laminar, if greater than 4000 then

turbulent and in between these two in the transition zone.

This value is known as the Reynolds number, Re.

Re = ρ
η
ud

Laminar flow: Re < 2000,  Transitional flow: 2000 4000< <Re ,  Turbulent flow: Re > 4000

SI Units of Reynolds Number

ρ = =kg m m/s/ 3, u , d m= , η = =Ns m kg ms/ /2

R
kg/m m/s m

kg/ms
e = = =ρ

η
ud ( )( )( )

( )

3

1

i.e. it has no units. A quantity that has no units is known as a non-dimensional (or dimensionless)

quantity. Thus, the Reynolds number, Re is a non-dimensional number.
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TYPED PROBLEMS

Type 1. Based on Law of Floatation.

Concept

Whenever a block floats in a liquid (density of block should be less than
density of liquid), there is one single equation.

Weight of solid = Upthrust on solid

∴ V g V gs i lρ ρ=
Here, V is total volume of solid and V i is immersed volume of solid.

∴ V

V
fi
i

s

l

= = ρ
ρ

Here, f1 is immersed fraction of volume of solid.

Further, in figure (i) immersed volume is less and in figure (ii)
immersed volume is more. Upthrust on immersed volume in figure (i)
is equal to weight of block-1 and upthrust on immersed volume in
figure (ii) is equal to weight of both the blocks 1 and 2. In other words,
we can also say that upthrust on extra immersed volume in figure (ii) is equal to extra
weight. In equation form, we can write as

m g V gi l1 1= ( ) ρ and ( ) ( )m m g V gi l1 2 2+ = ρ
or m g V V gi i l2 2 1= −[( ) ( ) ]ρ or ( )∆m g or ∆ ∆w V gi l= ( )ρ

Note If fluid is accelerated, then in the expression of upthrust g is replaced be geff .

V Example 1 A block of wood floats in a bucket of water placed in a lift. Will the

block sink more or less if the lift starts accelerating up?

Solution Under nromal conditions, fraction of volume immersed under floating condition is

f s

l
1 = ρ

ρ
…(i)

If the lift starts accelerating up, then

upthrust − weight = ma

∴ V g a V g V ai l s sρ ρ ρ( )+ − =
Solving this equation, we get

V

V
fi s

l

= =2

ρ
ρ

…(ii)

f f1 2=
So, the block neither sinks less nor more.

Solved Examples

(ii)

1

2

(i)

1

⇒



Note From this example, we can make a general concept that by the acceleration of container, fraction

(or percentage of volume immersed ) does not change.

V Example 2 A raft of wood (density =600kg m/ 3 ) of mass 120 kg floats in water.

How much weight can be put on the raft to make it just sink?

Solution Weight of raft + external weight = upthrust on 100% volume of raft

∴ ( )120
120

600
103+ = 



 × ×m g g

∴ m = 80 kg Ans.

Note Here immersed fraction used in upthrust is the total volume of solid = =





m
m

ρ
120

600

3 .

Type 2. Level Problems.

Concept

Let us first note down the following four results:

(i) If ice is floating in water, then after melting of ice the level ‘h’
remains unchanged.

(ii) In floating to floating condition level ‘h’ remains unchanged.

For example Suppose some wooden blocks are floating in water
kept inside a boat. If these wooden blocks are thrown into the water, then level will
remain unchanged. This is because under both the conditions wooden blocks are
floating.

(iii) In the floating to sink condition, level ‘h’ decreases.

For example In the above case if wooden blocks are replaced by stone pieces then
level will fall. Because, initially stone pieces were floating (with the help of boat) but
eventually those pieces will sink.

(iv) A solid is floating in a liquid of density ρ1. After sometime, the solid melts and density
(of solid) after melting (in liquid state) is suppose ρ2, then there are following three
cases :

Case 1 If ρ ρ2 1= , then level remains unchanged. Note that this is also result (i).

Case 2 If ρ <ρ2 1, then level will increase.

Case 3 If ρ >ρ2 1, then level will decrease.

V Example 3 A piece of ice is floating in a glass vessel filled with water. Then

prove that level of water in the vessel remains unchanged after melting of ice .

Note This is result (i).

Solution Let m be the mass of ice piece floating in water.

In equilibrium, weight of ice piece upthrust=
or mg V gi w= ρ

or V
m

i
w

=
ρ

…(i)
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Here, Vi is the volume of ice piece immersed in water.

When the ice melts, let V be the volume of water formed by m mass of ice. Then,

V
m

w

=
ρ

…(ii)

From Eqs. (i) and (ii), we see that

V Vi =
Hence, the level will not change. Ans.

V Example 4 A piece of ice having a stone frozen in it floats in a glass vessel filled

with water. How will the level of water in the vessel change when the ice melts?

Note This is result (iii).

Solution Let, m1 = mass of ice, m2 = mass of stone

ρS = density of stone and ρw = density of water

In equilibrium, when the piece of ice floats in water,

weight of ice stone upthrust( )+ =
or ( )m m g V gi w1 2+ = ρ

∴ V
m m

i
w w

= +1 2

ρ ρ
…(i)

Here, Vi = Volume of ice immersed

When the ice melts, m1 mass of ice converts into water and stone of mass m2 is completely

submerged.

Volume of water formed by m1 mass of ice,

V
m

w
1

1=
ρ

Volume of stone (which is also equal to the volume of water displaced)

V
m

S
2

2=
ρ

Since, ρ ρ
S w>

Therefore, V V Vi1 2+ <
or   the level of water will decrease. Ans.

V Example 5 A solid floats in a liquid of different material. Carry out an analysis

to see whether the level of liquid in the container will rise or fall when the solid

melts.

Note This is result (iv).

Solution Let M = Mass of the floating solid

ρ2 = density of liquid formed by the melting of the solid

ρ1 = density of the liquid in which the solid is floating

The mass of liquid displaced by the solid is M. Hence, the volume of liquid displaced is
M

ρ1

.
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When the solid melts, the volume occupied by it is
M

ρ2

. Hence, the level of liquid in container

will rise or fall according as

M

ρ2

> or < M

ρ1

i.e. ρ2 < or > ρ1

There will be no change in the level if ρ ρ1 2= . In case of ice, floating in water ρ ρ1 2= and hence,

the level of water remains unchanged when ice melts.

Type 3. Based on apparent weight or change in weight of a solid inside a liquid.

Concept

If density of a solid is greater than density of liquid then it cannot float, it will sink. In this
case, we hold the solid inside the liquid. Upthrust acts on its 100% volume and the solid is
felt lighter. The equations are as under.

w w
app actual

= −Upthrust on 100% volume or change in weight ∆w=Upthrust =V glρ …(i)

From Eq. (i) we come across following two results:

(i) If the liquid in which solid is immersed, is water, then

Weight in air

Decrease in weight
Relative density o= f body (RD)

This can be shown as under

Weight in air

Decrease in weight

Weight in air

Upthr
=

ust in water
=

V g

V g

S

w

ρ
ρ

=
ρ
ρ

S

w

= RD Hence proved.

(ii) Change in weight ∆w is directly proportional to density of liquid or relative density of
liquid. Thus,

∆w l∝ρ or ( )RD l ⇒
∆
∆

w

w

l l

l

l

l

1

2 2

1= =
( )

)

( )

( )

ρ
(ρ

RD

RD
2

Note In this case, 100% volume of solid remains immersed in the liquid, So V and g are same in two liquids in Eq. (i).

V Example 6 A metallic sphere weighs 210 g in air, 180 g in water and 120 g in

an unknown liquid. Find the density of metal and of liquid.

Solution Relative density of metal

= weight in air

change in weight of water
=

−
210

210 180
= 7

∴ Density of metal = 7 2g/cm

Change in weight in a liquid = upthrust in liquid

= ( ) ( )V gsolid liquidρ
or ∆w ∝ ρ liquid

∴ ∆
∆

w

w

l

w

l

w

= ρ
ρ
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or ρ ρl
l

w
w

w

w
= ∆

∆

= −
−









210 120

210 180
1 3( ) gm/cm

= 3 3g/cm Ans.

V Example 7 An ornament weighing 50 g in air weighs only 46 g is water.

Assuming that some copper is mixed with gold to prepare the ornament. Find the

amount of copper in it. Specific gravity of gold is 20 and that of copper is 10.

Solution Let m be the mass of the copper in ornament. Then, mass of gold in it is ( ).50 − m

Volume of copper V
m

1
10

= volume
mass

density
=





and volume of gold V
m

2

50

20
= −

When immersed in water ( )ρw = 1 3g/cm

Decrease in weight = upthrust

∴ ( ) ( )50 46 1 2− = +g V V gwρ

or 4
10

50

20
= + −m m

or 80 2 50= + −m m

m = 30 g Ans.

V Example 8 An iron casting containing a number of cavities weighs 6000 N in

air and 4000 N in water. What is the volume of the cavities in the casting?

Density of iron is 7.87 g/cm3 .

Take g m s= 9.8 / 2 and density of water = 103 kg/m3 .

Solution Let v be the volume of cavities and V the volume of solid iron. Then,

V
/ .

.
.= =

×






=mass

density

6000 98

787 10
0078

3
m3

Further, decrease in weight upthrust=
∴ ( ) ( )6000 4000− = +V v gwρ
or 2000 0078 10 983( . v) .= + × ×
or 0078 02. v .+ ≈
∴ v .= 012 3m Ans.

Type 4. Based on pressure equation.

Concept

(i) If we wish to find pressure difference between two points A and B, then start from A,
write pressure pA and reach upto point B. Keep on writing increase or decrease in
pressure and finally write pressure equal to pB .

(ii) If fluids are at rest then there is no change in pressure in horizontal direction. In
vertical direction write ( )+ρgh while moving in downward direction and ( )−ρgh while
moving in upward direction (ρ= density of liquid).
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(iii) If the fluid is accelerated, write ( )+ρax in horizontal direction opposite to horizontal
acceleration ‘a’ and ( )−ρax in the same direction of acceleration. Here, x is the
horizontal distance. In vertical direction, write ( )±ρg he . Here, ge is the effective value
of acceleration due to gravity.

(iv) If the fluid is rotating, write +








ρω2 2

2

x
while moving away from the axis and

−








ρω2 2

2

x
in moving towards the axis.

V Example 9 A liquid kept in a container has a horizontal acceleration ‘a’ as

shown in figure.

Using the pressure equation along the path ABC find the angle θ.

Solution Writing pressure equation along the path ABC we have

p gh ax pA C+ − =ρ ρ ( ρ = density of liquid)

Points A and C are open to atmosphere.

∴ p p pA C= = =0 atmosphere pressure

⇒ ρ ρgh ax− =0 or
h

x

a

g
=

⇒ tan θ = a

g
or θ = 





−tan 1 a

g
Ans.

V Example 10 A liquid of density ‘ρ’ is rotated with an angular speed ‘ω’ as shown

in figure. Using the pressure equation concept find the equation of free surface of

the liquid.

Solution Writing pressure equation along the path PMO.

p gy
x

pP O+ − =ρ ρω2 2

2

Points P and O are open to atmosphere.
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θ
a

A

Cq

xB

h

ω
y

O

P

x
M

P x y
OM x MP y

= ( , )
= , =



So, pressures at these points are same (= atmospheric pressure). Therefore, the above equation

becomes,

ρ ρω
gy

x− =
2 2

2
0 or y

g
x=









ω2
2

2

This is the required parabolic equation of free surface of liquid.

V Example 11

A liquid of density ρ is rotated by an angular speed ω as shown in figure, Using the concept of

pressure equation, find a relation between h1, h2, x1 and x2.

Solution Writing pressure equation between points A and B, we have

p gh
x x

gh pA B+ − + − =ρ ρω ρω ρ1

2
1
2 2

2
2

2
2 2

Points A and B are open to atmosphere.

Therefore,

p p pA B= = =0 atmospheric pressure.

Substituting the values in above equation we have,

ρ ρω ρω ρgh
x x

gh1

2
1
2 2

2
2

2
2 2

0− + − =

On simplifying we get,

( )( )h h
g

x x2 1

2

2
2

1
2

2
− = −ω

This is the desired relation between h1, h2, x1 and x2.

V Example 12 A small uniform tube is bent into a circle of radius r whose plane

is vertical. Equal volumes of two fluids whose densities are ρ and σ ρ σ( )> fill half

the circle. Find the angle that the radius passing through the interface makes

with the vertical.

466 � Mechanics - II

θ

O
r

ω
B

A h2

x2

h1

x1



Solution h r r r rAB = − ° − = −cos ( ) sin90 θ θ

h r rBC = − cos θ
h r rCD = ° − =sin ( ) cos90 θ θ
h rDE = sin θ

Writing pressure equation between points A and E we have

p r r g r r gA + − − −( sin ) ( cos )θ ρ θ ρ − − =( cos ) ( ) ( sin )r g r g pEθ σ θ σ
But p p pA E= = gas

Solving this equation, we get

tan θ ρ σ
ρ σ

= −
−







 Ans.

Type 5. Based on concept of syphon.

Concept

In the figure shown, v v1 2 0≈ =
p p p p1 2 6 0= = =

Note Point 3 is just above point 2. v2 0= but v v3 =

If area of cross-section of pipe is uniform, then from continuity equation,

v v v v v3 4 5 6= = = = (say )

Applying Bernoulli’s equation at 1 (or 2), 3 4 5, , and 6, we have

p p v p v gh0 3
2

4
2

20 0
1

2
0

1

2
+ + = + + = + +ρ ρ ρ

= + + = +p v p v gh5
2

0
2

1

1

2
0

1

2
ρ ρ ρ–
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θ
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4

5

6

h2

h1

1

v

3

2



From this equation, following conclusions can be made:

(i) p p p p1 2 6 0= = =
(ii) p p p3 5 0= <

(iii) v v1 2 0= =
(vi) v v v v v3 4 5 6= = = =
(v) v gh= 2 1 so, h1 should be greater than zero

(vi) p p g h h4 0 1 2= − +ρ ( )

From the last equation we can see that p4 decreases as ( )h h1 2+ increases. Minimum
value of pressure is at 4 or p4 and this minimum value is zero and this will occur at,

0 0 1 2= − +p g h hρ ( )
max

Thus, ( )maxh h
p

g
1 2

0+ =
ρ

and simultaneously h1 0>

Thus, syphon will work when h1 0> and ( )h h
p

g
1 2

0+ <
ρ

.

V Example 13 The U-tube acts as a water siphon. The bend in the tube is 1 m

above the water surface. The tube outlet is 7 m below the water surface. The water

issues from the bottom of the siphon as a free jet at atmospheric pressure.

Determine the speed of the free jet and the minimum absolute pressure of the

water in the bend. Given atmospheric pressure = ×1.01 105N m/ ,2 g m s= 9.8 / 2

and density of water = 103 3kg m/ .

Solution (a) Applying Bernoulli’s equation between points (1) and (2)

p v gh p v gh1 1
2

1 2 2
2

2

1

2

1

2
+ + = + +ρ ρ ρ ρ

Since, area of reservoir >> area of pipe

v1 0≈ ,

also p p1 2= = atmospheric pressure

So, v g h h2 1 22= −( )

= × ×2 79.8

= 11.7 m/s Ans.
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(b) The minimum pressure in the bend will be at A. Therefore, applying Bernoulli’s equation

between (1) and (A)

p v gh p v ghA A A1 1
2

1
21

2

1

2
+ + = + +ρ ρ ρ ρ

Again, v1 0≈ and from continuity equation v vA = 2

or p p g h h vA A= + − −1 1 2
21

2
ρ ρ( )

Therefore, substituting the values, we have

pA = × + − − ×( ) ( )( ( ) ( )(1.01 9.8 11.710 1000 1
1

2
10005 2) )

= ×2.27 N/m104 2
Ans.

Type 6. Based on pressure force and its torque.

Concept

p
F

A
= ⇒ F pA=

Let us call this force as the pressure force. Now, this force is calculated on a surface. If
surface is horizontal then pressure is uniform at all points.

So, F pA= can be applied directly. For calculation of torque, point of application of force is
required. In the above case, point of application of force may be assumed at geometrical
centre of the surface.

If the surface is vertical or inclined, pressure is non-uniform (it increases with depth) so
pressure force and its torque can be obtained by integration. After finding force and torque
by integration, we can also find point of application of this force by the relation.

r
F

⊥ = τ
(as τ = ×F r1)

V Example 14 A liquid of density ρ is filled upto a height of ‘h’ in a container as

shown in figure. Base of the container is a square of side L. Ignoring the

atmospheric pressure find

(a) pressure force F1 on its base.

(b) torque of force F1 about an axis passing through C and perpendicular to plane of paper.

(c) pressure force F2 on the vertical side wall DC.

(d) torque of force F2 about the same axis mentioned in part (b).

(e) point of application of force F2.
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Solution (a) Base is horizontal. So, we can directly apply

F pA1 = = ( ) ( ) ( )ρ gh L L

= ρ ghL2
Ans.

(b) Point of application of F1 is at geometrical centre of base or at a perpendicular distance
L

2

from the axis mentioned in the question.

∴ τ F F r
1 1= × ⊥ = 



( )ρ ghL

L2

2

= 1

2

3ρ gh L Ans.

(c) and (d) : Side wall is vertical. Pressure is non-uniform. So, force and torque both will be

obtained by integration.

Pressure at depth x,

p gx=ρ
Area of small element shown in figure is

dA L dx= ( )

∴ dF p dA gx L dx2 = =( )( ) ( )( )ρ
Perpendicular distance of this small force dF2 from the axis mentioned in the question is

( )h x− . Therefore, small torque of force dF2 is

d dF h xτ = −( ) ( )2

= −( )( ) ( )ρ gx h x L dx

Now, F dF
x

x h

2 2
0

=
=

=

∫
and τ τF

x

x h
d

2 0
=

=

=

∫
Substituting the values and then integrating, we get

F
gLh

2

2

2
= ρ

and τ ρ
F

gLh
2

3

6
=

(e) For point of application of F2 , we can apply

r
F

F
⊥ =

τ
2

2

(from C)

= ( / )

/

ρ
(ρ )

gLh

gh L

3

2

6

2
= h

3
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Note that point of application of F2 is below the centre, as pressure is not uniform. It is

increasing with depth.

F1 and F2 and their points of application are shown in figure below.

Note

In the figure shown, torque of hydrostatic force about point O , the centre of a semicylindrical (or

hemispherical) gate is zero as the hydrostatic force at all points passes through point O.

Type 7. Based on the concept of pressure force and upthrust.

Concept

(i) Pressure in a fluid (gas or a liquid) increases with depth. At a height (or depth)
difference of h change in pressure is ∆p gh= ±ρ .

Here, ρ is the density of fluid. Now, density of air is almost negligible, so for small
height differences it is almost constant ( )= p0 . Therefore, value of atmospheric
pressure is almost same everywhere. But this is not the case with a liquid, whose
density is not negligible.

(ii) If a solid is floating in a liquid then net pressure force (including p A0 ) on this solid is
upwards. This force is called upthrust and this is numerically equal to V gi lρ and in
equilibrium this is equal to weight of the solid.

A plank of area of cross-section Ais floating in a liquid of densityρas shown in figure.

Net upward pressure force = −F F2 1 = −p A p A2 1
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A
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C
L/2 L/2

F ghL1
2= ρ

h/3

2 /3h
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ρgLh2

2

h

F2

F1

A

Density of
liquid = r



= + −( )p gh p A0 0ρ
= ( )hA gρ
= V gi ρ (hA= immersed volume)

= upthrust

= weight of plank in equilibrium

(iii) In some cases when a plank floats in two or more than two liquids then net force by a
liquid on a plank is zero but immersed volume of plank on this liquid contributes in the
upthrust.

A plank of area of cross-section A is floating in two liquids. h1 height of the plank is
immersed in first liquid and h2 height in second liquid. Atmospheric pressures is
constant at small height differences. So F1 and F2 forces shown in the figure can be
obtained directly ( pressure area)= × . Inside the liquids pressure increases with depth.
So, F3 and F4 will be obtained by integration as they are acting on vertical surfaces.

F5 is acting on a horizontal surface so this force can also be obtained directly.

In the above figure

Net force on the plank by atmosphere = =F p A1 0

Net force on the plank by liquid -1 0=
Net force on the plank by liquid -2 5= F = = + +pA p gh gh A( )0 1 1 2 2ρ ρ
Net upthrust pressure force on the plank = −F F5 1

= +( ) ( )h A g h A g1 1 2 2ρ ρ
= +( ) ( )V g V gi i1 1 2 2ρ ρ (V i = immersed volume)

= +U U1 2 (U =upthrust)

= U
total

= Weight of plank in equilibrium.

In this case, we can see that net force on plank by liquid-1 is zero, but immersed
volume of plank in liquid-1 contributes in the upthrust ( )=U1 .
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V Example 15 A uniform solid cylinder of density 0.8 g cm/ 3 floats in equilibrium

in a combination of two non-mixing liquids A and B with its axis vertical. The

densities of the liquids A and B are 0.7 g cm/ 3 and 1.2 g cm/ 3 , respectively. The

height of liquid A is h cmA = 1.2 . The length of the part of the cylinder immersed

in liquid B is h cmB = 0.8 . (JEE 2002)

(a) Find the total force exerted by liquid A on the cylinder.

(b) Find h, the length of the part of the cylinder in air.

(c) The cylinder is depressed in such a way that its top surface is just below the upper

surface of liquid A and is then released. Find the acceleration of the cylinder

immediately after it is released.

Solution (a) Liquid A is applying the hydrostatic force on cylinder uniformly from all the sides.

So, net force is zero.

(b) In equilibrium

Weight of cylinder = Net upthrust on the cylinder

Let s be the area of cross-section of the cylinder, then

weight = + +( ) ( )s h h h gA B ρcylinder

and upthrust on the cylinder

= upthrust due to liquid A + upthrust due to liquid B

= +sh g sh gA A B Bρ ρ
Equating these two,

s h h h g sg h hA B A A B B( ) ( )+ + = +ρ ρ ρcylinder

or ( )h h h h hA B A A B B+ + = +ρ ρ ρcylinder

Substituting,

h hA B= =1.2 cm 0.8, cm and ρA = 0.7 g/cm3

ρB = 1.2 g/cm3 and ρcylinder 0.8 g/cm= 3

In the above equation, we get h = 0.25 cm Ans.
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(c)                         Net upward force = extra upthrust = sh gBρ

∴ Net acceleration a = Force

mass of cylinder

or a
sh g

s h h h

B

A B

=
+ +

ρ
ρ( ) cylinder

or a
h g

h h h

B

A B

=
+ +

ρ
ρ( ) cylinder

Substituting the  values of h, h hA B B,ρ ρand cylinder ,

we get, a
g=
6

(upwards)

Type 8. Based on surface tension force.

Concept

Surface tension is given by

T
F

l
=

∴ Surface tension force, F Tl=
This force acts only on a line on free surface of the liquid. This force has a tendency to
decrease the free surface of the liquid.

Following are given some figures for the direction of this force.

V Example 16 Water is filled up to a height h in a beaker of

radius R as shown in the figure. The density of water is ρ, the

surface tension of water is T and the atmospheric pressure is

p0 . Consider a vertical section ABCD of the water column

through a diameter of the beaker. The force on water on one

side of this section by water on the other side of this section has

magnitude (JEE 2007)

(a) | |2 20
2p Rh R gh RT+ −π ρ

(b) | |2 20
2p Rh R gh RT+ −ρ

(c) | |p R R gh RT0
2 2 2π ρ+ −

(d)| |p R R gh RT0
2 2 2π ρ+ +
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Solution Force from right hand side liquid on left hand side liquid.

(i) Due to surface tension force = 2RT (towards right)

(ii) Due to liquid pressure force

= + ⋅
=

=

∫ ( )( )p gx R dx

x

x h

0

0

2ρ

= +( )2 0
2p Rh R ghρ (towards left)

∴ Net force is | |2 20
2p Rh R gh RT+ −ρ

∴ The correct option is (b).

V Example 17 On heating water, bubbles beings formed at the bottom of the vessel

detach and rise. Take the bubbles to be spheres of radius R and making a circular

contact of radius r with the bottom of the vessel. If r <<R and the surface tension of

water is T, value of r just before bubbles detach is (density of water is ρw)
(JEE 2012 Main)

(a) R
g

T

w2

3

ρ
(b) R

g

T

w2

6

ρ
(c) R

g

T

w2 ρ
(d) R

g

T

w2 3ρ

Solution The bubble will detach if,

Buoyant force ≥ Surface tension force

4

3

3π ρ θR g T dlw ≥ ∫ × sin

( ) ( ) ( )sinρ π π θw R g T r
4

3
23



 ≥

Here, sin θ = r

R

Solving, r
R g

T

w= 2

3

4ρ = R
g

T

w2 2

3

ρ

No option matches with the correct answer.
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Passage (Ex. 18 to 20)

When liquid medicine of density ρ is to be put in the eye, it is done with the help of a dropper.
As the bulb on the top of the dropper is pressed, a drop forms at the opening of the dropper.
We wish to estimate the size of the drop.

We first assume that the drop formed at the opening is spherical because that requires a
minimum increase in its surface energy. To determine the size, we calculate the net vertical
force due to the surface tension T when the radius of the drop is R. When this force becomes
smaller than the weight of the drop, the drop gets detached from the dropper.

V Example 18 If the radius of the opening of the dropper is r, the vertical force

due to the surface tension on the drop of radius R (assuming r R<< ) is

(a) 2πrT (b) 2πRT

(c)
2 2πr T

R
(d)

2 2πR T

r

Solution Vertical force due to surface tension,

F Fv = sin θ
= ( )( ) ( / )T r r R2π

= 2 2π r T

R

∴ Correct option is (c).

V Example 19 If r m= × −5 10 4 ,ρ = −103 3kg m , g ms= −10 2 ,

T Nm= −0.11 1, the radius of the drop when it detaches from the dropper is

approximately

(a) 1.4 × −10 3 m (b) 3.3 × −10 3 m

(c) 2.0 × −10 3 m (d) 4.1 × −10 3 m

Solution
2 2πr T

R
mg= = ⋅ ⋅4

3

3π ρR g

∴ R
r T

g

4
2 4 2

3

3

2

3 5 10 011

2 10 10
= = × ×

× ×

−

ρ
( ) ( . )

= × −4125 10 12 4. m

∴ R = × −1425 10 3. m

≈ × −14 10 3. m

∴ Correct option is (a).

V Example 20 After the drop detaches, its surface energy is

(a) 1.4 × −10 6 J (b) 2.7 × −10 6 J (c) 5.4 × −10 6 J (d) 8.1 × −10 9 J

Solution Surface energy,

E R T= ( )4 2π
= × −( ) ( . ) ( . )4 14 10 0113 2π
= × −2 7 10 6. J

∴ Correct option is (b).
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Type 9. Based on force between two glass plates.

Concept

When a small drop of water is placed between two glass plates put face to face, it forms a
thin cylindrical film which is concave outward along its boundary. In article 16.9, we have
seen that pressure difference on two sides of a cylindrical surface is

∆ =p
T

R
…(i)

If d be the distance between the two plates and θ the angle of contact for water and glass,

then, from the figure, cosθ =

1

2
d

R
or

1 2

R d
= cosθ

.

Substituting for
1

R
in Eq. (i), we get ∆p

T

d
= 2

cosθ.

Angle θ can be taken zero for water and glass, i.e. cosθ =1. Thus, the upper plate is pressed

downward by the atmospheric pressure minus
2T

d
. Hence, the resultant downward

pressure acting on the upper plate is
2T

d
. If A be the area of plate wetted by the film, the

resultant force F pressing the upper plate downward is given by

F =resultant pressure ×area = 2TA

d
.

V Example 21 A drop of water of volume 005 3. cm is pressed between two glass

plates, as a consequence of which, it spreads and occupies an area of 40 2cm . If the

surface tension of water is 70 dyne/cm, find the normal force required to separate

out the two glass plates in newton.

Solution We have discussed above,

F
AT

d

A T

Ad
= =2 2 2

But, Ad = volume

∴ F
A T

V
= 2 2

Substituting the values we get,

F = × × × ×
×

− −

−
2 40 10 70 10

005 10

4 2 3

6

( ) ( )

.

= 45 N Ans.
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V Example 22 A ball of volume V and density ρ1 is moved downwards by a

distance ‘d’ in liquid of density ρ2 . Find total change in potential energy of the

system.

Solution Decrease in potential energy of the ball.

= m gh1 (m1 = mass of ball)

= ( )V gdρ1

or ∆U V gd1 1= − ρ
When V volume of solid comes down, then it is replaced by V volume of liquid.

∴ Increase in potential energy of liquid :

= m gh2 (m2 = mass of liquid of volume V)

= ( )V gdρ2

∴ ∆U V gd2 2= + ρ
Total change in potential energy,

∆ ∆ ∆U U U V gd= + = −1 2 2 1( )ρ ρ Ans.

V Example 23 In the figure shown find the value of h2 for maximum range R if

(a) h H1 4= (b) h H1 8=
Also find the value of this maximum range in both cases.

Solution (a) h H H H H h1 6 4 6 10+ = + = = (say)

Maximum range will be obtained from

h
h

H2
2

5= = Ans.

R

Table

6 H

h1

h2

Miscellaneous Examples



and this maximum range will be,

R h Hmax = =10 Ans.

(b) In this case,

h h H H H H= + = + =1 6 8 6 14

h

2
or 7H point lies on the table. So, maximum range will be obtained from the bottommost

point of the liquid container or h H2 6= Ans.

and this maximum range will be

R h h h= −2 2 2( )

= × =2 6 8 8 3H H H Ans.

Note From top to centre range first increases and then from centre to bottom range then decreases. Therefore, in

the second case range will be maximum from bottommost point of the liquid container.

V Example 24 In the figure shown,

find the range R.

Solution Applying Bernoulli's equation at points 1 and 2.

p v gh p1 1
2

1 2

1

2
2 2+ + =( ) ( )ρ ρ + +1

2
2 22

2
2( ) ( )ρ ρv gh

Here, v1 0≈ , v v2 = , h h1 2= , p p2 0=
and p p gH gH1 0 2= + +ρ ρ

= +p gH0 3ρ
Substituting in the above equation we have,

p gH p v0 0
23+ = +ρ ρ

∴ v gH= 3

Now, this velocity is horizontal. So, time taken by the liquid to fall to the ground is free fall

time or

t
h

g
= 2

(where, h H= )

or t
H

g
= 2

∴ R vt gH
H

g
= =







( )3

2

= 6H Ans.
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V Example 25 In the figure shown

find v, top and R.

Solution v g= × ×2 distance of orifice from top surface of liquid Ans.

= 2 1gh

top = free fall time (as v is horizontal)

= 2 2h

g
(where, h2 = free fall height)

R v t gh
h

g
h hop= =







 =( )2

2
21

2
1 2 Ans.

V Example 26 Figure shows a hydraulic press with the larger piston of diameter

35 cm at a height of 1.5 m relative to the smaller piston of diameter 10 cm. The

mass on the smaller piston is 20 kg. What is the force exerted on the load by the

larger piston? The density of oil in the press is 750 kg/m3 . (Take g = 9.8 m/s2 )

Solution Pressure on  the smaller piston = ×
× × −
20

5 10 2 2

29.8
N/m

π ( )

Pressure on the larger piston =
× × −

F

π ( )17.5
N/m

10 2 2

2

The difference between the two pressures = h gρ
where h = 1.5 m

and ρ = 750 3kg/m

Thus,
20

5 10 10
750

2 2 2 2

×
× ×

−
× ×

= × ×− −
9.8

17.5
1.5 9.8

π π( ) ( )

F

which gives, F = ×1.3 N103
Ans.

Note Atmospheric pressure is common to both pistons and has been ignored.
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V Example 27 A glass full of water upto a height of 10 cm has a bottom of area

10 2cm , top of area 30 2cm and volume 1 litre.

(a) Find the force exerted by the water on the bottom.

(b) Find the resultant force exerted by the sides of the glass on the water.

(c) If the glass is covered by a jar and the air inside the jar is completely pumped out,

what will be the answers to parts (a) and (b).

(d) If a glass of different shape is used, provided the height, the bottom area, the top

area and the volume are unchanged, will the answers to parts (a) and (b) change.

Take g m s= 10 2/ , density of water = 103 3kg m/ and atmospheric pressure

= ×1.01 105 2N m/

Solution (a) Force exerted by the water on the bottom

F p gh A1 0 1= +( )ρ …(i)

Here, p0
5 210= = ×atmospheric pressure 1.01 N/m

ρ = =density of water k/gm103 3

g = 10 2m/s , h = =10 cm 0.1 m

and A1
2 3 210 10= = = −area of base cm m

Substituting in Eq. (i), we get

F1
5 3 310 10 10= × + × × × −( )1.01 0.110

or F1 102= N downwards( ) Ans.

(b) Force exerted by atmosphere on water

F p A2 0 2= ( )

Here, A2
2 3 230 3 10= = = × −area of top cm m

∴ F2
5 310 3 10= × × −( )( )1.01

= 303 N ( )downwards

Force exerted by bottom on the water

F F3 1= − or F3 102= N upwards( )

weight of water W g= ( )( )volume density ( ) = −( )( )( )10 10 103 3

= 10 N downwards( )

Let F be the force exerted by side walls on the water (upwards). Then, for equilibrium of

water

Net upward force = net downward force

or F F F W+ = +3 2

∴ F F W F= + −2 3 = + −303 10 102

or F = 211 N ( )upwards Ans.

(c) If the air inside the jar is completely pumped out,

F gh A1 1= ( )ρ ( )as p0 0=
= −( )10 10 103 3( )( )( )0.1 = 1 N downwards( ) Ans.

In this case, F2 0=
and F3 1= N upwards( )

∴ F F W F= + −2 3 = + −0 10 1 = 9 N upwards( ) Ans.

(d) No, the answer will remain the same. Because the answers depend upon p0 ,ρ, g, h, A1and A2
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V Example 28 A solid ball of density half that of water falls freely under gravity

from a height of 19.6 m and then enters water. Upto what depth will the ball go.

How much time will it take to come again to the water surface ? Neglect air

resistance and viscosity effects in water. (Take g m s= 9.8 / 2 )

Solution v gh= = × × =2 2 9.8 19.6 19.6 m/s

Let ρ be the density of ball and 2ρ the density of water. Net retardation inside the water,

a = upthrust weight

mass

–

= −V g V g

V

( ) ( )( )

( )

2ρ ρ
ρ

= g = 9.8 m/s2

Hence, the ball will go upto the same depth 19.6 m below the water surface. Ans.

Further, time taken by the ball to come back to water surface is,

t
v

a
= 



 = 



 =2 2

19.6

9.8
4 s Ans.

V Example 29 A fresh water on a reservoir is 10 m deep. A horizontal pipe 4.0 cm

in diameter passes through the reservoir 6.0 m below the water surface as shown

in figure. A plug secures the pipe opening.

(a) Find the friction force between the plug and pipe wall.

(b) The plug is removed. What volume of water flows out of the pipe in 1 h? Assume

area of reservoir to be too large.

Solution (a) Force of friction

= pressure difference on the sides of the plug × area of cross section of the plug

= ( )ρgh A

= × −( )( )( ( )( )10 2 103 2 29.8 6.0) π
= 73.9 N Ans.
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(b) Assuming the area of the reservoir to be too large,

Velocity of efflux

v gh= =2 constant

∴ v = × × =2 69.8 10.84 m/s

Volume of water coming out per sec,

dV

dt
Av=

= × −π( ) (2 10 2 2 10.84)

= × −1.36 m /s310 2

∴ The volume of water flowing through the pipe in 1 h

V
dV

dt
t= 





= × −( )( )1.36 10 36002

= 48.96 m3
Ans.

V Example 30 A wooden rod weighing 25 N is mounted on a hinge below the free

surface of water as shown. The rod is 3 m long and uniform in cross section and

the support is 1.6 m below the free surface. At what angle α rod is in equilibrium?

The cross-section of the rod is 9.5 × −10 4 2m in area. Density of water is

1000 3kg m/ . Assume buoyancy to act at centre of immersion. g = 9.8 m/s2 . Also

find the reaction on the hinge in this position.

Solution Let G be the mid-point of AB and E the mid point of AC (i.e. the centre of buoyancy)

AC = 1.6 cosec α
Volume of 1.6 9.5 cosecAC = × × −( )10 4 α

Weight of water displaced by AC

= × × × ×−( )1.6 9.5 9.8 cosec10 104 3 α
= 14.896 cosec α
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Hence, the buoyant force is 14.896 cosec α acting vertically upwards at E. While the weight of

the rod is 25 N acting vertically downwards at G. Taking moments about A,

( ) ( cos ) ( )( cos )14.896 cosec α α αAE AG= 25

or ( )14.896 cosec
1.6 cosecα α

2
25

3

2





 = ×

or sin2 α = 0.32

∴ sin α = 0.56

or α = °34.3 Ans.

Further, let F be the reaction at hinge in vertically downward direction. Then, considering the

translatory equilibrium of rod in vertical direction we have,

F + =weight of the rod upthrust

∴ F = upthrust weight of the rod–

= ° −14.896 34.3cosec ( ) 25

= −26.6 25

∴ F = 1.6 N (downwards) Ans.

V Example 31 A cylindrical tank of base area A has a small hole of area a at the
bottom. At time t = 0, a tap starts to supply water into the tank at a constant rate

α m3/s.

(a) what is the maximum level of water hmax in the tank?

(b) find the time when level of water becomes h h( ).< max

Solution (a) Level will be maximum when

Rate of inflow of water rate of outflow of water=
i.e. α = av

or α = a gh2 max

⇒ h
ga

max = α 2

22
Ans.

(b) Let at time t, the level of water be h. Then,

A
dh

dt
a gh





 = −α 2 or

dh

a gh

dt

A

h t

α −
=∫ ∫20 0

Solving this, we get

t
A

ag a

a gh
gh= −








−










α α
α

ln
2

2 Ans.
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LEVEL 1
Assertion and Reason

Directions : Choose the correct option.

(a) If both Assertion and Reason are true and the Reason is correct explanation of the Assertion.

(b) If both Assertion and Reason are true but Reason is not the correct explanation of Assertion.

(c) If Assertion is true, but the Reason is false.

(d) If Assertion is false but the Reason is true.

1. Assertion : Pressure is a vector quantity.

Reason : Pressure P
F

A
= . Here F, the force is a vector quantity.

2. Assertion : Surface tension T
F

l
=





is not a vector quantity.

Reason : Direction of force is specified.

3. Assertion : At depth h below the water surface pressure is p. Then at depth 2h pressure will
be 2 p. (Ignore density variation).

Reason : With depth pressure increases linearly.

4. Assertion : Weight of solid in air is wand in water is
2

3

w
. Then relative density of solid is 3.0.

Reason : Relative density of any solid is given by

RD = Weight in air

Change in weight in water

5. Assertion : Water is filled in a U-tube of different cross-sectional area on two sides as shown
in figure. Now equal amount of oil ( )RD = 0.5 is poured on two sides. Level of water on both sides
will remain unchanged.

Reason : Same weight of oil poured on two sides will produce different pressures.

6. Assertion : An ideal fluid is flowing through a pipe. Speed of fluid particles is more at places
where pressure is low.

Reason : Bernoulli’s theorem can be derived from work-energy theorem.

Exercises



7. Assertion : In the figure shown v Rand will increase if pressure above the liquid surface
inside the chamber is increased.

Reason : Value of v or R is independent of density of liquid.

8. Assertion : A ball is dropped from a certain height above the free surface of an ideal fluid.
When the ball enters the liquid it may accelerate or retard.

Reason : Ball accelerates or retards it all depends on the density of ball and the density of
liquid.

9. Assertion : On moon, barometer height will be six times compared to the height on earth.

Reason : Value of g on moon’s surface is
1

6
the value of g on earth’s surface.

10. Assertion : In the siphon shown in figure, pressure at P is equal to atmospheric pressure.

Reason : Pressure at Q is atmospheric pressure and points P and Q are at same levels.

11. Assertion : Force of buoyancy due to atmosphere on a small body is almost zero
(or negligible).

Reason : If a body is completely submerged in a fluid, then buoyant force is zero.

Objective Questions
Single Correct Option

1. When a sphere falling in a viscous fluid attains a terminal velocity, then

(a) the net force acting on the sphere is zero

(b) the drag force balances the buoyant force

(c) the drag force balances the weight of the sphere

(d) the buoyant force balances the weight and drag force
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2. Which one of the following represents the correct dimensions of the quantity : x = η
ρ

, where

η = coefficient of viscosity and ρ = the density of a liquid?

(a) [ ]ML T− −2 1 (b) [ ]ML T− −4 2

(c) [ML T ]–5 –2 (d) [ ]M L T0 2 1−

3. Viscosity of liquids

(a) increases with increase in temperature

(b) is independent of temperature

(c) decreases with decrease in temperature

(d) decreases with increase in temperature

4. At critical temperature, the surface tension of a liquid

(a) is zero

(b) is infinity

(c) is same as that at any other temperature

(d) cannot be determined

5. A liquid will not wet the surface of a solid if the angle of contact is

(a) 0° (b) 45°

(c) 60° (d) >90°

6. The lower end of a capillary tube touches a liquid whose angle of contact is 110°,the liquid

(a) rises into the tube

(b) falls in the tube

(c) may rise or fall inside

(d) neither rises nor falls inside the tube

7. Two water droplets combine to form a large drop. In this process energy is

(a) liberated

(b) absorbed

(c) neither liberated nor absorbed

(d) sometimes liberated and sometimes absorbed

8. A number of small drops of mercury adiabatically coalesce to form a single drop. The
temperature of the drop will

(a) increase (b) remain same

(c) decrease (d) depend on size

9. Two soap bubbles in vacuum of radius 3 cm and 4 cm coalesce to form a single bubble under
isothermal conditions. Then the radius of bigger bubble is

(a) 7 cm (b)
12

7
cm

(c) 12 cm (d) 5 cm

10. A small ball (mass m) falling under gravity in a viscous medium experiences a drag force
proportional to the instantaneous speed u such that F kudrag = . Then the terminal speed of ball
within viscous medium is

(a)
k

mg
(b)

mg

k

(c)
mg

k
(d) None of these
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11. A thread is tied slightly loose to a wire frame as in figure and the frame is
dipped into a soap solution and taken out. The frame is completely covered
with the film. When the portion A is punctured with a pin, the thread

(a) becomes concave towards A

(b) becomes convex towards A

(c) either (a) or (b) depending on the size of A with respect to B

(d) remains in the initial position

12. A steel ball of mass m falls in a viscous liquid with terminal velocity v, then the steel ball of
mass 8 m will fall in the same liquid with terminal velocity

(a) v (b) 4v (c) 8v (d) 16 2v

13. A liquid flows between two parallel plates along the x-axis. The difference between the velocity
of two layers separated by the distance dy is dv. If A is the area of each plate, then Newton’s law
of viscosity may be written as

(a) F A
dv

dx
= − η (b) F A

dv

dx
= + η

(c) F A
dv

dy
= − η (d) F A

dv

dy
= + η

14. The work done to split a liquid drop of radius R into N identical drops is (take σ as the surface
tension of the liquid)

(a) 4 12 1 3π σR N( )/ − (b) 4 2π σR N

(c) 4 12 1 2πR N( )/ − (d) None of these

15. Two soap bubbles of different radii R1 and R R2 1( )< coalesce to form an
interface of radius R as shown in figure. The correct value of R is

(a) R R R= −1 2 (b) R
R R= +1 2

2

(c)
1 1 1

2 1R R R
= − (d)

1 1 1

1 2R R R
= +

16. A viscous liquid flows through a horizontal pipe of varying cross-sectional area. Identify the
option which correctly represents the variation of height of rise of liquid in each vertical tube

(a) (b)

(c) (d) None of these
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17. The terminal velocity of a rain drop is 30 cm/s. If the viscosity of air is 1.8 Nsm× − −10 5 2. The

radius of rain drop is

(a) 1 µm (b) 0.5 mm

(c) 0.05 mm (d) 1 mm

18. If a capillary tube is dipped and the liquid levels inside and outside the tube are same, then the
angle of contact is

(a) zero (b) 90°

(c) 45° (d) Cannot be obtained

19. Uniform speed of 2 cm diameter ball is 20 cm/ s in a viscous liquid. Then, the speed of 1 cm
diameter ball in the same liquid is

(a) 5 1cms− (b) 10 1cms−

(c) 40 1cms− (d) 80 1cms−

20. The height of mercury barometer is h when the atmospheric pressure is 105 Pa.

The pressure at x in the shown diagram is

(a) 105 Pa (b) 0.8 Pa× 105

(c) 0.2 Pa× 105 (d) 120 105× Pa

21. A body floats in water with its one-third volume above the surface. The same body floats in a
liquid with one-third volume immersed. The density of the liquid is

(a) 9 times more than that of water

(b) 2 times more than that of water

(c) 3 times more than that of water

(d) 1.5 times more than that of water

22. A piece of ice is floating in a beaker containing thick sugar solution of water. As the ice melts,
the total level of the liquid

(a) increases (b) decreases

(c) remains unchanged (d) insufficient data

23. A body floats in completely immersed condition in water as shown in figure. As the whole
system is allowed to slide down freely along the inclined surface, the magnitude of buoyant
force

(a) remains unchanged (b) increases

(c) decreases (d) becomes zero
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24. The figure represents a U-tube of uniform cross-section filled with two immiscible liquids. One
is water with density ρw and the other liquid is of density ρ. The liquid interface lies 2 cm above
the base. The relation between ρ and ρw is

(a) ρ ρ= w (b) ρ ρ= 1.02 w (c) ρ ρ= 1.2 w (d) None of these

25. For the arrangement shown in figure, initially the balance A Band reads F F1 2and respectively
and F F1 2> . Finally when the block is immersed in the liquid then the readings of balance
A Band are f f1 2and respectively. Identify the statement which is not always (where, F is
some force) correct statement.

(a) f f1 2> (b) F F F F1 2+ > +
(c) f f F F1 2 1 2+ = + (d) None of these

26. When a tap is closed, the manometer attached to the pipe reads 3.5 Nm× −105 2. When the tap is

opened, the reading of manometer falls to 3.0 Nm× −105 2. The velocity of water in the pipe is

(a) 0.1 ms−1 (b) 1 1ms−

(c) 5 1ms− (d) 10 1ms−

27. A balloon of mass M descends with an acceleration a0. The mass that must be thrown out in
order to give the balloon an equal upward acceleration will be

(a)
Ma

g

0 (b)
2 0Ma

g
(c)

2 0

0

Ma

g a+
(d)

M g a

a

( )+ 0

0

28. The hydraulic press shown in the figure is used to raise the mass M through a height of 0.5 cm
by performing 500 J of work at the small piston. The diameter of the large piston is 10 cm, while
that of the smaller one is 2 cm. The mass M is

(a) 100 kg (b) 106 kg (c) 103kg (d) None of these
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29. When equal volumes of two substances are mixed, the specific gravity of the mixture is 4. When

equal weights of the same substances are mixed, the specific gravity of the mixture is 3. The

specific gravities of the two substances could be

(a) 6 and 2 (b) 3 and 4

(c) 2.5 and 3.5 (d) 5 and 3

30. A block of ice of total area A and thickness 0.5 m is floating in water. In order to just support a

man of mass 100 kg, the area A should be (the specific gravity of ice is 0.9)

(a) 2.2 m2 (b) 1.0 m2

(c) 0.5 m2 (d) None of these

31. A piece of gold ( )ρ = 19.3 g/ cm3 has a cavity in it. It weights 38.2 g in air and 36.2 g in water. The

volume of the cavity in gold is

(a) 0.2 cm3 (b) 0.04 cm3

(c) 0.02 cm3 (d) 0.01 cm3

32. Water stands at a depth D behind the vertical upstream face of a dam as shown in the figure.

The force exerted on the dam by water per unit width is

(a)
1

3

2ρgD (b)
1

2

2ρgD

(c)
1

3
ρgD (d)

1

2

2( )ρgD

33. The volume of a liquid flowing per second out of an orifice at the bottom of a tank does not

depend upon

(a) the height of the liquid above the orifice

(b) the acceleration due to gravity

(c) the density of the liquid

(d) the area of the orifice

34. The pipe shows the volume flow rate of an ideal liquid at certain time and its direction. What is

the value of Q in m / s3 ? (Assume steady state and equal area of cross section at each opening)

(a) 10 10 6× − (b) 11 10 6× −

(c) 13 10 6× − (d) 18 10 6× −
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35. A uniform cube of mass M is floating on the surface of a liquid with three fourth of its volume
immersed in the liquid (density = ρ). The length of the side of the cube is equal to

(a) ( / ) /4 3 2 3M ρ (b) ( / ) /M 3 2 3ρ (c) ( / ) /M 4 2 3ρ (d) None of these

36. Water rises to a height of 10 cm in a certain capillary tube. An another identical tube when
dipped in mercury the level of mercury is depressed by 3.42 cm. Density of mercury is 13.6 g/cc.
The angle of contact for water in contact with glass is 0° and mercury in contact with glass is
135°. The ratio of surface tension of water to that of Hg is

(a) 1 : 3 (b) 1 : 4 (c) 1 : 5.5 (d) 1 : 6.5

37. A capillary glass tube records a rise of 20 cm when dipped in water. When the area of
cross-section of the tube is reduced to half of the former value, water will rise to a height of

(a) 10 2 cm (b) 10 cm (c) 20 cm (d) 20 2 cm

38. A cylindrical vessel open at the top is 20 cm high and 10 cm in diameter. A circular hole of cross
sectional area 1 2cm is cut at the centre of the bottom of the vessel. Water flows from a tube
above it into the vessel at the rate of 102 cm / s3 . The height of water in the vessel under steady
state is (Take g = 10 2m/ s )

(a) 20 cm (b) 15 cm (c) 10 cm (d) 5 cm

39. A horizontal pipeline carries water in a streamline flow. At a point along the tube where the
cross sectional area is 10 2 2− m , the water velocity is 2 m/s and the pressure is 8000 Pa. The
pressure of water at another point where cross sectional area is 0.5 m× −10 2 2 is

(a) 4000 Pa (b) 1000 Pa (c) 2000 Pa (d) 3000 Pa

40. Eight spherical rain drops of the same mass and radius are falling down with a terminal speed

of 6 1cms− . If they coalesce to form one big drop, what will be its terminal speed? Neglect the

buoyancy due to air

(a) 1.5 cms−1 (b) 6 1cms− (c) 24 1cms− (d) 32 1cms−

41. In a surface tension experiment with a capillary tube water rises upto 0.1 m. If the same
experiment is repeated in an artificial satellite, which is revolving around the earth; water will
rise in the capillary tube upto a height of

(a) 0.1 m (b) 0.2 m (c) 0.98 m (d) full length of tube

42. Two unequal soap bubbles are formed one on each side of a tube closed in the middle by a tap.
What happens when the tap is opened to put the two bubbles in communication ?

(a) No air passes in any direction as the pressures are the same on two sides of the tap

(b) Larger bubble shrinks and smaller bubble increases in size till they become equal in size

(c) Smaller bubble gradually collapses and the bigger one increases in size

(d) None of the above

43. A capillary tube of radius R is immersed in water and water rises in it to a height h. Mass of
water in capillary tube is M. If the radius of the tube is doubled, mass of water that will rise in
the capillary tube will be

(a) 2M (b) M (c)
M

2
(d) 4M
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44. A tube of fine bore AB is connected to a manometer M as shown. The stop cock S controls the
flow of air. AB is dipped into a liquid whose surface tension is T . On opening the stop cock for a
while, a bubble is formed at B and the manometer level is recorded, showing a difference h in
the levels in the two arms, if pbe the density of manometer liquid and r the radius of curvature
of the bubble, then the surface tension T of the liquid is given by

(a) ρ hrg (b) 2ρhgr (c) 4ρhrg (d)
rh gρ

4

45. A vessel whose bottom has round holes with a diameter of d = 01. mm is filled with water. The
maximum height of the water level h at which the water does not flow out, will be (The water
does not wet the bottom of the vessel). [ST of water = 70 dyne/cm]

(a) h =240. cm (b) h =250. cm (c) h =260. cm (d) h =280. cm

46. A large number of liquid drops each of radius ‘a’ coalesce to form a single spherical drop of
radius b. The energy released in the process is converted into kinetic energy of the big drop
formed. The speed of big drop will be

(a)
6 1 1T

a bρ
−





(b)
4 1 1T

a bρ
−





(c)
8 1 1T

a bρ
−





(d)
5 1 1T

a bρ
−





47. A glass capillary tube (closed from top) of inner diameter 0.28 mm is lowered vertically into
water in a vessel. The pressure in the capillary tube so that water level in the tube is same as

that in the vessel in N/ m2 is (surface tension of water = 0.7N/ m and atmospheric pressure

=105 2N/ m )

(a) 103 (b) 99 103×
(c) 100 103× (d) 101 103×

48. A thin wire is bent in the form of a ring of diameter 3.0 cm. The ring is placed horizontally on the
surface of soap solution and then raised up slowly. Upward force necessary to break the vertical
film formed between the ring and the solution is

(a) 6 πT dyne (b) 2 πT dyne

(c) 4 πT dyne (d) 3 πT dyne

49. One end of a glass capillary tube with a radius r = 0 05. cm is immersed into water to a depth of
h = 2 cm. Excess pressure required to blow an air bubble out of the lower end of the tube will be

(S.T of water = 70dyne / cm). Take g = 980 2cm/ s

(a) 2840 2dyne/cm (b) 5840 2dyne/cm

(c) 7840 2dyne/cm (d) 4760 2dyne/cm
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Subjective Questions

Note Question numbers 16, 17 and 29 are based on flow of viscous liquids. Engineering aspirants can skip those

problems.

1. A body of weight w1 when floats in water displaces an amount of water w2.Then w w1 2< . Is this
statement true or false?

2. A weightless balloon is filled with water. What will be its apparent weight when weighed in
water?

3. Two vessels A and B have same base area. Equal volumes of a liquid are poured in the two
vessels to different heights hA and h hB A( ).> In which vessel, the force on the base of vessel will
be more?

4. The work done in blowing a bubble of volume V is W, then what is the work done in blowing a
soap bubble of volume 2V ?

5. A man is sitting in a boat which is floating in a pond. If the man drinks some water from the
pond, how will the level of water in the pond change?

6. A metal ball weighs 0.096 N . When suspended in water it has an apparent weight of 0.071 N.
Find the density of the metal.

7. A block of wood has a mass of 25 g. When a 5 g metal piece with a volume of 2 cm3 is attached to
the bottom of the block, the wood barely floats in water. What is the volume V of the wood?

8. What is the minimum volume of a block of wood (density = 850 3kg/ m ) if it is to hold a 50 kg

woman entirely above the water when she stands on it ?

9. A cubical block of ice floating in water has to support a metal piece weighing 0.5 kg. What can
be the minimum edge of the block so that it does not sink in water? Specific gravity of ice = 0 9. .

10. When a cube of wood floats in water, 60% of its volume is submerged. When the same cube
floats in an unknown fluid 85% of its volume is submerged. Find the densities of wood and the
unknown fluid.

11. A glass tube of radius 0.8 cm floats vertical in water, as shown in figure. What mass of lead
pellets would cause the tube to sink a further 3 cm?

12. A hydraulic automobile lift is designed to lift cars with a maximum mass of 3000 kg. The area of
cross section of the piston carrying the load is 425 2cm . What maximum pressure would the
smaller piston have to bear?

13. A U-tube contains water and methylated spirit separated by mercury. The mercury columns in
the two arms are in level with 10.0 cm of water in one arm and 12.5 cm of spirit in the other.
What is the relative density of sprit?

14. In the above question, if 15.0 cm of water and spirit each are further, poured into the respective
arms of the tube, what is the difference in the levels of mercury in the two arms?
(Relative density of mercury =13 6. )

494 � Mechanics - II



15. A manometer reads the pressure of a gas in an enclosure as shown in figure (a) When some of
the gas is removed by a pump, the manometer reads as in (b). The liquid used in the
manometers is mercury and the atmospheric pressure is 76 cm of mercury.

(i) Give the absolute and gauge pressure of the gas in the enclosure for cases (a) and (b) in units

of cm of mercury.

(ii) How would the levels change in case (b) if 13.6 cm of water are poured into the right limb of

the manometer?

16. Water at 20°C is flowing in a pipe of radius 20.0 cm. The viscosity of water at 20°C is
1.005 centipoise. If the water’s speed in the centre of the pipe is 3.00 m/s, what is water’s speed:

(a) 10.0 cm from the centre of the pipe (half way between the centre and the walls)

(b) at the walls of the pipe?

17. Water at 20°C is flowing in a horizontal pipe that is 20.0 m long. The flow is laminar and the
water completely fills the pipe. A pump maintains a gauge pressure of 1400 Pa, at a large tank
at one end of the pipe. The other end of the pipe is open to the air, The viscosity of water at 20°C
is 1.005 poise.

(a) If the pipe has diameter 8.0 cm, what is the volume flow rate?

(b) What gauge pressure must the pump provide to achieve the same volume flow rate for a pipe

with a diameter of 4.0 cm?

(c) For pipe in part (a) and the same gauge pressure maintained by the pump, what does the

volume flow rate become if the water is at a temperature of 60°C (the viscosity of water at

60°C is 0.469 poise)?

18. An irregular piece of metal weighs 10.00 g in air and 8.00 g when submerged in water.

(a) Find the volume of the metal and its density.

(b) If the same piece of metal weighs 8.50 g when immersed in a particular oil, what is the density

of the oil ?

19. A tank contains water on top of mercury. A cube of iron, 60 mm along each edge, is sitting
upright in equilibrium in the liquids. Find how much of it is in each liquid. The densities of iron

and mercury are 7.7 kg/ m× 103 3 and 13.6 kg/ m× 103 3 respectively.
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20. A uniform rod AB, 4 m long and weighing 12 kg, is supported at end A, with a 6 kg lead weight
at B. The rod floats as shown in figure with one-half of its length submerged. The buoyant force
on the lead mass is negligible as it is of negligible volume. Find the tension in the cord and the
total volume of the rod.

21. A solid sphere of mass m = 2 kg and density ρ = 500 3kg/ m is held stationary relative to a tank

filled with water. The tank is accelerating upward with acceleration 2 m/ s2. Calculate

(a) Tension in the thread connected between the sphere and the bottom of the tank.

(b) If the thread snaps, calculate the acceleration of sphere with respect to the tank.

(Density of water = 1000 3kg/m , g =10 2m/s )

22. The pressure gauge shown in figure has a spring for which k = 60N/m and the area of the piston

is 0 50 2. cm . Its right end is connected to a closed container of gas at a gauge pressure of 30 kPa.

How far will the spring be compressed if the region containing the spring is (a) in vacuum and
(b) open to the atmosphere ? Atmospheric pressure is 101 kPa.

23. Water stands at a depth h behind the vertical face of a dam. It exerts a resultant horizontal
force on the dam tending to slide it along its foundation and a torque tending to overturn the
dam about the point O. Find

(a) horizontal force, (b) torque about O, (c) the height at which the resultant force would have to

act to produce the same torque, l = cross-sectional length and ρ = density of water.
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24. Mercury is poured into a U-tube in which the cross-sectional area of the left-hand limb is three
times smaller than that of the right one. The level of the mercury in the narrow limb is a
distance l = 30 cm from the upper end of the tube. How much will the mercury level rise in the
right-hand limb if the left one is filled to the top with water ?

25. A water barrel stands on a table of height h. If a small hole is punched in the side of the barrel at
its base, it is found that the resultant stream of water strikes the ground at a horizontal
distance R from the barrel. What is the depth of water in the barrel ?

26. A pump is designed as a horizontal cylinder with a piston of area A and an outlet orifice of area
a arranged near the cylinder axis. Find the velocity of out flow of the liquid from the pump if the
piston moves with a constant velocity under the action of a constant force F. The density of the
liquid is ρ.

27. When air of density 1.3 kg/ m3 flows across the top of the tube shown in the accompanying

figure, water rises in the tube to a height of 1.0 cm. What is the speed of the air ?

28. The area of cross-section of a large tank is 0.5 m2. It has an opening near the bottom having

area of cross-section 1 cm2. A load of 20 kg is applied on the water at the top. Find the velocity of
the water coming out of the opening at the time when the height of water level is 50 cm above

the bottom. (Take g = 10 2m/ s )

29. What is the pressure drop (in mm Hg) in the blood as it passes through a capillary 1 mm long
and 2 µm in radius if the speed of the blood through the centre of the capillary is 0.66 mm/s ?

(The viscosity of whole blood is 4 10 3× − Pl).

30. A glass capillary sealed at the upper end is of length 0.11 m and internal diameter 2 10 5× − m.
The tube is immersed vertically into a liquid of surface tension 5.06 × −10 2 N/m. To what length
has the capillary to be immersed so that the liquid levels inside and outside the capillary
become the same ? What will happen to the water levels inside the capillary if the seal is now
broken ?

31. A film of water is formed between two straight parallel wires each 10 cm long and at a
separation 0.5 cm. Calculate the work required to increase 1 mm distance between them.

Surface tension of water = × −72 10 3 N/ m.

32. A barometer contains two uniform capillaries of radii1 44 10 3. × −
m and 7 2 10 4. × −

m. If the height

of the liquid in the narrow tube is 0.2 m more than that in the wide tube, calculate the true

pressure difference. Density of liquid = 103 3kg/ m , surface tension = × −7.2 N/ m10 3 and

g = 9.8 m/ s2.
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33. A liquid of specific gravity 1.5 is observed to rise 3.0 cm in a capillary tube of diameter 0.50 mm
and the liquid wets the surface of the tube. Calculate the excess pressure inside a spherical
bubble of 1.0 cm diameter blown from the same liquid. Angle of contact = 0°.

34. A glass U-tube is such that the diameter of one limb is 3.0 mm and that of the other is 6.0 mm.
The tube is inverted vertically with the open ends below the surface of water in a beaker. What
is the difference between the heights to which water rises in the two limbs? Surface tension of

water is 0 07 1. Nm− . Assume that the angle of contact between water and glass is 0°.

35. A minute spherical air bubble is rising slowly through a column of mercury contained in a deep
jar. If the radius of the bubble at a depth of 100 cm is 0.1 mm, calculate its depth where its
radius is 0.126 mm, given that the surface tension of mercury is 567 dyne/cm. Assume that the
atmospheric pressure is 76 cm of mercury.

36. If a number of little droplets of water, each of radius r, coalesce to form a single drop of radius R,
show that the rise in temperature will be given be

3 1 1T

J r R
−





where, T is the surface tension of water and J is the mechanical equivalent of heat.

37. An empty container has a circular hole of radius r at its bottom. The container is pushed into
water very slowly as shown. To what depth the lower surface of container (from surface of
water) can be pushed into water such that water does not flow into the container ?

LEVEL 2

Objective Questions
Single Correct Option

1. An ice cube is floating in water above which a layer of lighter oil is poured. As the ice melts
completely, the level of interface and the upper most level of oil will respectively

(a) rise and fall (b) fall and rise

(c) not change and no change (d) not change and fall
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2. An open vessel full of water is falling freely under gravity. There is a small hole in one face of
the vessel as shown in the figure. The water which comes out from the hole at the instant when
hole is at height H above the ground, strikes the ground at a distance of x from P.

Which of the following is correct for the situation described?

(a) The value of x is 2
2

3

hH

(b) The value of x is
4

3

hH

(c) The value of x can’t be computed from information provided

(d) The question is irrevalent as no water comes out from the hole

3. A uniform rod AB, 12 m long weighing 24 kg, is supported at end Bby a flexible light string and
a lead weight (of very small size) of 12 kg attached at end A.

The rod floats in water with one-half of its length submerged. For this situation, mark out the
correct statement.

[Take g = 10 2m/ s , density of water = 1000 3kg/ m ]

(a) The tension in the string is 36 g

(b) The tension in the string is 12 g

(c) The volume of the rod is 6.4 m× −10 2 3

(d) The point of application of the buoyancy force is passing through C (centre of mass of rod)

4. A water hose pipe of cross-sectional area 5 2cm is used to fill a tank of 120 L. It has been

observed that it takes 2 min to fill the tank. Now, a nozzle with an opening of cross-sectional

area1 2cm is attached to the hose. The nozzle is held so that water is projected horizontally from

a point 1 m above the ground. The horizontal distance over which the water can be projected is

(Take g = 10 2m/ s )

(a) 3 m (b) 8 m

(c) 4.47 m (d) 8.64 m
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5. The height of water in a vessel is h. The vessel wall of width b is at an angleθ to the vertical. The
net force exerted by the water on the wall is

(a)
1

3

2ρ θbh g cos (b)
1

2

2bh gρ (c)
1

2

2ρ θbh g sec (d) zero

6. A body of density ρ is dropped from rest from a height h into a lake of density σ σ ρ( )> . The
maximum depth the body sinks inside the liquid is (neglect viscous effect of liquid)

(a)
hρ

σ ρ−
(b)

hσ
σ ρ−

(c)
hρ
σ

(d)
hσ
ρ

7. A liquid stands at the plane level in the U-tube when at rest. If areas of cross-section of both the
limbs are equal, what will be the difference in heights h of the liquid in the two limbs of U-tube,
when the system is given an acceleration a in horizontal direction towards right as shown?

(a)
Lg

a
(b)

La

g
(c)

Lg

a

2

2
(d) zero

8. A liquid of densityρand surface tensionσ rises in a capillary tube of inner radius R. The angle of
contact between the liquid and the glass is θ. The point A lies just below the meniscus in the
tube and the point B lies at the outside level of liquid in the beaker as shown in figure. The
pressure at A is

(a) p ghB − ρ (b) p
R

B − 2 σ θcos
(c) p

R
atm − 2 σ θcos

(d) All of these

9. A large open tank has two holes in the wall. One is a square hole of side L at a depth h from the
top and the other is a circular hole of radius R at a depth 4h from the top. When the tank is
completely filled with water, quantities of water flowing out per second from both holes are the
same. Then R is equal to

(a)
L

2π
(b) 2πL (c) L (d)

L

2π
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10. Two identical cylindrical vessels with their bases at the same level each, contain a liquid of
density ρ. The area of either base is A but in one vessel the liquid height is h1 and in the other
liquid height is h h h2 2 1( )< . If the two vessels are connected, the work done by gravity in
equalizing the levels is

(a)
1

2
1 2

2( )h h A g− ρ (b)
1

2
1 2( )h h A g+ ρ

(c)
1

2
1
2

2
2( )h h A g− ρ (d)

1

4
1 2

2( )h h A g− ρ

11. A cubical block of side 10 cm floats at the interface of an oil and water as shown in the figure.

The density of oil is 0.6 g cm−3 and the lower face of ice cube is 2 cm below the interface. The
pressure above that of the atmosphere at the lower face of the block is

(a) 200 Pa (b) 620 Pa

(c) 900 Pa (d) 800 Pa

12. A leakage begins in water tank at position P as shown in the figure. The initial gauge pressure

(pressure above that of the atmosphere) at P was 5 105 2× N/ m . If the density of water is

1000 3kg/ m the initial velocity with which water gushes out is approximately

(a) 3.2 ms−1 (b) 32 1ms−

(c) 28 1ms− (d) 2.8 ms−1

13. The figure shows a pipe of uniform cross-section inclined in a vertical plane. A U-tube
manometer is connected between the points A Band . If the liquid of density ρ0 flows with
velocity v0 in the pipe. Then the reading h of the manometer is

(a) h = 0 (b) h
v

g
= 0

2

2

(c) h
v

g
=









ρ
ρ
0 0

2

2
(d) h

H=
−

ρ
ρ ρ

0

0
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14. A horizontal tube of uniform cross-sectional area A is bent in the form of U as shown in figure. If
the liquid of density ρ enters and leaves the tube with velocity v , then the external force F
required to hold the bend stationary is

(a) F = 0 (b) ρAv2

(c) 2 2ρAv (d)
1

2

2ρAv

15. A rectangular container moves with an acceleration a along the positive direction as shown in
figure. The pressure at the point A in excess of the atmospheric pressure p0 is (take ρ as the
density of liquid)

(a) ρgh (b) ρal

(c) ρ ( )gh al+ (d) Both (a) and (b)

16. A candle of diameter d is floating on a liquid in a cylindrical container of diameter D D d( )> > as
shown in figure. It it is burning at the rate of 2 cm/h. Then, the top of the candle will

(a) remain at the same height (b) fall at the rate of 1 cm/h

(c) fall at the rate of 2 cm/h (d) go up at the rate of 1 cm/h

17. A square gate of size 1 m × 1 m is hinged at its mid point. A fluid of densityρ fills the space to the
left of the gate. The force F required to hold the gate stationary is

(a)
ρg

3
(b)

1

2
ρg

(c)
ρg

6
(d) None of these
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18. A thin uniform circular tube is kept in a vertical plane. Equal volumes of two immiscible liquids
whose densities are ρ ρ1 2and fill half of the tube as shown. In equilibrium the radius passing
through the interface makes an angle of 30° with vertical. The ratio of densities( / )ρ ρ1 2 is equal to

(a)
3 1

2 3

−
−

(b)
3 1

2 3

+
+

(c)
3 1

3 1

−
+

(d)
3 1

3 1

+
−

19. A plate moves normally with the speed v1 towards a horizontal jet of water of uniform area of
cross-section. The jet discharges water at the rate of volume V per second at a speed of v2. The
density of water is ρ. Assume that water splashes along the surface of the plate ar right angles
to the original motion. The magnitude of the force acting on the plate due to the jet of water is

(a) ρVv1 (b) ρ V

v
v v

2
1 2

2

 +




 ( ) (c)

ρV

v v
v

1 2
1

2

+
( ) (d) ρV v v( )1 2+

20. A spherical ball of density ρand radius 0.003 m is dropped into a tube containing a viscous fluid

up to the 0 cm mark as shown in the figure. Viscosity of the fluid = 1.26 N-s/m2 and its density

ρ ρ
L = =

2
1260 3kg/ m . Assume that the ball reaches a terminal speed at 10 cm mark. The time

taken by the ball to travel the distance between the 10 cm and 20 cm mark is ( )g = 10 2m/ s

(a) 2 s (b) 1 s

(c) 0.5 s (d) 5 s

21. In the figure shown, the heavy cylinder (radius R) resting on a smooth surface separates two
liquids of densities 2 3ρ ρand . The height h for the equilibrium of cylinder must be

(a) 3 2R/ (b) R
3

2

(c) R 2 (d) None of these
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22. A U-tube having horizontal arm of length 20 cm, has uniform cross-sectional area = 1 2cm . It is
filled with water of volume 60 cc. What volume of a liquid of density 4 g / cc should be poured
from one side into the U-tube so that no water is left in the horizontal arm of the tube?

(a) 60 cc (b) 45 cc (c) 50 cc (d) 35 cc

23. A cubical block of side a and density ρslides over a fixed inclined plane with constant velocity v.
There is a thin film of viscous fluid of thickness t between the plane and the block. Then the
coefficient of viscosity of the film will be

(a)
3

5

ρagt

v
(b)

4

5

ρagt

v
(c)

ρagt

v
(d) None of these

24. A spring balance reads 10 kg when a bucket of water is suspended from it. What will be the
reading of the balance when an iron piece of mass 7.2 kg suspended by a string is immersed
with half its volume inside the water in the bucket? Relative density of iron is 7.2.

(a) 10 kg (b) 10.5 kg (c) 13.6 kg (d) 17.2 kg

25. Three points A B C, and on a steady flow of a non-viscous and incompressible fluid are
observed. The pressure, velocity and height of the points A B C, and are ( , , )2 3 1 , (1, 2, 2) and

(4, 1, 2) respectively. Density of the fluid is 1 3kgm− and all other parameters are given in

SI units. Then which of the following is correct? ( )g = −10 2ms .

(a) Points A Band lie on the same stream line

(b) Points B Cand lie on the same stream line

(c) Points C Aand lie on the same stream line

(d) None of the above

26. A body of density ρ is dropped from rest from height h (from the surface of water) into a lake of
density of waterσ σ ρ( )> . Neglecting all dissipative effects, the acceleration of body while it is in
the lake is

(a) g
σ
ρ

−





1 upwards (b) g
σ
ρ

−





1 downwards

(c) g
σ
ρ







upwards (d) g
σ
ρ







downwards

27. A tank is filled up to a height 2H with a liquid and is placed on a platform of height H from the
ground. The distance x from the ground where a small hole is punched to get the maximum
range R is

(a) H (b) 1.25 H (c) 1.5 H (d) 2 H
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28. Two boats of base areas A A1 2and , connected by a string are being pulled by an external force
F0. The viscosity of water is η and depth of the water body is H . When the system attains a
constant speed, the tension in the thread will be

(a) F
A

A
0

1

2







 (b) F

A

A A
0

2

1 2( )+
(c) F

A

A A
0

1

1 2( )+
(d) F

A

A
0

2

1









29. A U-tube is partially filled with water. Oil which does not mix with water is next poured into

one side, until water rises by 25 cm on the other side. If the density of oil is 0.8 g/ cm3 , the oil

level will stand higher than the water level by

(a) 6.25 cm (b) 12.50 cm (c) 31.75 cm (d) 25 cm

30. There is a horizontal film of soap solution. On it a thread is placed in the form of a loop. The film
is punctured inside the loop and the thread becomes a circular loop of radius R. If the surface
tension of the soap solution be T, then the tension in the thread will be

(a) π R T2 / (b) π2 2R T

(c) 2π RT (d) 2RT

31. A thin metal disc of radius r floats on a liquid surface and bends the surface downwards along
the perimeter making an angle θ with vertical edge of the disc. If the disc displaces a weight of
liquid w and surface tension of liquid is T, then the weight of metal disc is

(a) 2π rT w+ (b) 2 π θrT wcos −
(c) 2 π θrT wcos + (d) w rT−2 π θcos

32. The radii of the two columns is U-tube are r1, and r r2 1( )> . When a liquid of density ρ (angle of
contact is 0°) is filled in it, the level difference of liquid in two arms is h. The surface tension of
liquid is
(g = acceleration due to gravity)

(a)
ρ g hr r

r r

1 2

2 12( )−
(b)

ρ gh r r

r r

( )2 1

1 22

−

(c)
2 2 1

1 2

( )r r

gh r r

−
ρ

(d)
ρ gh

r r2 2 1( )−

33. Water rises to a height h in a capillary tube lowered vertically into
water to a depth l as shown in the figure. The lower end of the tube is
now closed, the tube is then taken out of the water and opened again.
The length of the water column remaining in the tube will be

(a) 2h if l h≥ and l h+ if l h≤
(b) h if l h≥ and l h+ if l h≤
(c) 4h if l h≥ and l h− if l h≤

(d)
h

2
if l h≥ and l h+ if l h≤

34. Two parallel glass plates are dipped partly in the liquid of density ‘d ’ keeping them vertical. If
the distance between the plates is ‘x’, Surface tension for liquid is T and angle of contact is θ
then rise of liquid between the plates due to capillary will be

(a)
T

xd

cosθ
(b)

2T

xdg

cosθ
(c)

2T

x dg cosθ
(d)

T

x dg

cosθ
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35. Two identical spherical soap bubbles collapses. If V is the consequent change in volume of the
contained air, S is the change in the total surface area and T is the surface tension of the soap
solution, then (if p0 is atmospheric pressure and assume temperature to remain same in all the
bubbles).

(a) 3 4 00p V ST+ = (b) 4 3 00p V ST+ =
(c) p V TS0 4 0+ = (d) 4 00p V ST+ =

36. A cylinder with a movable piston contains air under a pressure p1 and a soap bubble of radius
‘r’. The pressure p2 to which the air should be compressed by slowly pushing the piston into the
cylinder for the soap bubble to reduce its size by half will be (The surface tension is σ, and the
temperature T is maintained constant).

(a) 8
24

1p
r

+





σ
(b) 4

24
1p

r
+





σ

(c) 2
24

1p
r

+





σ
(d) 2

24
1p

r
+





σ

37. A thin metal ring of internal radius 8 cm and external radius 9 cm is supported horizontally
from the pan of a balance so that it comes in contact with water in a glass vessel, If is found that
an extra weight of 7.48 g is required to pull the ring out of water. The surface tension of water is

( )g = 10 2m/ s

(a) 80 10 3× −
N/m (b) 25 10 3× −

N/m

(c) 45 10 3× −
N/m (d) 70 10 3× −

N/m

More than One Correct Options

1. A large wooden plate of area10 2m floating on the surface of a river is made to move horizontally

with a speed of 2 m/s by applying a tangential force. River is 1 m deep and the water in contact
with the bed is stationary. Then choose correct statement(s).

(coefficient of viscosity of water = −10 3 N-s/m2)

(a) velocity gradient is 2 1s−

(b) velocity gradient is 1 1s−

(c) force required to keep the plate moving with constant speed is 0.02 N

(d) force required to keep the plate moving with constant speed is 0.01 N

2. Choose the correct options.

(a) Viscosity of liquids increases with temperature

(b) Viscosity of gases increases with temperature

(c) Surface tension of liquids decreases with temperature

(d) For angle of contact θ = °0 , liquid neither rises nor falls on capillary

3. A plank is floating in a non-viscous liquid as shown. Choose the correct options.

(a) Equilibrium of plank is stable in vertical direction

(b) For small oscillations of plank in vertical direction motion is simple harmonic

(c) Even if oscillations are large, motion is simple harmonic till it is not fully immersed

(d) On vertical displacement motion is periodic but not simple harmonic
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4. A non-viscous incompressible liquid is flowing from a horizontal pipe of non-uniform cross
section as shown. Choose the correct options.

(a) speed of liquid at section-2 is more

(b) volume of liquid flowing per second from section-2 is more

(c) mass of liquid flowing per second at both the sections is same

(d) pressure at section-2 is less

5. A plank is floating in a liquid as shown. Fraction f of its volume is immersed. Choose the
correct options.

(a) If the system is taken to a place where atmospheric pressure is more, f will increase

(b) In above condition f will remain unchanged

(c) If temperature is increased and expansion of only liquid is considered f will increase

(d) If temperature is increased and expansion of only plank is considered f will decrease

6. In two figures,

(a) v v1 2

1

2
/ = (b) t t1 2 2/ =

(c) R R1 2 1/ = (d) v v1 2

1

4
/ =

7. A liquid is filled in a container as shown in figure. Container is accelerated towards right. There
are four points A B C D, , and in the liquid. Choose the correct options.

(a) p pA B> (b) p pC A>
(c) p pD B> (d) p pA C>
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8. A ball of density ρ is dropped from a height on the surface of a non-viscous liquid
of density 2ρ. Choose the correct options.

(a) Motion of ball is periodic but not simple harmonic

(b) Acceleration of ball in air and in liquid are equal

(c) Magnitude of upthrust in the liquid is two times the weight of ball

(d) Net force on ball in air and in liquid are equal and opposite

9. Two holes 1 and 2 are made at depths h and 16h respectively. Both the holes
are circular but radius of hole-1 is two times.

(a) Initially equal volumes of liquid will flow from both the holes in unit time

(b) Initially more volume of liquid will flow from hole-2 per unit time

(c) After some time more volume of liquid will flow from hole-1 per unit time

(d) After some time more volume of liquid will flow from hole-2 per unit time

10. A solid sphere, a cone and a cylinder are floating in water. All have same mass, density and
radius. Let f f f1 2 3, and are the fraction of their volumes inside the water and h h1 2, and h3

are the depths inside water. Then

(a) f f f1 2 3= = (b) f f f3 2 1> >
(c) h h3 1< (d) h h3 2<

Comprehension Based Questions
Passage 1 (Q. Nos. 1 to 3)

The spouting can is something used to demonstrate the variation of
pressure with depth. When the corks are removed from the tubes in
the side of the can, water flows out with a speed that depends on the
depth. In a certain can, three tubes T T T1 2 3, and are set at equal

distances ‘a’ above the base of the can. When water contained in this
can is allowed to come out of the tubes, the distances on the
horizontal surface are measured as x x x1 2 3, and .

1. Speed of efflux is

(a) 3gh (b) 2gh (c) gh (d)
1

2
2gh

2. Distance x3 is given by

(a) 3 a (b) 2 a (c)
1

2
3 a (d) 2 3 a
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3. The correct sketch is

(a) (b)

(c) (d) None of these

Passage 2 (Q. Nos. 4 to 7)

A container of large uniform cross-sectional area A resting on a horizontal surface, holds two
immiscible, non-viscous and incompressible liquids of densities d dand 2 each of height H / 2 as
shown in the figure. The lower density liquid is open to the atmosphere having pressure P0. A
homogeneous solid cylinder of length L L H( / )< 2 and cross-sectional area A/ 5 is immersed such
that it floats with its axis vertical at the liquid-liquid interface with length L/ 4 in the denser
liquid.

The cylinder is then removed and the original arrangement is restored. A tiny hole of area
s s A( )< < is punched on the vertical side of the container at a height h h H( / )< 2 . As a result of
this, liquid starts flowing out of the hole with a range x on the horizontal surface.

4. The density D of the material of the floating cylinder is

(a) 5 4d / (b) 3 4d / (c) 4 5d/ (d) 4 3d /

5. The total pressure with cylinder, at the bottom of the container is

(a) p
L H

dg0

6

4
+ +( )

(b) p
L H

dg0

6

4
+ +( )

(c) p
L H

dg0

3

4
+ +( )

(d) p
L H

dg0

2

4
+ +( )
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6. The initial speed of efflux without cylinder is

(a) v
g

H h= +
3

3 4[ ] (b) v
g

H h= −
2

4 3[ ]

(c) v
g

H h= −
2

3 4[ ] (d) None of these

7. The initial value of x is

(a) ( )3 4H h h+ (b) ( )3 4h H h+
(c) ( )3 4H h h− (d) ( )3 3H h h−

Match the Columns

1. Three holes A B C, and are made at depths 1m, 2 m and 5 m as shown. Total
height of liquid in the container is 8 m. Let v is the speed with which liquid
comes out of the hole and R the range on ground. Match the following two
columns.

Column I Column II

(a) v is maximum for (p) hole A

(b) v is minimum for (q) hole B

(c) R is maximum for (r) hole C

(d) R is minimum for (s) will depend on density

of liquid

2. Match the following two columns.

Column I Column II

(a) When temperature is

increased

(p) Upthrust on a floating

solid of constant volume

will increase

(b) When density of liquid is

increased

(q) Upthrust on a floating

solid of constant volume

will decrease

(c) When density of solid is

increased

(r) Viscosity of gas will

decrease

(d) When atmospheric pressure

is increased

(s) None

3. A ball of density ρ is released from the surface of a liquid whose density varies with depth h as,
ρ αl h= . Here α is a positive constant. Match the following two columns. (liquid is ideal)
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Column I Column II

(a) Upthrust on ball (p) will continuously

decrease

(b) Speed of ball (q) will continuously

increase

(c) Net force on ball (r) first increase then

decrease

(d) Gravitational potential

energy of ball

(s) first decrease then

increase

4. Match the following two columns.

Column I Column II

(a) Surface tension (p) [ ]ML T− −1 2

(b) Coefficient of viscosity (q) [ ]L T3 1−

(c) Energy density (r) [ ]MT−2

(d) Volume flow rate (s) [ ]ML T− −1 1

5. A cylinder of weight W is floating in two liquids as shown in figure. Net force on cylinder from

top is F1 and force on cylinder from the bottom is F2. Match the following two columns.

Column I Column II

(a) Net force on cylinder from liquid-1 (p) Zero

(b) F F2 1− (q) W

(c) Net force on cylinder from liquid-2 (r) Net upthrust

(d) Net force on cylinder from

atmosphere

(s) None of these

Subjective Questions

1. A wooden plank of length 1 m and uniform cross-section is hinged at one end to the bottom of a
tank as shown in figure. The tank is filled with water upto a height of 0.5 m. The specific gravity
of the plank is 0.5. Find the angle θ that the plank makes with the vertical in the equilibrium
position. (Exclude the case θ = 0)
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2. A cubical block of wood of edge 3 cm floats in water. The lower surface of the
cube just touches the free end of a vertical spring fixed at the bottom of the
pot. Find the maximum weight that can be put on the block without wetting

the new weight. Density of wood = 800 kg/m3 and spring constant of the

spring = 50 N/m. (Take g = 10 m/s2)

3. Figure shows a container having liquid of variable density. The density of liquid varies as

ρ ρ= −






0

0

4
3h

h
. Here, h0 and ρ0 are constants and h is measured from bottom of the container.

A solid block of small dimensions whose density is
5

2
0ρ and mass m is released from bottom of

the tank. Prove that the block will execute simple harmonic motion. Find the frequency of
oscillation.

4. A cylindrical tank 1 m in radius rests on a platform 5 m high. Initially the tank is filled with

water to a height of 5 m. A plug whose area is10 4 2− m is removed from an orifice on the side of the
tank at the bottom. Calculate (a) initial speed with which the water flows from the orifice,
(b) initial speed with which water strikes the ground, (c) time taken to empty the tank to half its

original value. (g = 10 2m/ s )

5. A block of mass m is kept over a fixed smooth wedge. Block is attached to a sphere of same mass
through fixed massless pullies P1 and P2. Sphere is dipped inside the water as shown. If specific
gravity of material of sphere is 2. Find the acceleration of sphere.

6. A cubic body floats on mercury with 0.25 fraction of its volume below the surface. What fraction
of the volume of the body will be immersed in the mercury if a layer of water poured on top of the
mercury covers the body completely ?
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7. A siphon tube is discharging a liquid of specific gravity 0.9 from a reservoir as shown in the
figure.

(a) Find the velocity of the liquid through the siphon.

(b) Find the pressure at the highest point B.

(c) Find the pressure at point C.

8. A long cylindrical tank of cross-sectional area 0.5m2 is filled with water. It has a small hole at a

height 50 cm from the bottom. A movable piston of cross-sectional area almost equal to 0.5 m2 is
fitted on the top of the tank such that it can slide in the tank freely. A load of 20 kg is applied on
the top of the water by piston, as shown in the figure. Calculate the speed of the water jet with
which it hits the surface when piston is 1 m above the bottom. (Ignore the mass of the piston).

9. The shape of an ancient water clock jug is such that water level descends at a constant rate at
all times. If the water level falls by 4 cm every hour, determine the shape of the jar, i.e. specify x
as a function of y. The radius of drain hole is 2 mm and can be assumed to be very small
compared to x.

10. A spring is attached to the bottom of an empty swimming pool, with the axis of the spring

oriented vertically. An 8.00 kg block of wood (ρ = 840 kg/m3 ) is fixed to the top of the spring

and compresses it. Then the pool is filled with water, completely covering the block. The
spring is now observed to be stretched twice as much as it had been compressed. Determine
the percentage of the block's total volume that is hollow. Ignore any air in the hollow space.

11. A rectangular tank of height 10 m filled with water, is placed near the bottom of a plane
inclined at an angle 30° with horizontal. At height h from bottom a small hole is made (as
shown in figure) such that the stream coming out from hole, strikes the inclined plane
normally.
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Calculate h.

12. A ball of density d is dropped onto a horizontal solid surface. It bounces elastically from the
surface and returns to its original position in a time t1. Next, the ball is released and it falls
through the same height before striking the surface of a liquid of density dL .

(a) If d dL< , obtain an expression (in terms of d, t1 and dL ) for the time t2 the ball takes to come

back to the position from which it was released.

(b) Is the motion of the ball simple harmonic ?

(c) If d dL= , how does the speed of the ball depend on its depth inside the liquid ? Neglect all

frictional and other dissipative forces. Assume the depth of the liquid to be large.

13. There is an air bubble of radius 1.0 mm in a liquid of surface tension 0.075 N/m and density

1000 kg/m3 . The bubble is at a depth of 10 cm below the free surface. By what amount is the

pressure inside the bubble greater than the atmospheric pressure ? (Take g = 9.8 m/s2)

14. A metal sphere of radius 1 mm and mass 50 mg falls vertically in glycerine. Find

(a) the viscous force exerted by the glycerine on the sphere when the speed of the sphere is 1 cm/s,

(b) the hydrostatic force exerted by the glycerine on the sphere and (c) the terminal velocity with

which the sphere will move down without acceleration. Density of glycerine = 1260 kg/m3 and

its coefficient of viscosity at room temperature = 8.0 poise.

15. A wire forming a loop is dipped into soap solution and taken out, so that a film of soap solution is
formed. A loop of 6.28 cm long thread is gently put on the film and the film is pricked with a
needle inside the loop. The thread loop takes the shape of a circle. Find the tension in the
thread. Surface tension of soap solution = 0.030 N/m.

16. A cylindrical vessel is filled with water upto a height of 1 m. The cross-sectional area of the
orifice at the bottom is (1/400) that of the vessel.

(a) What is the time required to empty the tank through the orifice at the bottom?

(b) What is the time required for the same amount of water to flow out if the water level in tank is

maintained always at a height of 1 m from orifice?

17. A tank having a small circular hole contains oil on top of water. It is immersed in a large tank of
the same oil. Water flows through the hole. What is the velocity of this flow initially? When the
flow stops, what would be the position of the oil-water interface in the tank from the bottom.
The specific gravity of oil is 0.5.
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18. What work should be done in order to squeeze all water from a
horizontally located cylinder (figure) during the time t by means of a
constant force acting on the piston? The volume of water in the
cylinder is equal to V, the cross-sectional area of the orifice is s, with
s being considerably less than the piston area. The friction and
viscosity are negligibly small. Density of water is ρ.

19. A cylinder is fitted with a piston, beneath which is a spring, as in the figure. The cylinder is
open at the top. Friction is absent. The spring constant of the spring is 3600 N/m. The piston
has a negligible mass and a radius of 0.025 m. (a)  When air beneath the piston is completely
pumped out, how much does the atmospheric pressure cause the spring to compress? (b)  How
much work does the atmospheric pressure do in compressing the spring?

20. A non-viscous liquid of constant density 1000 kg/m3 flows in a streamline
motion along a tube of variable cross-section. The tube is kept inclined in
the vertical plane as shown in the figure. The area of cross-section of the
tube at two points P and Q at heights of 2 m and 5 m are respectively
4 10 3 2× – m and 8 10 3 2× – .m The velocity of the liquid at point P is 1 m/s.
Find the work done per unit volume by the pressure and the gravity forces
as the fluid flows from point P to Q. Take g = 9.8 m/ s2.

21. A glass plate of length 10 cm, breadth 1.54 cm and thickness 0.20 cm weighs 8.2 gm in air. It is
held vertically with the long side horizontal and the lower half under water. Find the apparent

weight of the plate. Surface tension of water = 73 dyne per cm, g = 980 2cm/ sec .

22. Two narrow bores of diameters 3.0 mm and 6.0 mm are joined together to form a U-shaped tube
open at both ends. If the U-tube contains water, what is the difference in its levels in the two
limbs of the tube? Surface tension of water at the temperature of the experiment is
7.3 Nm× − −10 2 1. Take the angle of contact to be zero, and density of water to be1.0 kg/ m× 103 3

(g = −9.8 ms 2).

23. Two identical soap bubbles each of radius r and of the same surface tension T combine to form a
new soap bubble of radius R. The two bubbles contain air at the same temperature. If the
atmospheric pressure is p0 then find the surface tension T of the soap solution in terms of p0, r
and R. Assume process is isothermal.

Note Students are advised to attempt question numbers 24 and 25 after studying the chapter of electrostatics in

class XII.

24. A soap bubble of radius r and surface tension ‘T’ is given a potential of' V volt. Show that the
new radius ‘R’ of the bubble is related to its initial radius by equation ,

p R r T R r V R0
3 3 2 2

0
24 2 0[ ] [ ] /− + − − =ε

where, p0 is the atmosphere pressure.

25. If the radius and surface tension of a spherical soap bubble are ‘R’ and ‘T’ respectively, then
show that the charge required to double its radius would be, 8 7 120 0

1 2π εR R p R T[ [ ]] /+ , where
p0 is the atmospheric pressure.
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Answers
Introductory Exercise 16.1

1. 18 cm 2. 27 cm 3. (a) 109 10
5

. × N/m
2

(b) 112 10
5 2

. × N/m 4. p p
mg

A
= +0 5. 50 N 6. 50 cm

Introductory Exercise 16.2
1. Maximum at C and minimum at B 2. 2g 3. 3 10

5 2× N /m

Introductory Exercise 16.3
2. 23.7 N 3. 0.206 N 4. (a) 147

2
. m /s (b) 0.63 s

Introductory Exercise 16.4
1. (a) 20 cm/s (b) 485

2
N /m 2. (a) 25 cm/s (b) 50 cm/s (c) 94

2
N /m 3. (c) 4. 500

Introductory Exercise 16.5

1. 20 m/s 2.
t0

3 1−









 3. (a)

Introductory Exercise 16.6
1. 0.882 mm/s 2. v v′ = ( )

/
2

2 3 3. F = 0 02. N 4. 10
3 2−

N /m

Introductory Exercise 16.7

1. 4 35 10
3

. × −
J 2. 144 10

5
. × −

J 3. 8
2πR T 4. p p h g

T

r
= + +0

2ρ

Introductory Exercise 16.8

1. 6.0 cm 2.
T

T
m

w

= 7 23. 3. 1.4 mm 4. (d)

Exercises
LEVEL 1
Assertion and Reason

1. (d) 2. (a) 3. (d) 4. (a) 5. (d) 6. (d) 7. (b) 8. (a) 9. (d) 10. (d)

11. (c)

Single Correct Option

1. (a) 2. (d) 3. (d) 4. (a) 5. (d) 6. (b) 7. (a) 8. (a) 9. (d) 10. (d)

11. (a) 12. (b) 13. (c) 14. (a) 15. (c) 16. (c) 17. (c) 18. (b) 19. (a) 20. (b)

21. (b) 22. (a) 23. (c) 24. (a) 25. (a) 26. (d) 27. (c) 28. (d) 29. (a) 30. (d)

31. (c) 32. (b) 33. (c) 34. (c) 35. (d) 36. (d) 37. (d) 38. (d) 39. (c) 40. (c)

41. (d) 42. (c) 43. (a) 44. (d) 45. (d) 46. (a) 47. (d) 48. (a) 49. (d)

Subjective Questions
1. False 2. Zero 3. Vessel B 4. 2

2 3/ W

5. It will remain same 6. 3840 kg/m
3 7. 28

3
cm 8. 0.33 m

3

9. 17 cm 10. 0.6 gm/cm 0.705 gm/cm
3 3
, 11. 6.03 g

12. 6.92 Pa× 10
5 13. 0.8

14. Mercury will rise in the arm containing sprit. The difference in level is 0.221 cm



15. (i) Absolute pressure = 96 cm of Hg, Gauge pressure = 20 cm of Hg for (a),

absolute pressure = 58 cm of Hg, gauge pressure = − 18 cm of Hg for (b)

(ii) Mercury would rise in the left limb such that the difference in the levels in the two limbs becomes 19 cm.

16. (a) 2.25 m/s (b) zero 17. (a) 7.0 10 m s
2 3× − / (b) 2.24 10 Pa

4× (c) 1.5 m s
3× −

10
1 /

18. (a) 2 10 m
6 3× −

, 5000 kg/m
3

(b) 750 kg/m
3 19. 32 mm in mercury and 28 mm in water

20. T = 20 N,V = × −
32 10

3
m

3 21. (a) 24 N (b) 12 m s
2

/

22. (a) 10.9 cm (b) 2.5 cm 23. (a)
ρg h/

2

2
(b)

ρg h/
3

6
(c)

h

3
24. 0.58 cm 25.

R

h

2

4

26. v
F

A
= 2

ρ
27. 12.4 m/s 28. vB ≈ 3.28 m/s 29. 19.5 mm of Hg 30. h = 1 cm, if seal is broken water

will rise in the capillary.

31. 14.4 J× −
10

6 32. 1860 N/m
2 33. 440

2
dyne/cm 34. 4.76 mm

35. 9.48 cm 37.
2T

grρ

LEVEL 2
Single Correct Option

1. (a) 2. (d) 3. (c) 4. (c) 5. (c) 6. (a) 7. (b) 8. (d) 9. (a) 10. (d)

11. (d) 12. (b) 13. (a) 14. (c) 15. (b) 16. (b) 17. (c) 18. (d) 19. (d) 20. (d)

21. (b) 22. (d) 23. (a) 24. (b) 25. (d) 26. (a) 27. (c) 28. (c) 29. (b) 30. (d)

31. (c) 32. (a) 33. (a) 34. (b) 35. (a) 36. (a) 37. (d)

More than One Correct Options

1. (a,c) 2. (b,c) 3. (a,b,c) 4. (a,c,d) 5. (b,c,d) 6. (a,b,c) 7. (a,c)

8. (a,c,d) 9. (a,d) 10. (a,c,d)

Comprehension Based Questions

1. (b) 2. (d) 3. (d) 4. (a) 5. (b) 6. (c) 7. (c)

Match the Columns
1. (a) → r , (b) → p, (c) → r, (d) → p 2. (a) → s,  (b) → s,  (c) → p,  (d) → s

3. (a) → r,  (b) → r,  (c) → s,  (d) → s 4. (a) → r,  (b) → s,  (c) → p,  (d) → q

5. (a) → p, (b) → q,r,  (c) → s,  (d) → s

Subjective Questions

1. 45° 2. 0.354 N 3.
1

2

6

5 0π
g

h
4. (a) 10 m/s (b) 14.1 m/s (c) 9200 s

5. zero 6. 0.19 7. (a) 9.9 m/s (b) 4.36 10 Pa
4× (c) 6.6 10 Pa

4× 8. 4.51 m/s

9. y x= 0.4
4 10. 60.41% 11. 8.33 m

12. (a)
t d

d d
L

L

1

−
(b) No (c) The ball will continue to move with constant velocity v

gt= 1

2
inside the liquid.

13. 1130 Pa 14. (a) 1.5 10
4× −

N (b) 5.2 10
5× −

N (c) 32.5 m/s 15. 3.0 10
4× −

N

16. (a) 3 min (b) 1.5 min 17. 9.8 m/s, 5.0 m 18.
1

2

3

2 2

ρV

s t
19. (a) 5.5 cm (b) 5.445 J

20. 29025 J/m
3
, 29400 J/m

3 21. 8.1796 g 22. 5 mm 23. T
p r R

R r
=

−
−

0

3 3

2 2

2

4 2

( )

( )
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11. Centre of Mass, Linear Momentum and Collision

2.

The COM of L-shaped rod shown in above figure is

lying outside the body.

4. x
m x m x

m m
CM = +

+
1 1 2 2

1 2

x x1 2 0= = ⇒ xCM = 0

5.

x r< /2, as more mass is concentrated near the line

PQ.

6.

All particles of semicircular ring lie at a distance R

from originO. But its COM distance yfromO is less

than R.

7. x
m x m x m x

m m m
CM = + +

+ +
1 1 2 2 3 3

1 2 3

= + +
+ +

( ) ( ) ( ) ( ) ( ) ( )1 0 2 1 3

1 2 3

0.5 = 7

12
m

y
m y m y m y

m m m
CM = + +

+ +
1 1 2 2 3 3

1 2 3

=
+ +









+ +

( ) ( ) ( ) ( ) ( )1 0 2 0 3
3

2

1 2 3

= 3

4
m

∴ d x x= +CM CM
2 2

= 19

6
m Ans.

8. y
A y A y

A A
CM =

−
−

1 1 2 2

1 2

= −
−

( / ) ( / ) ( / ) ( / )

( / ) ( / )

π π π π
π π

b b a a

b a

2 2

2 2

2 4 3 2 4 3

2 2

= −
−











4

3

3 3

2 2π
b a

b a

= + +
+









4

3

2 2

π
a ab b

a b
Ans.

9. x
A x A x

A A
CM =

−
−

1 1 2 2

1 2

= −
−

( ) ( ) ( ) ( / )4 3 2

4

2 2

2 2

a a a a

a a
= 5

6

a
Ans.

y
A y A y

A A
CM =

−
−

1 1 2 2

1 2

= −
−

( ) ( ) ( ) ( / )4 3 2

4

2 2

2 2

a a a a

a a

= 5

6

a
Ans.

10. x
m x m x m x m x

m m m m

A A B B C C D D

A B C D
CM = + + +

+ + +

= + + +
+ + +

( ) ( ) ( ) ( ) ( )1 0 2 1 3 1 4 0

1 2 3 4

= 0.5 m

y
m y m y m y m y

m m m m

A A B B C C D D

A B C D
CM = + + +

+ + +

= + + +
+ + +

( ) ( ) ( ) ( ) ( )1 0 2 0 3 1 4 1

1 2 3 4
= 0.7 m

∴ d x y2 2 2= +CM CM

= 0.74 m2 Ans.

COM

P Q

COM

x

COM

y R

O

3 kg

1 kg 2 kg
(0, 0) (1m, 0)

(0.5 m, 3 m)√

x

y

2

y

x

CD

A
B

1 m

1 m
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11. d
A d A d

A A
=

+
+

1 1 2 2

1 2

Here, d = distance of centre of mass from O.

∴ d

a a a

a a
=

+ 





+

( ) ( ) ( )

( / )

2 2

2 2

0
4

4

π

π

=
+









π
π 4

a

12.

Let A = area of cross section of rod.

x

xdm

dm

l

lCM =
∫

∫
0

0

=
∫

∫

( ) ( )

( )

0

0

2

2

0

0

2

2

l

l

x Adx
x

l

Adx
x

l

ρ

ρ

= 3

4

l
Ans.

13. x

xdm

dm

L

LCM =
∫

∫
0

0

= =
∫

∫

( ) ( )

( )

0

0

2

3

L

L

X Axdx

Axdx

L Ans.

1. x
m x m x

m m
CM = +

+
1 1 2 2

1 2

= + + +
+

m x vt m x vt

m m

i i1 1 2 2

1 2

( ) ( )

= − × + + ×
+

( ) ( ) ( ) ( )1 10 6 2 2 12 4 2

1 2

= 12.67 m Ans.

2. S
m S m S

m m
CM = +

+
1 1 2 2

1 2

=
+
+

m v t m v t

m m

1 1 2 2

1 2

( ) ( )

= + −
+

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 1

1 2

= 0

3.

Displacement of centre of mass,

S
m l m l

m m
CM = +

+
1 1 2 2

1 2

Ans.

4. (a) x
m x m x

m m
CM = +

+
1 1 2 2

1 2

⇒ 3
0 121

1

= +
+

m

m

( ) ( ) ( )0.10

0.1

Solving this equation we get,

m1 = 0.3 kg Ans.

(b) P vCM CM CM= m

= +( ) ( $)0.1 0.3 6j

= ( $)2.4 kg - m/sj Ans.

(c) P P PCM = +1 2

∴ ( $) ( ) ( ) ( )2.4 0.3 0.1j v= +1 0

∴ v j1 8= ( $) m/s Ans.

5. First stone gets 300 ms journey time and second

stone gets 200 ms journey time.

(a) d
m d m d

m m
CM = +

+
1 1 2 2

1 2

=





 + 





+

m gt m gt

m m

1 1
2

2 2
2

1 2

1

2

1

2

=
× × ×



 + × × ×





+

( ) .m m

m m

1

2
10 0 3 2

1

2
10

2

0.3 0.2 0.2

= 0.283 m

≈ 28 cm Ans.

(b) v
m v m v

m m
CM = +

+
1 1 2 2

1 2

= +
+

m gt m gt

m m

1 1 2 2

1 2

( ) ( )

= × + ×
+

( ) ( ) ( ) ( )m m

m m

10 2 10

2

0.3 0.2

= 2.3 m/s Ans.

6. a = Net pulling force

Total mass

m1 m2

C

l1 l2

INTRODUCTORY EXERCISE 11.2

x

dxx = 0 x = l

a

a

mg sin 30°

m
g

si
n

6
0
° 1 2

90°

60° 30°



= ° − °mg mg

m

sin sin60 30

2

a g= −







3 1

4

| | | |a a1 2= = a

∴ | |a a1 2 2 90+ = °a at

a
a a

COM = +
+

m m

m m

1 1 2 2

1 2

= +1

2
1 2( )a a (as m m1 2= )

∴ | |
| |

a
a a

COM = +1 2

2

= 2

2

a

= = −







a
g

2

3 1

4 2
Ans.

1. p pi f=

∴ ( ) ( $) ( $) ( $ )20 20 30 20 40 20i j k+ +

= + + +( ) ( ) ( $ $ )20 0 30 10 20 40i k v

Solving this equation we get,

v i j k= + +( $ $ $ )2.5 cm/s15 5 Ans.

2. p pi f=

∴ 0 25 5 10= +( )( ) ( )( )v

or v = −12 5. m/s

Negative sign implies that this velocity is opposite

to the direction of velocity of boy. Two velocities

are in opposite directions.

Hence, | |vr =Magnitude of relative velocity

= +12 5 5 0. . = 17 5. m/s

3. p km= 2

or p m∝

∴ p

p

m

m

1

2

1

2

1

4

1

2
= = =

4. p pi f=

∴ 0 4 14 10 2347= × +( )( . ) ( )v

∴ v = − ×2 4 105. m/s

Here, negative sign implies that this velocity is
opposite to the direction of velocity of alpha
particle.

5. p pi f=
∴ 0 50 18 6 1024= + ×( . ) ( )v

∴ v = − × −15 10 23. m/s

Negative sign implies the opposite direction of the

velocity of man.

6. m v m v1 1 2 2= (in opposite direction)

∴ ( ) ( ) ( )60 3 20 2= v

∴ v2 = 9 m/s Ans.

KE = × × + × ×1

2
60 3

1

2
20 92 2( ) ( )

= 1080J = 1.08 kJ Ans.

7. Path of COM will remain unchanged

x
R u

g
2

23

2

3

2

2= =








sin θ

= °3

2

20 90

10

2( ) sin = 60m Ans.

1. Thrust force = mg

∴ v
dm

dt
mgr −



 =

∴ −



 =dm

dt

mg

vr

=
×

( ) ( )200

103

9.8

1.6
= 1.225 kg/s

(i) In this case, fuel will be finished in 90 s.

v u gt v
m

m
r= − + 



ln 0

= − × + × 



0 90 10

200

20

39.8 1.6( ) ln

= 2.8 km /s Ans.
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a2

a1

90°

R/2 R/2 R/2

21 COM
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(ii) In this case, fuel is finished in 9 s.

∴ v = − × + × 



0 10 10

200

20

39.8 1.6 ln

= 3.6 km/s Ans.

2. After 1 min total 600 kg gases will be burnt.

v u gt V
m

m
r= − + 



ln 0

= − × + 



0 10 60 2000

1000

400
( )ln

= 1232 6. m/s

3. −



 =dm

dt
µ

Fnet = thrust force −weight

∴ ma v
dm

dt
mgr= −



 −

or ( ) ( ) ( )m t
d x

dt
u m t g0

2

2 0− = − −µ µ µ

4. −



 =dm

dt

m0

3

At t = 1, mass will remain,

m m
m

m= − =0
0

0
3

2

3

Now using the equation,

v u gt v
m

m
r= − + 



ln 0

= − +






0 1

2 3

0

0

g u
m

m
( ) ln

/

= 



 −u gln

3

2
Ans.

1. Using impulse = change in linear momentum

We have, F t mv mv m v vf i f i⋅ = − = −( )

or F ( ) [ ( )]2 2 10 0 43= × − −

or 2 8 103F = × or F = ×4 103 N

2. Using J v v= −m f i( )

− = − +3 2 3m m f
$ [ ( $ $)]i v i j

or v i i jf =− + +3 2 3$ ( $ $)

or v i jf = − +$ $3

Note The velocity component in the direction of $j is

unchanged. This is because there is no impulse

component in this direction.

3. Impulse = area under F t- graph

= = −∆p m v vf i( )

∴ v
m

f = Area
(as vi = 0)

= × × +1

2

20 10 8 16

12000

3( ) ( )

= 200 m/s Ans.

4. (a) v u as2 2 2= −

∴ a
u

s
=

2

2
( )v = 0

=
×

( )100

2

2

0.06
= ×8.3 m/s104 2

v u at= −
0 = −u at

or t
u

a
= =

×
100

1048.3

= × −1.2 s10 3 Ans.

(b) Impulse = =| |∆p mvi

= × −( ) ( )5 10 1003

= 0.5 N-s Ans.

(c) Impulse = ( )F tav

∴ F
t

av

Impulse=

=
× −
0.5

1.2 10 3

= 417 N Ans.

1. At maximum extension their velocities are same.

This common velocity is given by

v = Total momentum

Total mass

= × − ×
+

2 6 1 3

3 6
= 1 m/s

Now, E Ei f=

∴ 1

2
6 2

1

2
3 1

1

2
9 12 2 2× × + × × = ×( ) ( ) ( )

+ × ×1

2
200 2xm

Solving we get, xm = 0.3 m

= 30 cm Ans.
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2. Substituting the values in above result

K K

K

i f

i

−
=

+
4 1 2

1 2
2

m m

m m( )

= × ×
+

4 2

2 2

m m

m m( )

= 8

9
Ans.

3.
K K

K

K

K

i f

i

f

i

−
= −1

=
− ′1

1

2
1

2

1 1
2

1 1
2

m v

m v

= − ′





1 1

1

2
v

v

= − −
+









1 1 2

1 2
1 1

2
( )

( )
/

m m

m m
v v

=
+

4 1 2

1 2
2

m m

m m( )
Ans.

4. v
m m

m m
v

m

m m
v1

1 2

1 2
1

2

1 2
2

2′ = −
+







 +

+








We can see that v v1 2′ = only if m m1 2=
Similarly v v2 1′ = if m m1 2= .

5. In elastic collision between two equal masses,

velocities are interchanged.

6. v
m m

m m
v

m

m m
v1

1 2

1 2
1

2

1 2
2

2′ = −
+







 +

+








= −
+







 + + ×

+






 −1 2

1 2
4

2 2

1 2
6( ) ( )

= − 28

3
m/s Ans.

v2

2 1

1 2
6

2 1

1 2
4′ = −

+






 − + ×

+






 +( ) ( )

= 2

3
m/s Ans.

7. After first collision with B C+

v
m m

m m
vB ′ = −

+








4

4
= − 3

5
v

v
m

m m
v vC′ = ×

+






 =2

4

2

5

After second collision with B A+

Now since
9

25

2

5
v v vC< or

So, B will not collide with C further.

Hence total collisions are only 2.

8.

p pi f=

∴ mv m
v

mv= ′ + ′
2

∴ v v′ = 2

3

Now, e
RVOS

RVOA

v v

v
= = ′ − ′ /2

= ′ = =v

v

v

v

/ ( / )2 1 3 1

3
Ans.

9. (a) p pi f=

∴ mv MV=

⇒ M
mv

V
=

(b) e
RVOS

RVOA

V

v
= =

10. Component parallel to wall will remain unchanged

and component perpendicular to wall will become e

times but in opposite direction.

11. Initial velocity vector is making an angle of 90° − α
with plane. Therefore final velocity vector will also

make an angle 90° − α with inclined plane.

∴ Angle of v f with horizontal

θ α α= ° − −( )90

θ α= ° −( )90 2 Ans.

v ′
m

v
m ⇒ m

v ′/2
m

B
v

C

B C3
5

2
5v v

A B

6
10

9
25

2
5

3
5

3
5

3
5

v v= =

v v

vf

vi

θ
θ

θ

90° – α
90° – α



Exercises

LEVEL 1

Assertion and Reason

1.

In the above case, centre of mass lies outside the

body.

2. a
F

m
CM constant= =

3

∴ v a t
F

m
tCM CM= =

3

or v tCM ∝
3. To conserve linear momentum, forces can act on a

system but their vector sum should be zero.

4. Gases inside the rocket are pushed backwards.

5. Net vector sum of all internal forces = 0. So, they

cannot change the linear momentum.

6. p p1 2=

∴ 2 21 1 2 2K m K m=

or
K

K

m

m

1

2

2

1

=

⇒ K
m

∝ 1

7. Of the two masses A and B, mass A is moving

downwards. Therefore net force on the system is

vertically downwards and momentum is not

conserved in vertical direction.

8. ∆ ∆p p1 2 0+ =
or ∆ ∆p p1 2= −

10. Energy can be given in the form of potential energy

without giving the momentum.

11. Centre of mass remains stationary.

12. e
RVOS

RVOA
=

For elastic collision e = 1

∴ RVOS RVOA=
Before collision they approach towards each other

and after collision they recede from each other.

13. Centre of mass remains stationary.

15. Relative velocity of separation is equal to the

relative velocity of approach. One of the case is

shown below.

Before collision, relative speed is 2 m/s and relative

velocity of approach is 6 m/s.

After collision, relative speed is 4 m/s and relative

velocity of separation is 6 m/s.

Single Correct Option

10. Impulse = =F t Pav ( ) | |∆ ∆

∴ F
P

t

m v v

t

i f
av = =

−| | ( )∆
∆ ∆

= −( ) ( )5 65 15

2

= 125 N Ans.

11.

r

r

m

m

1

2

2

1

=

∴ r
m

m m
d1

2

1 2

=
+









=
+







 × −16

12 16
10 10( )1.2

= × −0.68 m10 10 Ans.

12.

3 61
2v v=

v
v

2
13

6
=

= × =3 16

6
8 m/s

( ( )KE)6 kg = × ×1

2
6 8 2

= 192 J Ans.

C O

d COM

r1 r2

COM

v1 v2

3kg 6kg

4 m/s 2 m/s

1 m/s 5 m/s



526 � Mechanics - II

13.

m m1 2>>

v
m m

m m
v

m

m m
v2

2 1

1 2
1

1

1 2
2

2′ = −
+







 +

+








Substituting m2 0≈ and v1 0= we get,

v v2 2≈
14. Velocity of dropped out mass is also 6 m/s. So its

relative velocity is zero and no thrust force will act.

Therefore final speed remains 6 m/s.

15. F
p

t
n mv= =∆

∆
( )

Here n = number of bullets fired per second

⇒ n
F

mv
=

=
× −

144

40 10 12003( ) ( )
= 3 Ans.

16. | | | | | |∆ ∆p F= = ⋅Impulse t

Here ∆t T
v

g

v

g
= = ° =2 45 2sin

and | |F = mg

∴ | | ( )∆p =






mg

v

g

2

= 2 mv Ans.

17. Velocity of ball just before collision with ground,

v gh= = × × =2 2 9.8 4.9 9.8 m/s

Velocity just after collision,

u ev= = 





3

4
( )9.8 m/s

T
u

g
= = × × =2 2 3 4 3

2

( / ) 9.8

9.8
s

18.

dm = (Mass per unit length) (Length)

=








kx

L
dx

2

⇒ X
xdm

dm

L

LCOM = ∫
∫
0

0

=

















=
∫

∫

( )

0

2

2

0

3

4

L

L

x
kx

L
dx

kx

L
dx

L Ans.

19.

450 50 10x x= −( )

∴ x = 1 m Ans.

20.

M
x M L x

3
= −( )

x L= 3

4

∴ Displacement of man relative to ground

= − =L x
L

4
Ans.

21.

From conservation of momentum we can see that

velocity of heavier mass after collision becomes
v

3
.

Now, coefficient of restitution,

e
RVOS

RVOA
= = =v

v

/3 1

3
Ans.

22. In elastic collision between equal masses velocities

are interchanged. Therefore change in

momentum in any one particle is mu.

Now, | | | |∆p = Impulse

=area under F t- graph

∴ mu t F= × ×1

2
0 0

∴ F
mu

t
0

0

2= Ans.

23. Acceleration of centre of mass = F

m2

a
m a m a

m m
CM = +

+
1 1 2 2

1 2

∴ F

m

m a m a

m2 2

0 2= +( ) ( ) ( )

∴ a
F

m
a2 0= − Ans.

24. Impulse = = −∆ p v vm f i( )

=
− ° + °





− ° +
m

v v

v v

3

4
53

3

4
53

37

0 0

0 0

cos $ sin $

( cos $ s

i j

i in $ )37°















j

= − 5

4
0mv $i Ans.

x

dxx = 0 x L=

(10 – )xx
450 kg 50 kg

( – )L xx
M/3 M

m v 3m ⇒

Before collision

m 3m

After collision

v/3

At rest

v
21



25. h e hin
n= ( )2 ...(i)

Given that

( ) ( ) ( )64 1002cm cm= e

∴ e = 0.8

Substituting in Eq. (i) we have

hn
n= ( ) (0.8 1m)2

= ( )0.8 2n Ans.

26. p pi f=

∴ ( ) ($) ( ) ( $)500 25 20 475i j v= +

∴ v i k= 



 − 











20

19

20

19

$ $ m/s Ans.

27. a
F

m
= or a F∝

Hence, a t- graph is similar to F t- graph.

From O to t1

a t∝
or a kt= (k → a positive constant)

Integrating we get,

v
kt=

2

2
or v t∝ 2

i.e. v t- graph is a parabola passing through origin.

From t1 to t2 again acceleration is positive (in the

direction of velocity). So, velocity will further

increase.

28. x
A x A x

A A
CM = −

−
1 1 2 2

1 2

= −
−

π π
π π

( ) ( ) ( ) ( )

( )

3 0 2

3

2 2

2 2

R R R

R R
= − R

4

∴ Distance of centre of mass from origin = R

4
Ans.

29. r
r r r

CM = − −
− −

A A A

A A A

1 1 2 2 3 3

1 2 3

= − −
− −

π π π
π π π

( ) ( ) ( ) ( $) ( ) ( $)

( )

4 0 3 3

4

2 2 2

2 2 2

R R R R R

R R R

i j

= − −





3

14

3

14

R R$ $i j Ans.

30. Net horizontal force on system is zero, Therefore,

centre of mass does not move in horizontal. Further,

all surfaces are smooth. Therefore mechanical

energy of the system remains constant.

31. Ler v′ is the velocity of ( )M m+ after collision.

Then from conservation of linear momentum we

have,

mv M m v= + ′( )

∴ v
m

M m
v′ =

+








Now, v gh′ = 2

∴ m

M m
v gh

+






 = 2

or v gh
M m

m
= +



2

32. Net horizontal force on system is zero.

33.

a = Net pulling force

Total mass

= −
+

m g m g

m m

1 2

1 2

= −
+









m m

m m
g1 2

1 2

...(i)

Now, a
m a m a

m m
CM = +

+
1 1 2 2

1 2

a
m a m a

m m
CM = + + −

+
1 2

1 2

( ) ( )

= −
+









m m

m m
a1 2

1 2

Substituting the value of a from Eq. (i) we have,

a
m m

m m
gCM = −

+






1 2

1 2

2

Ans.

34. Using the equation,

v u gt v
m

m
r= − + 



ln 0
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t

a

O t1 t2

m2

m1

a

a

–ve

+ve



Substituting the values we get,

v v
m

m
r r= − + 



0 0 0ln

∴ m

m
e0 = = 2.178 Ans.

35. v vi f= =1 0m/s,

| | ( )F
p

t

m

t
v vi f=


 


 = 



 −∆

∆
∆
∆

= × =0.5 0.5 N1

36.

From the figure, we can see that velocity of

approach is 2
2

v sin
θ

.

e
RVOS

RVOA
=

For completely inelastic collision, e = 0

∴ RVOS = 0

p pi f=

∴ m v vcos $ sin $θ θ
2 2

i j−





+ +





m v vcos $ sin $θ θ
2 2

i j

= 2m cv

∴ Common velocity v ic v= 



cos $θ

2

37. Component parallel to plane remains unchanged.

∴ 0.8 v = 3

or v = =3

0.8
3.75 m/s

| | ( )∆v v= +4 0.6 = 6.25 m/s (in vertical direction)

∴ Impulse = =| | | |∆ ∆p m v = 6.25 N-s Ans.

38. Horizontal side of wedge is h cot θ.

Mx m h x= −( cot )θ

∴ x
mh

M m
=

+
cot θ

Ans.

39. x
A x A x A x A x

A A A A
CM = + + +

+ + +
1 1 2 2 3 3 4 4

1 2 3 4

= + + + =( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )4 1 4 1 4 3 4 3

16
2cm

y
A y A y A y A y

A A A A
CM = + + +

+ + +
1 1 2 2 3 3 4 4

1 2 3 4

= + + + =( ) ( ) ( ) ( ) ( )
.

4 1 4 3 4 3 4 3

16
2 5cm

40.

40 2 15( )− =x x

∴ x = 1.46 m Ans.

41. p pi f=

∴ m v m v m v( $) ( $) ( $ )0 0 03 5i j k+ − +
= 3mv

∴ v i j k= − +v0

3
3 5($ $ $ ) Ans.

42. x
m x m x

m m
CM = +

+
1 1 2 2

1 2

∴ R
M M D

M
= +( / ) ( ) ( / )5 0 4 5

∴ D R= 5

4
Ans.

Subjective Questions

1. x
A x A x

A A
CM =

−
−

1 1 2 2

1 2

=
− 











−

( ) ( )ab
ab a

ab
ab

0
4 4

4

= − a

12

y
A y A y

A A
CM =

−
−

1 1 2 2

1 2

=
− 











−

( ) ( )ab
ab b

ab
ab

0
4 4

4

= − b

12
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v cos /2θ

v sin /2θ

1

v cos /2θ

v sin /2θ

2

y

x

3 m/s

4 m/s

Just before
collision

0.8 v

0.6 v

Just after
collision

( cot – )h xqx
M m

(2 )x-

40kg 15kg
x



2. x
V x V x

V V
CM = −

−
1 1 2 2

1 2

(V = volume)

=





 −













 −





4

3
0

4

3

4

3
4

3

3
3

3
3

π π

π π

R
a

b

R
a

( ) ( )





= −
−
a b

R a

3

3 3
Ans.

3.

At 45° means horizontal and vertical components

are same (let u ).

In absolute velocity, since horizontal component of

velocity has been decreased ( )= −u v . Therefore,

θ > °45

4. p = constant

∴ 2 Km = constant

or K
m

∝ 1

5. In head on elastic collision between two equal

masses, velocities are interchanged.

6. At maximum elastic potential energy, velocity of

both particles is same. This common velocity will

be given by

v = Total momentum

Total mass

= =
2

2 2

Km

m

K

m

E Ei f=

K m
K

m
v= ×







 +1

2
2

2

2

max

∴ v
K

max =
2

Ans.

7. Just after collision x-component of velocity remain

unchanged but y -component of velocity becomes e

times.

Now, T
u

g
H

u

g

y y= =
2

2

2

, and R
u u

g

x y=
2

or T u H uy y∝ ∝, 2 and R uy∝

∴ T

T
a

u

eu e

y

y

1

2

1= = =

R

R
b

u

eu e

y

y

1

2

1= = =

and
H

H
c

u

eu e

y

y

1

2

2

2 2

1= = =
( )

( )

8. (a) a
a a

COM = +
+

m m

m m

1 1 2 2

1 2

= − + −
+

( ) ( $) ( ) ( $)1 10 2 10

1 2

j j

= −( $)10 2
j m/s Ans.

(b) v
v v

COM = +
+

m m

m m

1 1 2 2

1 2

= + + +
+

m t m t

m m

1 1 1 2 2 2

1 2

( ) ( )u a u a

= + − + + + −
+

( ) [ ( $) ( )] [( $ $) ( $) ( )]1 0 10 1 2 10 10 10 1

1 2

j i j j

= −10

3
2( $ $)i j m/s Ans.

(c) r
r r

CM = +
+

m m

m m

1 1 2 2

1 2

=
+ +





+ + +





+

m t t m t t

m m

i i1
2

1

2
2

2

1 2

1

2

1

2
r u a r u a

= + + + −





+ + +

1 10 20 0
1

2
10 1

2 20 40

2( $ $) ( $) ( )

( $ $) (

i j j

i j 10 10 1
1

2
10 1

1 2

2$ $) ( ) ( $) ( )i j j+ + −





+

= +





70

3
35$ $i j m Ans.
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u

Velocity of
gun

Velocity of bullet

relative to gun (at 45 )°

uv

u

Net

Absolute velocity
of bullet

u v-

ux

uy

⇒ ux

euy

Just before
collision

Just after
collision



9. (a) y
m y m y

m m
CM = +

+
1 1 2 2

1 2

∴ 24
80 02= +( ) ( ) ( ) ( )0.6

Total mass

m

∴ Total mass = 2 kg Ans.

(b) a vCM CM= d

dt
( )= d

dt
t[ ] $6 2

j

= ( ) $12 2t j m/s Ans.

(c) F aext CM CM= m = m
d

dt
CM CM( )v

= m tCM ( ) $12 j

At t = 3 s , F jext kg N= ( ) ( ) ( ) $2 12 3

= ( $)72j N Ans.

10. (a) v
u u

c

m m

m m
= +

+
=1 1 2 2

1 2

0.8 $i m/s

(b) v1 16= − . $i m/s

From COM, m m m m1 1 2 2 1 1 2 2u u v v+ = +
⇒ v2 2 4= . $i m/s

(c) e
v v

u u
= −

−
=2 1

1 2

4

7

11. Fuel is finished in 40 s

v u gt v
m

m
r= − + 



ln 0

= − × + × 



0 10 40 2 10

200

40

3( ) ln

= 2818 m/s = 2.82 km/s Ans.

12. Let v is the horizontal velocity of platform in

opposite direction. Then from momentum

conservation in opposite direction we have,

( ) ( ) ( cos )60 40 1 10 45+ = °v

∴ v = °10

100
45cos m/s

= 10

2
cm/s

∴ Displacement of platform = vt

= °( ) ( sin )v u

g

2 45

= 





=
× ×

10

2

2 10
1

2

10

= 10 cm Ans.

13. Since the system (or COM) was initially at rest. So it

will always remain at rest. Because the net external

forces are not changing.

(a) Mv m v v′ = − ′( )

∴ v
mv

M m
′ =

+
Ans.

(b) If man stops climbing, then balloon will also

stop to keep the system at rest.

14.
F

m

v
dm

dt

m
a

r

=
−





= = constant

∴
u

dm

dt

m
a

−





=

∴ − =∫ ∫
m

m t
dm

m

a

u
dt

0 0

Solving this equation we get,

m m e at u= −
0

/ Ans.

15. At 1 seconds particle is at point P as shown in figure.

Let velocity of second part is v. Then applying

momentum conservation, just before and just after

explosion we have,

2 20 10 0m m m( $ $) ( )i j v+ = +

∴ v i j= +( $ $)40 20

Its vertical component of velocity is still 20 m/s. So

total height,

h h
u

g
i= +

2

2

= +
×

15
20

2 10

2( )

= 35m Ans.
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M

m

v ′

( – ) Absolutev v ′ ⇒

x

10 m/s

20 m

1s

15 m
P

20 m/s

y

20 m/s

20 m



16. h = + =( )1 1 m 2m

∴ v gh= 2

= × ×2 10 2

= 6.32 m/s (downwards)

Impulse = = −∆p m v vf i( )

= − −( ) [ ( )]1 0 6.32 = 6.32 N-s (upwards)

18. In elastic collision, velocities are interchanged. So, v

is minimum

∴ 1

2

2× × =0.1 0.2v

∴ v = =2 m/s minimum value Ans.

In perfectly inelastic collision, speed of combined

mass will remain half.

∴ 1

2 2

2

× × 



 =0.1 0.2

v

∴ v = =2 2 m/s maximum value Ans.

19. Since collision is elastic. It means relative velocity

of separation will remain v and relative velocity

means one mass is assumed at rest.

∴ t
r

v
= 2π

Ans.

20. J = impulse =change in momentum

e
RVOS

RVOA
=

= +( / ) ( / )

( / )

J m J P m

P m

-

= −2
1

J

P
Ans.

21. p pi f=

∴ mu mv= °2 30cos

or v
u=
3

e
RVOS

RVOA
= (alongC C C C1 2 1 3or )

=
°

=v

u

u

ucos

( / )

/30

3

3 2
= 2

3
Ans.

22. For the collision

1 10 10× = × v ⇒ v = 1m/s

If x be the maximum compression

1

2
10 1

1

2

2 2× × = + +µ ( )m M gx kx

5 10 120 2= +x x

⇒ x m= 1

6
Ans.

23.

m x m xA A B B=
∴ ( ) ( )5 300.5 − =x x

∴ x = 0.0714 m

= 71.4 mm Ans.

24. t
L

v

L

v
1

3 2

2

3
= =

( / )

t
L

v

L

v
2

3 2

2

3
= =

( / )

p pi f=

∴ 2
3

2
1 1mv mv m v v= + +





v
v

1
4

=

∴ s v t
v L

v

L
1 1 1

4

2

3 6
= = 









 =
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A P B

J J

J P- J

Initial momenta

Final momenta

C1

C2

30°

u
⇒ C1

C2

30°

30°

C3

v

v

m

2m

v

(0.5 )-x

A x

B

Trolley + Man Trolley Man

v2m v1m
vv1+

m
Þ 3

2



In return journey

p pi f=

∴ 2
3

2
2 2mv mv m v v= − −





∴ v v2

7

4
=

or s v t v
L

v
2 2 2

7

4

2

3
= = 









 = 7

6

L

v

s s s
L

Total = + =1 2

4

3
Ans.

25.

(a) p pi f=
∴ mv mv mv0 1 2= +

∴ v
mv mv

M
2

0 1= −

= −( ) ( )0.004

1.0

500 100

= 1.6 m/s

Retardation due to friction,

a
mg

m
g= = =µ µ µ( )10

s
v

a

v= =2
2

2
2

2 20 µ

∴ µ = v

s

2
2

20

=
×

=( )1.6

0.3
0.43

2

20
Ans.

(b) Decrease in kinetic energy of bullet

= −1

2
0
2

1
2m v v( )

= × −1

2
500 1002 20.004 [ ( ) ( ) ]

= 480 J Ans.

(c) Kinetic energy of block,

= 1

2
2
2Mv

= × ×1

2

21.0 1.6( )

= 1.28 J Ans.

26.

(i) Common velocity = Initial momentum

Total mass

vc = ×
+ +

0.25

0.25 37.5 1.25

302

= 1.94 m/s Ans.

(ii) v
m m

1
1

=
+

Initial momentum

= ×
+

=0.25

37.5 0.25
2 m/s

302

a
f

m m
g1

1

2=
+

= =µ 5 m/s

a
f

m m m

m m

m m m
g2

1 2

1

1 2

=
+ +

= +
+ +







 µ

= +
+ +







 ×37.5 0.25

37.5 0.25 1.25
0.5( )10

= 4.84 m/s2

a a ar r= − =1 0.16 m/s2

Common velocity is achieved when, v1 converts

into vc by a retardation a1.

∴ v v a tc = −1 1

∴ t
v v

a

c= − = −1

1

2

5

1.94

= 0.012 s

Now, s a tr r= 1

2

2

= × ×1

2

20.16 0.012( )

= 0.011 mm Ans.

27. h l= −( cos )1 α ...(i)

p pm M= (in opposite directions)

∴ 2 2K m K Mm M=

or
K

K

M

m

m

M

= ...(ii)
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m2

m1v0
m

m2

m m1 +

a1

v1

a2

f m m g= ( + )µ 1

f m m g= ( + )µ 1

Trolley + Man Trolley Man

v2m v2m
v v- 2 m

Þ

3
2

M
m v0

M
m v1v2⇒



K K mgh mglm M+ = = −( cos )1 α ...(iii)

Solving these three equations we get,

K
m

m M
mglM =

+






 −( cos )1 α

∴ 1

2
12Mv

m

M m
mglM =

+






 −( cos )α

∴ v m
gl

M M m
m =

+
2

2
sin

( )

α
Ans.

28. (i)

Mx m R r x= − −( )

∴ x
m R r

M m
= −

+
( )

Ans.

(ii)

p pM m=

∴ 2 2K M K mM m=

∴ K

K

m

M

M

m

= ...(i)

K Km m+ = decrease in potential energy of m

= −mg R r( ) ...(ii)

Solving these two equations we get,

K
m

M m
mg R r MvM M=

+






 − =( )

1

2

2

∴ v m
g R r

M M m
M = −

+
2 ( )

( )
Ans.

29. (a) | | cos∆p = + − °p p p p1
2

2
2

1 22 90

= +p p1
2

2
2

= × + ×( ) ( )0.05 0.052 22 2

= 0.14 kg - m/s Ans.

(b) Initial and final velocity of wall is zero.

Therefore change in momentum is zero.

30. v gy= 2

Thrust force downwards

F v= λ 2 (λ = mass/length)

or F m gy= ( )2 or F mgy= 2

y length is lying on table. So its weight

W ym g= ( )

Total force on table = +F W = ( )3 mgy

= weight of a length 3 y of the rope

31. Relative velocity of sand is 2 m/s in backward

direction. Since mass is increasing, therefore thrust

force is in the direction of relative velocity

(backwards).

Thrust force = +



v

dm

dt
r

= ( ) ( )5 2 = 10 N (backwards)

∴ Force needed ( )Fext to move the belt with

constant velocity ( )Fnet = 0 is

F Fext N= =10 (in forward direction)

P F v= =ext W20 Ans.

32. Impulse = = −∆p p pf i

= −m v vf i( )

= − −( ) [ ( )]3 40 50

= 270 N-s

i.e. impulse is 270 N-s (towards right) Ans.

Impulse = F tav ∆

∴ F
t

av

Impulse=
∆

= 270

0.02

= 13500 N

= 13.5 kN (towards right) Ans.

33. v
m m

m m
v

m

m m
v3

3 2

3 2
3

2

2 3
2

2′ = −
+







 +

+








= −
+







 +3 2

3 2
2 0( ) = 0.4 m/s

v2 0
2 3

2 3
2′ = + ×

+






 ( ) = 2.4 m/s

Retardation of each block,

a
mg

m
gK

K= = =µ µ 3 m/s2

Before coming to rest

s
v

a
3

3
2 2

2 2 3
= ′ =

×
=( )0.4

0.03 m

s
v

a
2

2
22

2 2 3
= ′ =

×
=( )2.4

0.96 m

∴ d s s= − =2 3 0.93 m Ans.
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mM

( – ) –R r x
x

α

h

m M

pm pM

mM
pm

pM



LEVEL 2

Single Correct Option

1. Let velocity of m just after collision is v. Then, from

conservation of momentum we have,

m v mv m
v

1 1 1
1

3
= + ⇒ ∴ v

m v

m
= 2

3

1 1

Now, for just completing the circle,

v gl= 5

∴ 2

3
51 1m v

m
gl=

∴ v
m

m
gl1

1

3

2
5= Ans.

2. v glm = 2

From conservation of linear momentum,

v
v gl

m
m

2
2

2

2
= =

Now, h
v

g

lm= =2
2

2 4

But h l= −( cos )1 θ

∴ l
l

4
1= −( cos )θ

∴ θ = 





−cos 1 3

4

3. y-components of momenta are cancelled and

x-components are added.

P dPx= ∫0

π
= ∫ ( )( sin )dm v

0

π
θ

= 



∫

M
d v

π
θ θ

π

0
( sin ) = 2Mv

π
Ans.

4. Let v is the velocity of mass 2m in natural length of

spring, then from conservation of energy we have,

1

2

1

2
20

2 2kx m v= ( )

∴ v
k

m
x=

2
0

Velocity of centre of mass at this instant,

vCM

Total momentum

Total mass
=

= =2

3

2

3

mv

m
v = 1

3

2
0

k

m
x

Now, impulse on system = change in momentum of

system

∴ F t m v mk xav CM∆ = =( ) ( )3 2 0

∴ F
mk x

t
av = ( )2 0

∆
Ans.

5. Retardation, a
mg

m
g= =µ µ

= ×0.2 10 = 2 2m/s

Total distance travelled before coming to rest,

d
u

a
= =

×
=

2 2

2

2

2 2
1

( )
m

x
L L= = =2
2 2

1

2

= 0.5 m

Therefore striker will stop after travelling a distance

2x, as shown in figure.

Co-ordinates of point P are,
L

L
2

,






or
1

2 2

1

2
,







.

6. Displacement of M relative to m on reaching the

other end is 2 30L sin ° or 1m.

4 1 1x x= −( )

∴ x = 0.2 m Ans.

7. ∆P e P1 1= +( )

∆P e eP2 1= +( )
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dm dm

v

v

θ
d θ

y

x

x
L/2

L/2

y

xO

P

x

x

4 kg (1 – )x
x

1 kg



and so on

∴ ∆ ∆ ∆P P PTotal = + +1 2 ...

= + + + +( ) ( )1 1 2e P e e K

= +
−









1

1

e

e
P

8. Assuming retardation force F to same in both cases,

we have,

retardation a
F

m
=

Using, v u as2 2 2= − , we have,

0 22= − 



u

F

m
h

∴ F
mu

h
=

2

2
...(i)

In second case,

a
F

m
a

F

M
1 2= =,

Relative retardation of m,

a a a F
M m

M m
r = + = +






1 2

Now, v u a sr r r
2 2 2= −

∴ 0 22= − +





u F

M m

M m
s

or s
u M m

F M m
=

+

2

2 ( )

Substituting,
u

F

h

m

2 2= from Eq. (i) we have,

s
M h

M m
=

+
Ans.

9. Velocity of B after collision will become,

1

2

1

2
16

+



 = +





e
v

e
( )

or 8 1( )+ e m/s

Now, 8 1 2( )+ =e gh

= × × =2 10 5 10

∴ e = 0.25 Ans.

10.

A x A x1 1 2 2=

∴ 1

2 3 2
( ) ( )bL

L
bl

l



 = 





∴ l
L=
3

Ans.

11. p pi f=

∴ m v m v m v1 0 1 2= + ...(i)

e
RVOS

RVOA
=

e = 1for elastic collision

∴ RVOS RVOA=
or 2 0v v= ...(ii)

From Eqs. (i) and (ii) we get,

m

m

1

2

1

3
=

12. Net momentum of three fragments

p pi f= = 0

∴ Momentum of fourth part is ( )2 1− mv in

opposite direction.

So, velocity of fourth part is ( )2 1− v

∴ KE = 



 + −3

1

2

1

2
2 12 2mv m v[( ) ]

= −( )3 2 2mv Ans.
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x1

x2

C1

C2

C

b

l

L

F a1

a2

F

m u

M

v0

m1 m2

m1 m2

v v
⇐

mv

√2mv ( )√2–1 mv

⇐

P

eP

eP

e eP( )
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13. v v
v

a b= =
2

v
v

c =
3

∴ v v va b c: : : := 3 3 2

14. Distance AB = constant

∴ Component of V along AB

= component of v along AB

or
V v

2

3

2
=

or V v= 3

Now,
dx

dt
v=

−



 = =dy

dt
V v3

r i jc

x y= +
2 2

$ $

∴ v
r

i jc
cd

dt

dx

dt

dy

dt
= = +





1

2

$ $

= −1

2
3[ $ $ ]v vi j

∴ | |vc v v= 



 +





















=1

2

3

2

2 2

Ans.

15. At 5 s

r r vCOM CM= +i t

= + ×($) ( ) $i i0.2 5

= = +
+

2 1 2 2

1 2

$i
r rm m

m m

i

∴ 2
2 3 3 2 4 4 3

2

2$ ( / ) ( $ $ $ ) ( / )
i

i j k r= + − − +

∴ r i j k2 2= − −( $ $ $ )4.5

So, the co-ordinates are ( ,4.5m , m m)− −1 2 Ans.

16. m mass falls a distance
h

2
in time, say t.

Then,

h
gt

2

1

2

2= ⇒ ∴ t
h

g
=

For mass 2m,

h
vt gt

2

1

2

2= −

= −v
h

g

h

2

∴ v gh=

Now, let u is the velocity with which combined mass

collides with ground, then

u v g
h= 



 + 





2

3
2

3

2

= +4

9

2

3
gh gh

= 10

3
gh Ans.

17. 2mv m u v= −( )

∴ v
u=
3

∴ u v
u− = 2

3

KE = × 



 + 





1

2

2

3

1

2
2

3

2 2

m
u

m
u

( )

= 1

3

2mu Ans.

18. h
g

max

( )= + =20
40

2
100

2

m Ans.

60°

30°

B

A

CVy

v

x

h
3

2
3 v

COM

v 2m m
u – v

COM

2 m

40 m/s

20m



19. Let | |p = =mv p

In elastic head on collision with equal masses,

velocities are interchanged.

Gain in kinetic energy of first

= −1

2
2 2 2m v v[( ) ]

= 3

2

2mv = 









 =3

2

3

2

2 2

m
p

m

p

m
Ans.

20.

( ) ( )
( ) ( ) ( )

4 4
2

8

4

5

1
1

m X m
a

m

m X m a

m

+ 





= +

Solving this equation, we get

X 1 = X -coordinate of COM of plate

= a

6
Ans.

21. X
m X m X m X m X

m m m m
CM = + + +

+ + +
1 1 2 2 3 3 4 4

1 2 3 4

Similarly YCM.

22. p pi f=

∴ ( $) $ $m v m
v

m0 0 0
0

0
2

1

2

1

2
2i i j v= +





+

∴ v i j= −v v0 0

4 4

$ $

∴ | |v = =2
4 2 2

0 0v v
Ans.

23.
1

2

1

2
0
2

2 2
2k x m v=

∴ v
k

m
x2

2
0=

v
m v m v

m m
CM = +

+
1 1 2 2

1 2

=
+











k m

m m
x2

1 2
0 (as v1 0= )

24. Velocity of second ball

= −
+







 + ×

+








m m

m m

m

m m
v

/

/
( )

/

2

2
0

2

2

= 4

3
v

Velocity of third ball will become,

4

3
times

4

3
v or

4

3

2



 v

∴ v v grn

n

= 



 =

−
4

3
5

1

∴ v gr

n

= 





−
3

4
5

1

Ans.

More than One Correct Options

1. Momentum remains conserved in any type of

equation

p pi f=

∴ ( $) $ $ ( )mv
mv mv

mi i j v= +





+
2 2 2 2

2

v = velocity of mass 2m

= −0.32 0.35$ $i j

= −( ) $ ( ) $0.32 0.18v vi j

V v= 0.37

tan θ = =0.18

0.32
0.5625

v

v

∴ θ = °29.35

Since ( )θ + ° < °45 90 . Therefore, the angle of

divergence between particles after collision is less

than 90°.

Further, K mvi = 1

2

2 and

K m
v

m vf = 



 +1

2 2

1

2
2

2
2( ) ( )0.37

K Kf i< .

Therefore, collision is inelastic.

2. Just after collision,

v
m m

m m
gl glm = −

+






 = −5

5
2

2

3
2

v
m

m m
gl

gl
5m = ×

+






 =2

5
2

2

3

T mg
mv

l

m

l

glm− = = 





2 8

9

∴ T mg= 17

9

h
v

g

l
m

m= =
2

2

4

9

3. u vcos cosθ = φ ...(i)

v eusin sinφ = θ
or eu vsin sinθ = φ ...(ii)
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m v
v/2

p mvi =
45°

m

θ 0.32v

V

0.18v

2v vm m2vm mv

⇐



From Eqs. (i) and (ii), we can see that,

tan tanφ =e θ
Momentum or velocity changes only in vertical

direction.

∴ | | | |Impulse = ∆p

= +m u eu( sin sin )θ θ
= +m e u( ) sin1 θ

v v v= φ + φ( cos ) ( sin )2 2

= +( cos ) ( sin )u euθ θ2 2

= +u e2 2 2 2(cos sin )θ θ

= − −u e1 1 2 2( ) sin θ

K

K

mv

mu

v

u

f

i

= =

1

2
1

2

2

2

2

2

= +cos sin2 2 2θ θe

4. Impulse = = −∆p v vm f i( )

∴ Impulse received by m

= − + − +m [( $ $) ( $ $)]2 3 2i j i j

= − −m ( $ $)5i j

Impulse received by M = − ( )impulse received by m

= +m ( $ $)5i j

5. a
m g

m m
= =

+
Net pulling force

Total mass

2

1 2

Now,

( )a
m a

m m
xcm =

+
1

1 2

=
+

m m g

m m

1 2

1 2
2( )

( )a
m a

m m

m

m m
gycm =

+
=

+






2

1 2

2

1 2

2

6. Out of two blocks, one block of mass m is moving in

vertical direction also (downwards). Therefore

COM is moving vertically downwards and

momentum of the system is not conserved in

vertical direction.

7. | | | |Impulse or= ∆ ∆p p1 2

= 



m v

3

4
= 3

4

mv

Loss of kinetic energy = −K Ki f

= − 



 + 















1

2

1

2

3

4

1

2 4

2
2 2

mv m
v

m
v

= 3

16

2mv

8. External force gravity acts on system. Therefore

momentum of system is not conserved.

Mass keep on decreasing. Therefore acceleration

will keep on increasing.

Comprehension Based Questions

1. Impulse = mu

∴ u
m

= = =Impulse
m/s

4

2
2

Now, E Ei f=

∴ 1

2
2 2

1

2
40002 2× × + × ×( ) ( )0.05

= × ×1

2
2 2v

Solving we get,

v = 3 m/s Ans.

2. Again using,

E Ei f=

∴ 1

2
2 2

1

2
40002 2× × + × ×( ) ( )0.05

= × ×1

2
4000 2x

∴ x = = =0.067 m 6.7 m compression

∴ d = + + +5 cm 6.7 cm 6.7 cm 6.7 cm

≈ 25 cm Ans.

3. p pi f=

∴ 0 8 2 16 48= − + ′( ) ( ) ( ) ( ) ( )m v m v m v

Here v′ = absolute speed of rod

= 0

∴ Displacement of rod = 0 Ans.

538 � Mechanics - II

a

m1

m2
a

⇐
m m

V 12

1–
2

e( ) v
v
4

=

1+
2

e( ) v

3
4

= v

θ u cosθ

u
u sinθ

φ

v
v sinφ

v cosφ



4. x x LA B+ =12

∴ 2 12vt vt L+ =
∴ vt L= 4

⇒ X vt LB = = 4

5. ( ) ( )24
2

48m
v

u m u−



 =

∴ u
v=
6

Ans.

6. t t t= +1 2 = 



 + −








4 12 4

2

L

v

L L

v /
= 20L

v

But
L

v
T= = 4 s

∴ t = 80 s Ans.

7. Till t1, rod is stationary. For time t2 rod is moving

with absolute speed u v( / )= 6

∴ Displacement of rod = 





v
t

6
2

= 











v L

v6

16 = 8

3

L
Ans.

Match the Columns

1. P → compressed state of spring

Q → natural length of spring

From P to Q

a
Kx

m
B

B

=

a
m a

m m

m Kx

m m

B B

A B

B

A B
CM =

+
=

+
( ) ( )

From P to Q, compression x decreases. Therefore,

aCM decreases. After Q, A leaves contact with wall,

spring comes in its natural length. Net force on

system becomes zero.

Therefore, aCM becomes zero.

From P to Q velocity of B, therefore velocity of

COM will increase. After that aCM becomes zero.

Therefore, vCM becomes constant.

2. t
u

g
1

2 2 20

10
4= = × = s

t
h

g
2

2 2 180

10
6= =

×
= s

At t = 0

a
m a m a

m m
CM = +

+
1 1 2 2

1 2

= +( ) ( ) ( ) ( )m m

m

10 10

2

= 10 2m/s

v
m v m v

m m
CM = +

+
1 1 2 2

1 2

= − +( ) ( ) ( ) ( )m m

m

20 0

2

= −10 m/s

At t = 5 s

a
m m

m
CM 5 m/s= + =( ) ( ) ( ) ( )0 10

2

2

v
m m

m
CM m/s= + =( ) ( ) ( ) ( )0 50

2
25

3. (a) p Km= = × × =2 2 4 20.5 kg-m/s

(b) p p pA BCM kg - m/s= + = + =0 2 2

(c) At maximum compression, their velocities or,

their momenta are same (half of pCM).

∴ p p
p

A B= = =CM kg - m /s
2

1

(d) In elastic collision between two equal masses,

velocities are interchanged. So, B comes to rest and

A starts moving.

4.

5. (a) If A moves towards right then B andC will move

towards left.

30 90 1x x= ⇒ x
x

1
3

=

(b) 60 60 2x x= ⇒ x x2 =

(c) 30 30 603x x x+ =
∴ x x3 =

(d) 90 30 4x x= ⇒ x x4 3=
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A B

P Q

−ve

+ve

24 m

v
2

– u

48 m
u

⇐
m m

V

1-
2
e( ) v 1+

2
e( ) v

A
x

30kg

x1

90kg

( + )B C

x B

60kg

A+C

60kg
x2

A
x

30kg

x B

60kg

C
x3

30kg

xA xB

A+B
x

90kg

x4
C

30kg



6. (a) If T = tension on string connecting m1 and m2,

then, 2T = tension in other string.

Equilibrium of m2 gives,

T m g= =2 200 N

Equilibrium of ( )M m+ 1 gives,

3 1T W m g= +man

or 600 100= +Wman ⇒ Wman N= 500

(b) Total upward force on system is 4T and total

downward force is weight of all. To accelerate

COM upwards,

4 200 100 500T > + + or T > 200 N

(c) To accelerate downwards,

T < 200 N

(d) In equilibrium, forces on

man

N + =400 500

∴ N = 100 N

7. vCM

Total momentum

Total mass
=

= ×
+

= =2 3

3 6

2

3
m/s constant

At maximum deformation,

v v v3kg 6kg CM m/s= = = 2

3

Upto maximum elongation spring force on 6kg is

towards left. So 6 kg block will accelerate and its

velocity will be maximum.

8. VCM

Total momentum

Total mass
=

= × − × = =( ) ( )10 1 5 2

3
0 constant

P m vCM CM CM constant= = =( ) ( ) 0

Finally both blocks will stop.

Subjective Questions

1. y L x= −2 2 ⇒ dy

dt

x

L x

dx

dt
= −

−2 2

= − × = −3 2

4

3

2
m/s

V
dx

dt

dy

dt
CM =







 + 





1

2

1

2

2 2

= + 



 =( )1

3

4

2
2

1.25 m/s Ans.

2. Applying conservation of linear momentum and

e = Relative speed of separation

Relative speed of approach
, we get

mv Mv mv0 2 1= − …(i)

v v ev1 2 0+ = …(ii)

Solving these two equations, we get,

v
eM m

M m
v1 0= −

+






 , v m

e

M m
v2 0

1= +
+







 Ans.

The desired time is

t
d

v

d

ev

d

e v
= + +

0 0
2

0

2

or t
d

v e e
= + +





0
2

1
2 1

Ans.

3. (i) x v t A t1 0 1= − −( cos )ω

t x
m x m x

m m
v tcm = +

+
=1 1 2 2

1 2
0

∴ x t
m

m
A t2 0

1

2

1= + −ν ω( cos )

(ii) a
d x

dt
A t1

2
1

2

2= = − ω ωcos
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N

500 N

2 = 400 NT

x
O

C x
2

y
2

,
y

B Av0

v1

v3

v2

v4

+ve



The separation x x2 1− between the two blocks will

be equal to l0 when a1 0= or cos ωt = 0

x x
m

m
A t A t2 1

1

2

1 1− = − + −( cos ) ( cos )ω ω

or l
m

m
A0

1

2

1= +






 (cos )ωt = 0

Thus, the relation between l0 and A is,

l
m

m
A0

1

2

1= +






 Ans.

4. Since, all the surfaces are smooth, no external force

is acting on the system in horizontal direction.

Therefore, the centre of mass of the system in

horizontal direction remains stationary.

x-coordinate of COM initially will given by

x
m x m x

m m
i = +

+
1 1 2 2

1 2

x
M L M L R

M M
L Ri = + +

+
= +( )( ) ( )

( )
4 5

4
…(i)

Let ( , )x 0 be the coordinates of the centre of large

sphere in final position. Then, x-coordinate of COM

finally will be

x
M x M x R

M M
x Rf = + −

+
= −( )( ) ( )

( )
4 5

4
…(ii)

Equating Eqs. (i) and (ii), we have

x L R= + 2

Therefore, coordinates of large sphere, when the

smaller sphere reaches the other extreme position

are ( , ).L R+ 2 0 Ans.

5. (a) Chain has a constant speed. Therefore, net force

on it should be zero. Thus,

P y= Weight of length of chain + thrust force

= +m

l
yg vρ 0

2 here ρ =





m

l

= +m

l
gy v( )0

2 Ans.

(b) Energy lost during the lifting = work done by

applied force – increase in mechanical energy of

chain

= ⋅ − 









 − 



∫ P dy

m

l
y g

y m

l
y v

y

0
0
2

2

1

2
.

= myv

l

0
2

2
Ans.

6. In perfectly inelastic collision with the horizontal

surface the component parallel to the surface will

remain unchanged. Similarly when the string

becomes taut again, the component perpendicular to

its length will remain unchanged.

cos θ = H

L
⇒ v gHc = 2

v gH
H

L
vc cos ( )2

2

2
2θ = = (say)

∴ h
v

g

gH
H

L

g

H

L
= = =

2

4

4 5

42

2

2

( )

Ans.

7. Applying conservation of linear momentum at the

time of collision or at t = 1 s,

m m mv i j+ = +( ) ( $ $)0 2 20 10

∴ v i j= +40 20$ $

At 1 s, masses will be at height

h u t v ty y1
2 21

2
20 1

1

2
10 1 15= + = + − =( )( ) ( )( ) m

After explosion other mass will further rise to a

height :

h
u

g

y
2

2 2

2

20

2 10
= =

×
( )

= 20 m

⇒ uy = 20 m/s just after collision.

∴ Total height h h h= + =1 2 35 m Ans.

8. Let CT stands for common tangent direction and CN

for common normal directions.
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c1

c2

( , 0)L ( + 5 , 0)L R

x

y
c c R1 2 = 5 (in both cases)

c1c2

( , 0)x

c x R2 = ( – 5 , 0)

x

y

Initial

Final

A

H
L

θ

vc cos2θ

vc cos θ vc cos θ

vc

B

θ θ

θ
C

D



Mass m eM= Mass M

CT CN CT CN

Befor
collision

v1 (let) v2 (let) Zero
(given)

Zero
(given)

After
collision

v1 v3

(suppose)
Zero v4

(suppose)

In the common tangent directions velocity

components remain unchanged.

In common normal direction applying conservation

of linear momentum and definition of e.

eMv eMv Mv2 3 4= + …(i)

From the definition of coefficient of restitution

e
v v

v
= −4 3

2

…(ii)

Solving these two equations we get,

v3 0= but v4 0≠
So, after collision velocity of m is along CT while
that of M along CN or they are moving at right
angles.

9. Muzzle velocity vr is given to be constant.

From conservation of linear momentum in

horizontal direction we have,

Mv m v vr= −( cos )θ

or v
mv

M m

r=
+
cos θ

…(i)

Further, range of bullet on horizontal ground

R
v

g
v vr

r= −2 sin
( cos )

θ θ

= −
+









2v

g
v

mv

M m

r
r

rsin θ θ θ
cos

cos

=
+

2 2Mv

M m g

r sin cos

( )

θ θ

or R
M

M m

v

g

r=
+









2
2sin θ

…(ii)

(a) From Eq. (ii) we see that maximum range is at

θ = °45 Ans.

(b) At θ = °45 ,

R
M

M m

v

g

r
max =

+








2

Ans.

10. (a) u a gr r= =0,

∴ v ghr = 2 1

After collision relative velocity

v e ghr ′ = 2 1

and relative retardation is still g (downwards).

Hence,

h
v

g
e hr

2

2
2

1
2

= ′ =( )
Ans.

(b) u a g
g g

r r= = + =0
4

5

4
,

∴ Just before collision v
g

hr = 



2

5

4
1

Just after collision v evr r′ = .

Relative retardation is still
5

4

g
.

Hence, h
v

g
e hr

2

2
2

1

2
5

4

= ′






=( )
Ans.

11. Let the velocity of the block and the plank, when the

block leaves the spring be u and v respectively.

By conservation of energy
1

2

1

2

1

2

2 2 2kx mu Mv= +

[M = mass of the plank, m = mass of the block]

∴ 100 52 2= +u v …(i)

By conservation of momentum

mu Mv+ = 0

⇒ u v= − 5 …(ii)

Solving Eqs. (i) and (ii)

30 1002v = ⇒ ∴ v = 10

3
m/s

From this moment until block falls, both plank and

block keep their velocity constant.

Thus, when block falls velocity of plank

= 10

3
m/s. Ans.
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M

vr cos θ

vr

vr sin θ

m

v

Components of velocity of

bullet with respect to gun

M

v vr cos –θ

vr sin θ

v

Components of velocity of

bullet with respect to ground

θ



Chapter 11 Centre of Mass, Linear Momentum and Collision � 543

12. v gh0 2 2= = × × =9.8 1.5 5.42 m/s

Component of velocity parallel and perpendicular

to plane at the time of collision.

v v
v

1 2
0

2
= = = 3.83 m/s

Component parallel to plane ( )v1 remains

unchanged, while component perpendicular to

plane becomes ev2, where

ev2 = ×0.8 3.83 = 3.0 m/s

∴ Component of velocity in horizontal direction

after collision

v
v ev

x = + = =( )1 2

2 2

(3.83 + 3.0)
4.83 m/s

While component of velocity in vertical direction

after collision.

v
v ev

y = − = =1 2

2 2

3.83 – 3.0
0.59 m/s

Let t be the time, the particle takes from point C to A,

then

1.0 0.59 9.8= + × ×t t
1

2

2

Solving this we get,

t = 0.4 s (Positive value)

∴ DA v tx= = (4.83)(0.4) = 1.93 m

∴ s DA DE= −
= 1.93 – 1.0

s = 0.93m Ans.

v v gtyA yc= +
= (0.59) + (9.8)(0.4) = 4.51 m/s

v vxA xC= = 4.83 m/s

∴ v v vA xA yA= +( ) ( )2 2

= 6.6 m/s Ans.

13. String becomes tight when A moves upwards by a

distance l. Let v1 be the velocity of A at this moment,

then

v gl gl gl1
2 210 2 8= − =( ) or v gl1 8=

Let v2 be the common velocities of both A and B just
after string becomes tight. Then from conservation
of linear momentum.

v
v gl

2
1

2

8

2
= =

Both particles return to their original height with
same speed v2. String becomes loose after B strikes
the ground and the speed v with which A strikes the
ground is,

v v gl
gl

gl2
2
2 2

8

4
2= + = +

or v gl2 4= or v gl= 2 Ans.

14.

mv Mv1 2= …(i)

mgR mv Mv= +1

2

1

2
1
2

2
2 …(ii)

t
R

g

R

g
= =2 2( / )

…(iii)

The desired distance is

S v v t= +( )1 2 …(iv)

Solving Eqs. (i) and (ii) for v1 and v2 and substituting

in Eq. (iv), we get

S R
M m

M
= +2( )

Ans.

45°

C

v1v2

v0

45°

C

1.0 m

s
A

x

ED

v1

ev v2 2= 0.8

y

x

v1A

B

l

v2

v2

A

A

B

B

l

l

v2

v2

v1

v2



544 � Mechanics - II

15. Let vr be the velocity of washer relative to centre of

hoop and v the velocity of centre of hoop. Applying

conservation of linear momentum and mechanical

energy we have,

m v v Mvr( cos )φ − = …(i)

mgr( cos )1 + φ

= + + − φ1

2

1

2
22 2 2Mv m v v vvr r( cos ) …(ii)

Solving Eqs. (i) and (ii), we have,

v m
gr

M m M m
= φ + φ

+ + φ
cos

( cos )

( )( sin )

2 1
2

Ans.

16. H
u

g
= =

×

×
=

2 2
2

2

20
3

4

2 10
15

sin
( )θ

m

i.e. the shell strikes the ball at highest point of its

trajectory. Velocity of (ball + shell) just after

collision,

v
u= °cos 60

2

(from conservation of linear momentum)

=
×

=20

2 2
5m/s

At highest point combined mass is at rest relative to

the trolley. Let v be the velocity of trolley at this

instant. From conservation of linear momentum we

have,

2 5 2
4

3
× = +



 v or v = 3 m/s

From conservation of energy, we have

1

2
2 5

1

2
2

4

3
3 2 10 12 2× × − +



 = × −( ) ( ) ( cos )θ

Solving we get, cosθ = 1

2

∴ θ = °60 Ans.

17. While colliding with the wall its vertical component

( )vy of velocity will remain unchanged (component

along common tangent direction remains

unchanged) while horizontal component ( )vx is

reversed remaining same in magnitude. Thus, path

of the particle will be as shown in figure.

(a) H
u

g
=

2 2

2

sin α

(b) Total number of collisions with the walls before
the ball comes back to the ground are nine.

(c) Ball will return to point O (the  starting point)

18. As the collisions are perfectly elastic, collision of

the ball will not affect the vertical component of its

velocity while the horizontal component will be

simply reversed.

Hence, H
v

g

y
max

[ sin ]= = × °
×

=
2 2

2

20 45

2 10
10 m

Total time of flight

T
v

g

y= =
× × 





=
2

2 20
1

2

10
2 2 s

Total horizontal distance travelled before striking

the ground x v Tx= = 40 m

PB BA AB BA AB+ + + + =45 m

Hence, total number of collision suffered by the

particle with the walls before it hits ground = 4.

Ans.

19. Let v1 =velocity of block 2 kg just before collision

v2 = velocity of block 2 kg just after collision

and v3 = velocity of block M just after collision.

Applying work energy theorem

(change in kinetic energy = work done by all the

forces) at different stages as shown in figure.

Figure 1.

∆ = +KE friction gravityW W

θ

vr = 0

v

d/2

H

d/2 d/2 d/2 d/2

θ

θ
6

m10
m

/s

v1

2kg

h1

2kg

Fig. 1



1

2
10 61

2 2
1m v mg mgh{ ( ) } cos−





= − −µ θ

(m = 2 kg)

or v g gh1
2

1100 2 6− = +[ cos ]µ θ

cos sin ( . )θ θ= − = − ≈1 1 0 052 2 0.99

∴ v1
2 100 2 6 10 10= − +[( )( )( )( ( )( )]0.25 0.99) 0.3

⇒ v1 8≈ m/s

Figure 2.

∆ = +KE friction gravityW W

1

2
1 62

2
2

1m v mg mgh[( ) ( )] cos− = − +µ θ

or 1 2 61
2

1− = − +v g gh[ cos ]µ θ
= − +2 6 10 10[( )( )( ( )( )]0.25)( 0.99) 0.3

= − 23.7

∴ v2
2 = 24.7 or v2 5≈ m/s

Figure 3.

∆ = +KE friction gravityW W

1

2
0 3

2
2M v M g Mgh[ ] ( ( )( ) cos− = − −0.5) µ θ

or − = − −v g gh3
2

22µ θcos

or v3
2 = (0.25)(10)(0.99) + 2(10)(0.025)

or v3
2 = 2.975

∴ v3 ≈ 1.72 m/s

Now

(i) Coefficient of restitution

= Relative velocity of separation

Relative velocity of approach

= +v v

v

2 3

1

= + =5

8 8

1.72 6.72

or e ≈ 0.84

(ii) Applying conservation of linear momentum

before and after collision

2 21 3 2v Mv v= −

∴ M
v v

v
= +2 1 2

3

( ) = + =2 8 5 26( )

1.72 1.72

M ≈ 15.12 kg Ans.

20. Let vr be the relative velocity of block as it leaves

contact with the sphere ( )N = 0 and v the horizontal

velocity of sphere at this instant.

Applying conservation of linear momentum in
horizontal direction, we get

mv m v vr= −( cos )θ
or 2v vr= cos θ …(i)

Conservation of mechanical energy gives,

mgr mv( cos )1
1

2

2− =θ + + −1

2
22 2m v v vvr r( cos )θ

or gr v
v

vvr
r( cos ) cos1

2

2
2

− = + −θ θ …(ii)

Equation of laws of motion gives,

mg
mv

r

rcos θ =
2

or gr
vr=

2

cos θ
…(iii)

Solving Eqs. (i), (ii) and (iii), we get

cos cos3 6 4 0θ θ− + = Ans.

Note We have not considered pseudo force while writing

the equation of motion. Think why?

21.
x

u

x

eu
T

u

gcos cos

sin

α α
α+ = = 2

or x
eu

e g
=

+

2

1

sin

( )

2α ⇒ x
eu

e g
max

( )
=

+

2

1

at 2 90α = ° Ans.
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1
m

/s

v2

2 kg

2 kg

θ

θ

M

0.5

v3

h2

M

vr

v θ

v vr cos –θ

vr sin θ

Absolute components of

velocity of block



12. Rotational Mechanics

1. K
I

m

m l

m
l= = =( ) /2 3 2

3

2

Ans.

2. I = +





+ +( ) ( ) ( ) [ ( ) ( ) ]1 1 2 2 3 42 2
2

2 2 2

= 55 2kg-m Ans.

3. I I I I I= + + +1 2 3 4

= + + +0
3 3

2
2

2ml
ml

ml = 5

3

2ml Ans.

5. I I I I IP Q R S1 = + + +

= 



 + +





2

5

2

5

2 2 2mr mr ma

+ +



 +2

5

2

5

2 2 2mr ma mr

= +8

5
22 2mr ma

I I I I IP Q R S2 = + + +

= + +






 +2

5

2

5 2

2

5

2 2
2

2mr mr
ma

mr

+ +








2

5 2

2
2

mr
ma

= +8

5

2 2mr ma

6. M dM mx dxl
l

= = ⋅∫ ∫2

0 0

2
( )

= 2 2ml

∴ m
M

l
=

2 2

(a) I dM XA

l
= ∫ ( )

0

2
2 = ∫0

2
2

l
mXdX X( )

= 



∫0

2

2

3

2

l M

l
X dX = 2 2Ml Ans.

(b) I dM X lC

l
= −∫0

2
2( ) ( )

= −∫0

2
2

l
mXdX X l( ) ( )

= 



 −∫0

2

2

2

2

l M

l
X X l dX( ) ( )

= 1

3

2Ml Ans.

7. I I= =5

6

5

6

2
Total 0.6 kg-m( ) = 0.5 kg-m2

8. I mR= 1

2

2 or I R∝ 2

m and thickness are same.

Therefore, radius R of the material having smaller

density should be more, so the moment of inertia.

9. I = + + + +50 0 49 51 1 48 52 22 2 2( ) ( ) ( ) ( ) ( )

+ + +.......... ( ) ( )1 99 49 2

= + + +100 1 2 492 2 2[( ) ( ) ....... ( ) ]

= ×4.3 gm-cm2106 = 0.43 kg-m2 Ans.

10. l R= 2π ⇒ R
l=

2π
I

I

ml

mR

1

2

2

2

12= / = l

R

2

212

= l

l

2

212 2( / )π

= π2

3
Ans.

Radius = r

P
Q

RS

a

1

2

a
2

A BC
dX

X

X – l

Axis1

2

3

4

499m 519m

49cm 51cm50 cm

50 gm

1cm 1cm
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1. ω π= 2

T

= =2

60 30

π π
rad /s Ans.

2. ω = = − =v

PQ

v v

R

v

R

r 2

2 2

Rotation is clockwise. So, ω is perpendicular to

paper inwards.

3. ω = component of velocity perpendicular to r

r

r i j= +3 4$ $

v i j= −4 3$ $

Since, r v⋅ = 0

∴ v r⊥

∴ ω = =v

r
1 rad/s

v = =| |v 5 m/s

r = =| |r 5 m

From the figure, we can see that ω is along negative

z-axis. Ans.

4. Component of velocities of A and B along AB

should be same

∴ v vA Bcos cos30 30° = °
∴ v v vB A= =

ω = ⊥Relative velocity to AB

AB

= ° + °v v

l

A Bsin sin30 30

= v

l
( )as v v vA B= =

1. r i j k= + −( $ $ $ )2 4 2

τ = ×r F Ans.

2. τ θ= =mgR mg u

g2

2

2

2( ) sin

= mu2

2
( )as θ = °45

= ( ) ( )1 20 2

2

2

= 400 N-m Ans.

3. τ 10 0N =

τ 20 20 45N = ° ×( cos )0.1 (clockwise)

= 1.414 N-m

τ 30 30 60N = ° ×( sin 0.05) (clockwise)

= 1.299 N-m

∴ τ Total 2.71 N-m=
4. τ 10 10N = × 0.25

= 2.5 N-m (clockwise)

τ 9 9N = × 0.25

= 2.25 N-m (clockwise)

τ 12 12 60N = ° ×cos 0.1

= 0.6 N (anticlockwise)

∴ τ net 4.15 N-m=

1. θ α= 1

2

2t

∴ α θ π= =2 2 50 2

52 2t

( ) ( )

( )

= ( )8 2π rad /s

= 25.14 rad /s2 Ans.

ω α= ( )t

= ( ) ( )8 5π
= ( )40π rad /s Ans.
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y

ω

v
r

x

v A

vB

B

30° 60°

30°

τ R/2

mg
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2. ω ω αθ2
0
2 2= +

∴ θ ω ω
α

= − = −
×

2
0
2

2

225 25

2 1

= 100 rad Ans.

3. 0 0= −ω α t

⇒ α ω= =0 10

10t

= 1 2rad /s

τ α= =I 5 N-m Ans.

4. θ = Area under ω-t graph

= +1

2
30 10 40( ) ( ) = 800 rad Ans.

5. ω ω αθ2
0
2 2= −

0
100

60
2 2 10 2

2

= ×



 − ×π α π( )

α = 0 87. N = τ
I

= ⋅F R

mR
1

2

2

∴ F mR= ( ) ( )0.87 0.5

= ( ) ( ) ( ) ( )0.87 0.5 0.210

= 0.87 N Ans.

6. ω θ= = −d

dt
t6 6 2

α ω= = −d

dt
t12

ω = 0

at t = 1 s

(a) ω
ω

0 1
0

1

0

1
2

1
6 6− = = −∫

∫
dt

t dt( )

= 4 rad/s Ans.

α
0 1

0

1
12

1− =
−∫ ( )t dt

= −6 2rad /s Ans.

(b) At t = 1 s

α = −12 2rad /s Ans.

7. ω ω α= −0 t

− = −20 20 2t

∴ t = 20 s Ans.

8. (a) Angular impulse

= change in angular momentum

∴ τ ωf t I=

or τ ω
f

I

t
= = ×0.03 20

60
= 0.01 N-m Ans.

(b) During acceleration

( )τ τ ωe f t I− =

∴ τ ω τe f

I

t
= + = × +0.03

0.01
20

5

= 0.13 N-m Ans.

9. (a) Angular impulse

= change in angular momentum

∴ τ ωt I0 =

∴ t
I

0

16 9

4
36= = × =ω

τ
s

(b) τ ωdt I
t

=∫0

0

∴ ktdt I
t

0

0∫ = ω

∴ kt
I0

2

2
= ω

∴ t I
k

0

2= ω

= ×16 9
2

k
= 12

2

k
Ans.

10. (a) d dt∫ ∫=ω α

∴ d t dt
65 0

3
10 5

ω
ω∫ ∫= − −( )

∴ ω = − +65 10 2
0
3[ ]t t2.5

= 12.5 rad /s Ans.

(b)
65 0

10 5
ω

ω∫ ∫= − −d t dt
t

( )

∴ ω = − −64 10 2t t2.5

0 0

3

0

3
265 10

θ
θ ω∫ ∫ ∫= = − −d dt t t dt( )2.5

∴ θ = − −195 45 22.5

= 127.5 rad Ans.

11. θ ω= = −∫ ∫0

3

0

3
212 3dt t dt( )

= −36 27 = 9 rad Ans.

N = =
×

θ
π2

9

2 3.14
= 1.43 Ans.
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1. I
m l

m
l= + 





( )3

12 2

2 2

= ml2

L I ml= =ω ω2

2. r⊥
°= =4 45 2 2cos m

L mvr0 = ⊥

= ( ) ( ) ( )1 2 2 2

= 4 2 kg-m /s2

3. L mvr0 = ⊥

=






m u

u

g
( cos )

sinα α2 2

2

= mu

g

3 2

2

cos sinα α
Ans.

4.

LP = 0 (as r⊥ = 0)

L mvbQ = (as r b⊥ = )

5. L mvr Ic= +⊥ ω

= + 









mvR mR

v

R

2

5

2

= 7

5
mvR

This is clockwise, or along negative z-axis.

∴ L k= −





7

5
mvR $ Ans.

6. L mvR Ic0 = − ω

= − 



mvR mR vR

1

2

2 ( )

= 1

2
mvR (clockwise) Ans.

7. L L L0 1 2= +

= (mvy in clockwise or along negative z-axis )

+ +[ ( )mv y d in anticlockwise or along positive

z-axis]

= mvd in anticlockwise direction or along positive

z-axis.

= constant

1. I I1 1 2 2ω ω=

∴ ω ω2
1

2
1= I

I

=
+









MR

MR mR

2

2 2 0
2

ω

=
+









M

M m2
0ω Ans.

2. Mass will move towards equator (away from axis ).

So, I will increase. Therefore ω will decrease

(as constant)Iω = . Hence, time period will increase

as T =





2π
ω

.

3. Moment of inertia I increase. Therefore, ω
decreases (as Iω = constant). Hence time period

increases as T =





2π
ω

Chapter 12 Rotational Mechanics � 549

45°

r⊥

4

O

r H1 =
v u= cos α

O

v
P

b

Q

m

ω =
v
R v

O

d

y

y
v

m

O

v

m

x

1
2
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4. I will increase as I mR=





2

5

2

∴ω will decrease ( )as constantIω =
∴ T will increase ( )as T = 2π ω/

1. ωR
v=
2

2. There is only one acceleration,

a Rr = ω2 (towards centre)

1.
K

K

R

T

= 2

5
⇒ K KT R= = × =5

2

5

2
10 25 J

∴ Total kinetic energy = + =K KR T 35 J

2. Under forward slip condition v R> ω

K mvT = 1

2

2

K I mRR = =1

2

1

2

2 2 2ω ω( )

∴ K KT R>

3. K mvT = 1

2

2, K I mRR = = 





1

2

1

2

1

2

2 2 2ω ω

Since, in backward slip condition, v R< ω
∴ KR may be equal to KT .

1. v r= ω, where r is the distance from A (position of

instantaneous axis of rotation)

For A, r = 0 ⇒ vA = 0

For B and D, r R= 2

⇒ v v R vB D= = =2 2ω

For C, r R= 2 ⇒ v R vC = =2 2ω

Direction of velocity of a general point P is

perpendicular toAP in the sense of rotation.

2. I mRC = 2

5

2, I mR0
27

5
= and ω = v

R

Substituting these values in the given equation, we

get the result.

1. Net work done by friction in pure rolling is always

zero.

For example, if A pure rolls over B, then work done

by friction on both A and B are non-zero (one is

positive and other is negative). But net work done

by friction = 0.

2. Till pure rolling continues we can find α about

bottommost point. About bottommost point torque

of friction is zero.

α = =F R

mR

F

mR

( )

( / )

2

3 2

4

32

a R
F

m
= =α 4

3

F f ma
F+ = =max

4

3

F f mg= =3 3max µ
= × × ×3 4 100.6 = 72 N Ans.

This is the maximum value of applied force, as we

have taken the maximum friction.

3. (a) µ θ
min

tan

( / )
=

+1 2mR I

= °
+

tan

/

30

1 5 2
= 2

7 3
Ans.

(b) a
g

I mR
=

+
sin

/

θ
1 2

= °
+

( ) sin

/

10 30

1 2 5

= 25

7

2m/s Ans.
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A

B

F

a

fmax
α

M

vM =

v
ωR

( )3
2

v î

N

vN =

v

ωR

V
2

^ ^
v I - j

vR =

v
ωR

R

v
2

^
i

S

vs =

v

ωR

v
2

^ ^
v I + j
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(c) a g g= −sin cosθ µ θ

= ° − 





°( ) sin ( ) (cos )10 30
1

7 3
10 30

= − =5
5

7

30

7

2m/s Ans.

4. (a) Maximum friction will act

∴ a
mg mg

m
= −sin cosθ µ θ

= −g gsin cosθ µ θ
(b) Only friction will provide the torque.

∴ α τ µ θ= =
I

mg R

mR

( cos )

2

5

2

= 5

2

µ θg

R

cos
Ans.

5. τF about O is anticlockwise.

So, it will roll leftwards F is vertical. So, horizontal

force is vertical. So, horizontal force is provided by

friction (to give it linear acceleration a). So, friction

acts leftwards.

1. Torque of mg sin θ is non-zero. So, angular

momentum is not constant.

2. (a) v
J

m
= , J and m are same for both.

(b) ω = Jh

I

or ω ∝ 1

I

J and h are same but, I Isolid hollow<
∴ ω ωsolid hollow<

(c) K IR = 1

2

2ω

ω ∝ 1

I

∴ K
I

R ∝ 1

Exercise

LEVEL 1

Assertion and Reason

1. If we compare between many parallel axes, then

moment of inertial is least about that axis which

passes through COM.

2. Slips is towards right. So maximum friction will act

towards left which will convert this slip into pure

rolling.

3. Solid sphere,
K

K

R

T

= 2

5

∴ K KR = 2

7
Total and K KT = 5

7
Total

Hollow sphere,
K

K

R

T

= 2

3

∴ K KR = 2

5
Total and K KT = 3

5
Total

4. In case of smooth surface whole of its potential

energy (at A) will convert into its translational

kinetic energy ( )at B .

5. f = friction force

6. In second figure, net angular momentum about

bottommost axis,

L mvR Ic= − ω

= − 



mvR mR

v

R
( )2

= 0
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F

O

⇒

Maximum friction

f

N

mg

INTRODUCTORY EXERCISE 12.11

ω

v

ω
v

v
R

ω = v
R

ω =



7. At P distance from C is minimum.

I I mrC= + 2

From A to P, moment of inertia will first decrease.

At P it is minimum. Then it will increase.

8. Constant linear momentum means moving with

constant speed in a straight line. Therefore, in

L mv r= ⊥ all three m v, and r⊥ are constant.

9. At C , two terms v and Rωare at 0°. At A they are at

180° and at B they are at 90°
∴ v v RC = + ω

v v RA = ~ ω

and v v RB = +2 2( )ω

11. In first case,

a R= α

∴ F mg

m
R

mgR

mR

− =








µ µ1 1
22 5/

= 5

2
1µ g or µ1

2

7
= F

mg

In second case,

a R a− =α Plank

∴ F mg

m
R

mg

mR

mg

M

−



 −







 =µ µ µ2 2

2
2

2 5/

∴ F

m
g g

m

M
g= + +µ µ µ2 2 2

5

2

∴ µ2

7 2

=
+





F

m

M
mg/

or µ µ2 1<
Net work done by friction in pure rolling is zero.

Single Correct Option

2. K
I

M
=

= =

1

2

2

2mR

m

R

= ≈25

2
18 cm

3. 0 0= −ω αt

∴ α ω π= =0 2 1725 60

20t

( ) ( / )

= 9 2rad /s

θ α= = × × =1

2

1

2
9 20 18002 2t ( ) rad

N = =θ
π2

287 Ans.

4. I will decrease

∴ ω will increase (as L I= =ω constant)

KE = L

I

2

2
will increase as I is decreasing.

5. I M r MrWhole disc = =1

2
2 2 2( )

∴ I MrHalf disc = 1

2

2

7. In case of pure rolling on ground, net work done by

friction = 0

8. After melting, ice will distribute in whole pan. So,

moment of inertia I will increase. Hence, angular

speed ω will decrease (as Iω = constant).

9.
K

K

I

mv

I

mv

R

T

= =

1

2
1

2

2

2

2

2

ω ω

= ( ) ( / )mR v r

mv

2 2

2
= R

r

2

2
Ans.

10. a
g

I mR

g=
+

=
+

sin

/

sin

/

θ θ
1 1 2 52

= 5

7
g sin θ

t
S

a

h

g
= =









2
2

5 7

sin

( / ) sin

θ
θ

or t ∝ 1

sinθ
So, time will be different.

v aS g
h= = 











2 2

5

7
sin

sin
θ

θ

or v is independent of θ. So, v will be same.

11. Mass is distributed at maximum distance (from the

axis) in case of four rods.
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⇒

Mass = 2M

a
S h

θ

90°

A
C

D

P



12. f
mg

mR I
=

+
sin

/

θ
1 2

f
mg

mgdisc =
+

=sin
sin

θ θ
1 2

1

3

f
mg

mgsphere =
+

=sin

/
sin

θ θ
1 5 2

2

7

∴ The ratio is
7

6
.

13. I I1 1 2 2ω ω=

∴ ω ω2
1

2
1=









I

I
=







+





=

1

2

1

2

3

2

2 2

mR

mR mR

ω ω

14. Friction will act (due to sliding). But torque of

friction about the mentioned point in the question

will be zero. Hence, angular momentum will remain

constant.

15. y x= +3

4
0.5

Slope = =tan θ 3

4

∴ θ = °37

r⊥ = ° =0.5 0.4 msin 53

L mvr= =⊥ ( ) ( ) ( )3 5 0.4

= 6 2kg-m /s

16. v R= ω and v R′ = ′ω

From (b) to (c), forward slip will take place and

backward maximum friction will convert it into

pure rolling.

17. I
ma

θ =
2

12
(in case of square plate)

or it is independent of θ.

18. Net torque about bottommost point is clockwise.

Hence, the spool will move towards right.

19. K
L

I
=

2

2
or K

I
∝ 1

(as L = constant)

As I has doubled, so K will become half.

20. ρ
π π

=








− 







M

R R
4

3
2

4

3

3 3( )

= 3

28 3

M

Rπ

M RR2
34

3
2= 



ρ π( ) ( )

= 









 =3

28

4

3
8

8

7
( ) M M

M RR = 



ρ π4

3

3

= 









 =3

28

4

3

1

7
M M

Now, I I IR R= −2

= −1

2
2

1

2
2

2 2M R M RR R( )

= 



 − 





1

2

8

7
4

1

2 7

2 2M R
M

R( )

= 31

14

2MR Ans.

21. S = area of cross-section

ρ ρ ρ ρ ρ ρ
x

L
x

L
x= + −



 = +0

0 0
0

02

Now, M dM Sdx
L

x
L L

= = +



∫ ∫0 0

0
0( ) ρ ρ

= 



ρ0

3

2
S

L

∴ ρ0

2

3
S

M

L
= ...(i)

Now, I dI dM x
L L

= =∫ ∫0 0

2( )

= +



∫0

0
0 2

L
Sdx

L
x x( ) ( )ρ ρ
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53° 0.5

r^
37°

ω

v

ω

ω′

v

v ′

(a)

(b)

(c)

ρ
0

2ρ
0



After substituting value of ρ0S from Eq. (i), then we

find

I ML= 7

18

2 Ans.

22. I
ma

1

2

12
=

I I mr2 1
2= +

= +ma ma2 2

12 2

= 7

12

2ma

∴ I I1 2 1 7: := Ans.

23. I
ML

M
L= + 





2 2

12 4
= 7

48

2ML

24. Decrease in gravitational kinetic energy

= increase in rotational kinetic energy

∴ mg
l l

I
2 2

1

2

2−



 =cos θ ω

=








1

2 3

2
2ml ω

∴ ω θ= 6

2

g

L
sin Ans.

25. I = +1 2 2 12 2( ) ( )

= 6 2kg-m Ans.

26. r
L= °
2

60tan

= 3

2
L

Area = × ×1

2
base height

= × × =1

2

3

2

3

4

2L
L

L

∴ Mass per unit area = =M

L

M

L3 4

4

32 2/

or y
x=
3

⇒ dy
dX=

3

Area of strip = = 











( )2
2

3 3
y dy

x dx

= 





2

3

x
dX

∴ Mass of strip = 









 =4

3

2

32

M

L

x
dX dM

I dI= ∫

= ∫ ( )dM X
L

2

0

3

2

= 3

8 3

2L Ans.

27. r
l l= +
2 2 2

= 3

2 2

l

I I I= +2 21 2

= +2 1 2( )I I

= ° + ° +
















2

3
45

12
45

2
2

2
2 2ML ML

Mrsin sin

= 8

3

2ML
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r

a

r =

1

2

2

a

√

C 2kg1kg

2m 1m

L/2

r

60°

60°
x

y
dy

1

2 2

2

r



28. r l
l

l= + =2
2

4

5

2

I I I= +2 1 2[ ]= + +
















2

3 12

2 2
2ml ml

mr

= 10

3

2ml Ans.

29.
x

r

h

R
= ⇒ r

x

h
R=

Volume of disc = ( )πr dX2

Mass of disc = =( ) ( )π ρr dX dm2

dI dm r= 1

2

2( ) = 1

2

2 2( )π ρr dx r

= πρ
2

4r dx = 













πρ
2

4

4

4R

h
x dx

I dI
R

h

hh
= = 



















∫0

4

4

5

2 5

πρ

= 





πρ
10

4( )hR

ρ
π

=






m

R h
1

3

2

∴ I
m

R h

hR= 





















π

π10 1

3

2

4( )

So, I mR∝ 2

Since m and R are same. Therefore I is same.

30. L
l l= ° =
2

45
2

sec

m Lx
lx= =
2

I
mL= °









2

3
45

2
2sin

= 





























2
3 2 2

1

2

2
lx l

= xl3

6 2
Ans.

Subjective  Questions

1. Present angular momentum of earth

L I MR1
22

5
= =ω ω

New angular momentum because of change in

radius

L M
R

2

2
2

5 2
= 



 ′ω

If external torque is zero then angular momentum

must be conserved

L L1 2=
2

5

1

4

2

5

2 2MR MRω ω= × ′

i.e. ω ω′ = 4

T T′ = = × =1

4

1

4
24 6 h Ans.

2. R
I

m

mR md

m
= =

+1

2

2 2

∴ d
R=
2

Ans.

3. I I1 2= ⇒ I I I
Ma

1 2 3

2

6
+ = =

∴ 2 1I or 2
6

2

2

I
Ma=

∴ I I
Ma

1 2

2

12
= = Ans.
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r

l
1

2l
2 A

l
2

45°
L

B

r
x

R

h



4.
7

12 12

2
2

2ml
ml

mr= +

∴ r
l=
2

Ans.

5.

r
m

m m
r1

2

1 2

=
+









)r
m

m m
r2

1

1 2

=
+





I m r m rc = +1 1
2

2 2
2 Ans.

6. I I mrr c= + 2

mK mK mrr c
2 2 2= +

∴ K K rc r= −2 2

= −( ) ( )10 62 2

= 8 cm Ans.

7. Instantaneous angular velocity at time t is

ω θ= =d

dt

d

dt
at( )2

or ω = =2at t0.4 (as a = 0.2 rad /s2)

Further, instantaneous angular acceleration is,

α ω= =d

dt

d

dt
t( )0.4

or α = 0.4 rad /s2

Angular velocity at t = 2.5 s is

ω = × =0.4 2.5 1.0 rad /s

Further, radius of the wheel

R
v=
ω

or R = =0.65

1.0
0.65 m

Now, magnitude of total acceleration is,

a a an t= +2 2

Here, a Rn = ω2 = =( ( )0.65) 1.0 0.65 m/s2 2

and a Rt = α = ( ) ( )0.65 0.4 = 0.26 m/s2

∴ a = +( ) ( )0.65 0.262 2

or a = 0.7 m/s2 Ans.

8. ωc

v

R
= = =2

20
0.1

rad /s

ω about any point on circumference.

= =ωc

2
10 rad/s Ans.

9. At the highest point it has

only horizontal velocity

v vx = cos θ
Length of the perpendicular

to the horizontal velocity

from ‘O’ is the maximum

height, where

H
v

g
max

sin=
2 2

2

θ

⇒ Angular momentum

L
mv

g
=

3 2

2

sin cosθ θ

10. I dI dm x
l l

= =∫ ∫0 0

2( )

= ∫0

2
l

X dx x( )λ

= +∫0

2
l

x x dx( )α β

= +α βl l4 3

4 3
Ans.

11. a R= α

So, net acceleration is Rω2 towards centre.

12. In case of pure rolling

K

K

R

T

= 2

5
(for a solid sphere)

∴ KR = 2

7
(total kinetic energy)

= 2

7
( )mgh Ans.

13. x vω = 2 ...(i)

( )x R v+ =2 1ω ...(ii)

Solving Eqs. (i) and (ii) we get,

ω = −





v v

R

1 2

2
Ans.
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Rω2

Rα a

m1 r1 r2 m2c O

y

x

H

2R

v1

v2

ω

x



14. M dM
a

= ∫0
( )

= ∫0

22
a

x dX kx( ) ( )π = πka4

2

∴ πk
M

a
= 2

4

Now, I dI dM X
a a

= =∫ ∫0 0

2( )

= ∫0

3 22
a

kx dx x( )π = ( )πk a6

3

Substituting the value of πk, we get

I Ma= 2

3

2 Ans.

15. tan 60
2

° = =a

a

r

r

r

t

ω
α

=





∫0

2
t

dtα

α
= ( )0.01

0.02

t

t

2 2

Solving we get,

t3 346=
∴ t ≈ 7 s Ans.

16. If R vω θcos = then velocity of point P is vertically

upwards.

∴ θ
ω

= ± 





−cos 1 v

R
Ans.

17. a R= α by applied forces

∴ F F

M
r

F r F r

I

1 2 1 22
2+ = −





( ) ( )

Solving these two equations we get,

F

F

I Mr

Mr I

1

2

2

2

2

4
= +

−

18. Even a small force will produce

torque about bottommost point.

So, the disc starts toppling about

bottommost point and here

toppling means motion.

19. For sliding mg mgsin cosθ µ θ>

or tan θ µ> ...(i)

For toppling

τ τθ θmg mgsin cos> (aboutO)

∴ ( sin ) ( cos )mg
a

mg
aθ θ

2 2





 > 





or tan θ >1 ...(ii)

If µ > 1, then condition (ii) is satisfied earlier. So,

the cube topples before sliding.

If µ < 1 , then condition (i) is satisfied earlier. So,

the cube slides before toppling.

20. Angular impulse = change in angular momentum

∴ τ ω ωt I mR= = 1

2

2 ...(i)

∴ τ ω= mR

t

2

2

=
×

×








×

( ) ( )20 2
240

60

2 3

20.5 π
π

= 20

3
N-m Ans.

During retardation using Eq. (i)

t
mR mR

FR
= =

2 2

2 2

ω
τ

ω
( )

= mR

F

ω
2

=
×

×








×

( ) ( )20 2
240

60

2 10

0.5 π
π

= 4 s Ans.
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θ

v

Rω sin θ

Rω cos θ
v

Rω

θQ
v

Rω
Rω sin θ

Rω cos θ
v

v
at

a

ar

60°

a a

c

O

N
f

mg sin θ
mg cos θ

F

x

dx



21. d dm g rτ µ= ⋅( )

= 



µ

π
πM

R
rdr gr

2
2( )

∴ τ τ µ= =∫0

2

3

R
d

MgR

Angular retardation, α τ=
I

= ( / )

( / )

2 3

1 2 2

µMgR

MR
= 4

3

µg

R

(a) 0 0= −ω α t

∴ t
R

g
= =ω

α
ω
µ

0 03

4
Ans.

(b) 0 20
2= −ω αθ

∴ θ ω
α

ω
µ

= =0
2

0
2

2

3

8

R

g
Ans.

22. θ = −6 2 3t t

ω θ= d

dt

= −6 6 2t

α ω= = −d

dt
t12

ω = 0

at t = 1 sec

ω
ω

0 1
0

1

0

1
2

1
6 6− = = −∫

∫
dt

t dt( )

= 4 rad/s Ans.

α
α

0 1
0

1

0

1

1
12− = = −∫

∫
dt

t( )

= −6 rad/s2 Ans.

23. Centre of mass of both lies at the centre of ring.

I mR
m R

c = +2
22

12

( )

= 4

3

2mR

L mvr Ic= +⊥( )2 ω

= + 



( )2

4

3

2mvR mR
v

R

= 10

3
mvR

This is clockwise, or along negative z -axis

∴ L k= −





10

3
mvR $ Ans.

24. I I1 1 2 2ω ω=

∴ ω ω2
1

2
1=









I

I

=







+ 

















1

2

1

2 2

2

2
2 1

MR

MR m
R

ω

=
+









M

M m
ω1 =

+








1

1
5

0.2

= 25

6
rad/s

25. I I1 1 2 2ω ω=

∴ I I1 1
2100 10 9 90( ) ( ( ) ( ) ] ( )= +

or I I1 1810+ =1.11

∴ I1
27290= g-cm

= × −7.29 kg-m10 4 2 Ans.

26. (a) I I1 1 2 2ω ω=

∴ ω ω2
1

2
1= ⋅I

I

= +
+

×[ ( ) ( ) ( ) ]

[ ( ) ( ) ( ) ]
.

1.6 0.9

1.6 0.15

2 4

2 4
0 5

2

2

= 





8.08

1.78
0.5( )

= 2.27 rev /s

= 14.3 rad /s

(b) K Ii = 1

2
1 1

2ω

= + ×1

2
2 4 22 2[ ( ) ( ) ( ) ] ( )1.6 0.9 0.5 π

= 39.9 J Ans.

K f = +1

2
2 4 2 2[ ( ) ( ) ( ) ] ( )1.6 0.15 14.3

= 181 J

(c) W K Kf i= − =141.1 J
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dr

r

f

f frictional
force

→



27. (a) I I1 1 2 2ω ω=

∴ ω ω2
1

2
1=









I

I
=

+











⋅

1

2

1

2

2 2

2
0

MR mR

mR

ω

= +



1

2
0

m

M
ω

(b) W K Kf i= −

= −1

2

1

2
2 2

2
1 1

2I Iω ω

= 





+





−1

2

1

2
1

2 1

2

2
2

0
2MR

m

M
ω

1

2

2 2
0
2MR mR+





ω

= +



 + −





1

4
1

2
1

2
12

0
2MR

m

M

m

M
ω

= +





1

2
1

2
0
2 2m R

m

M
ω Ans.

28. Since, there is no slip at any contact. Therefore, net

work done by friction = 0.

In time t

Work done by the applied force

= kinetic energy of plank and cylinder ( cos )F θ
(displacement of plank)

= 1

2
m (velocity of plank)2

+ +





1

2
1

1

2
M (velocity of cylinder)2

∴ ( cos ) ( )F a t m atθ 1

2
2

1

2
22 2× ×



 = ×

+ × ×3

4

2M at( )

Solving, we get

a
F

M m
=

+
4

3 8

cos θ
Ans.

Equation of plank gives,

F f m acos ( )θ − =1 2

∴ f F ma1 2= −cos θ

= −
+

F
mF

M m

8

3 8

cos θ

=
+

3

3 8

MF

M m

cos θ
Ans.

Equation of cylinder gives

f f M a1 2− = ⋅
∴ f f Ma2 1= −

=
+

−
+

3

3 8

4

3 8

MF

M m

MF

M m

cos cosθ θ

or | |
cos

f
MF

M m
2

3 8
=

+
θ

Ans.

29. For Cylinder

T f ma− = ...(i)

a aP Q=
∴ R a aα − = ...(ii)

α τ= = ⋅ =
I

f R

mR

f

mR1

1

2

2

...(iii)

For Plank

F T f Ma− − = ...(iv)

We have four knows f T a, , and α .

Solving the equations we get,

a
F

M m
=

+ 3
Ans.

30. Angular impulse = change in angular momentum

∴ ( )J r I× =⊥ ω

where, J = linear impulse = I

rt

ω

=





 ⋅( )m

l

l

2

3

2

ω

= 4

3
mlω Ans.

31. (a) Angular momentum about O remains constant

just before and just after collision.

∴ L Li f=

or
m

v
L

I
6 2





 = ω
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f1 F cos θ
2a

f1

f2

α a

T

a

f
P

a
Q

f

T
F

α



= +










mL m L2 2

3 6 4
ω

Solving, we get

ω = 2

9

v

L
Ans.

(b)
K

K

I

m
v

f

i

=






1

2
1

2 6

2

2

ω

= 6 2

2

I

v

ω

=
+















6

3 24

2

9

2 2 2

2

mL mL v

L

v

= × ×6
9

24

4

81

= 1

9
Ans.

32. (a) Angular momentum of system is conserved just

before and just after the impact.

∴ L Li f=

∴ ( ) ( ) ( )
( ) ( )

( )2 2
3 2

3
2

2

m u l
m l

m vl= ⋅ −ω ...(i)

At the point of impact,

e = 1

∴ RVOS

RVOA
= 1

∴ RVOS RVOA=

or ωl v u+ = 2 ...(ii)

Solving Eqs. (i) and (ii) we get,

v
u= 2

3
Ans.

(b) Component of velocity of particle P u( )=
parallel to AB remains the same. Component
perpendicular to AB produces the same impact
as was done in part (a).

In part (a), 2u velocity becomes

2

3

1

3

u
i.e. , rd





 .

Therefore, in this part 3 u will become

3

3

u
or

u

3
⋅

∴ Net velocity = +u
u2

2

3

= 2

3

u
Ans.

LEVEL 2

Single Correct Option

1. For Block

mg T m a− = ( )2 ...(i)

For Ring

T f ma+ = ...(ii)

( )T f R

mR

− =
2

α ...(iii)

a R= α ...(iv)
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A B
3 : 2m l

2u

2m

A

ω

v

A 60°C

2u

2m

⇒ A B

P
u

3u

u
3

u

Net

⇒

O mC

v

O

ω

m
6

m
6

α
T

a

f

T

mg

2a
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Solving these equations we get

a
g

a
g

T
mg= = =

3
2

2

3 3
, , and f = 0

2. f mgmax = = × × =µ 0.1 N10 10 10

Requirement of friction

a R= α

∴ 7

10 2 5 2

−



 = ⋅f R f R

mR

( ) ( )

/

= =2.5 2.f

m

f5

10

Solving this equation, we get

f = 2

Since, f f< max, therefore 2N frictional force will

act.

3. I I I IAB = + +1 2 3

= +( / ) ( / ) ( / ) ( / )m a m a4 2

3

4 2

3

2 2

+ + 















( / ) ( / )
( / )

m a
m

a4 2

12
4

3

4

2 2

= 3

16

2ma

4. At bottom total kinetic energy

=decrease in potential energy

= mgR

The ratio,
K

K

R

T

= 2

5

∴ K mv mgRT = =1

2

5

7

2

∴ mv

R
mg N mg

2 10

7
= = −

∴ N mg= 17

7
Ans.

5. In case of pure rolling α can be

obtained about bottommost point,

about which torque of friction is

zero.

α = F R

mR

( )

/

2

3 2 2
= 4

3

F

mR

∴ a R
F

m
= =α 4

3
Ans.

6. F f ma
F+ = = 4

3

∴ f
F=
3

(towards right ) Ans.

7. For Block

20 2− =T a ...(i)

For Pulley

TR I= α
∴ T ( ) ( )0.2 0.32= α

T = 1.6 α ...(ii)

a R= =α α0.2 ...(iii)

Solving these equations, we get

a = 2 2m/s Ans.

8. ω = Angular impulse

I
(aboutO )

= +P R h

mR

( )

3

2

2

Now, v R
PR R h

mR
COM = = +ω ( )

3

2

2

P P mv
mpR R h

mR

+ = = +
Hinge COM

( )

3

2

2

Solving this equation, we get h
R=
2

α

F = 7N

f
a

A B

1 2

3

3
4
a

o
v

N

mg

α

T

T

20

a

α

F

a

f

P

R h+

ω
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9. T
mg

i =
2

and T
mg

f =
4

10. In first case T Mg<
In second case T Mg=
Torques are different, so angular accelerations are
different.

11. From energy conservation principle, maximum
spring potential energy

= maximum decrease in gravitational potential
energy

∴ 1

2

2kx Mgh Mg xm m= = ( sin )θ

∴ x
Mg

k
m = 2 sin θ

12. − = × = 



dT dm

m

l
dx x( ) ω ω2 2

∴ − = 



∫ ∫dT

m

l
xdx

T

l

x

0

2ω

∴ T m l
x

l
= −









1

2
12

2

2
ω Ans.

13. ω = +10 5t

α ω= =d

dt
5

At t = =0 10, ω rad /s

and α = 5 rad/s2 ⇒ r OA= =1 m

v j j= =( ) $ ( $)rω 10 m/s

a j i= −( ) $ ( ) $r rα ω2

= − +( $ $)100 5i j m/s2 Ans.

14. a R= α

∴ a Rnet = ω2 (towards centre)

15. IC is least and C lies between O and B as density is

increasing from A to B.

I IA B> as more mass is concentrated towards B.

16. Torque of F about P is clockwise. So, spool will

move towards right. Torque of friction will provide

the clockwise torque about centre. So, f is

leftwards. Further, a is towards right, so, F f> .

17. C C
R

1 2
2

=

where, C2 = combined centre of mass of ring and

particle.

From conservation of angular momentum aboutC2.

L Li f=

∴ mv R
I

⋅ =
2

ω

= + +








mR

mR mR2
2 2

4 4
ω

Solving this equation we get,

ω = v

R3
Ans.

18. Mg can't provide rotational motion. This is only N

which actually provides the rotational motion.

19. Angular momentum = Angular impulse

∴ I J lω =

or ω = Angular impulse

I

= =Jl

ml

J

ml2 3

3

/

KE = = 











1

2

1

2 3

32
2 2

I
ml J

ml
ω

= 3

2

2J

m

ω
O

T
A

T dT+

x

Rω2

Rα
a

A O C B

α

a

F

f
P

C1 ω

C2

ω

J



20. No rotational motion.

21. α τ= net

I

=





 +mg

l
mgl

ml

2

32( / )

= 4.5 g

l

a l gcoin 4.5= =α
mg N ma− = coin

∴ N mg ma g= − = −coin 3.5

Since, N can't be negative.

So, N = 0 and coin can not remain in

contact with rod.

22. Let F = the applied force and f = force of friction

(leftwards)

Net horizontal force = 0

∴ F fcos θ = ...(i)

Net torque about centre = 0

∴ F r f R⋅ =
Substituting

f

R

r

R
= in Eq. (i) we have,

cos θ = r

R

or sin θ = −1
2

2

r

R

∴ θ = −












−sin 1
2

2
1

r

R

23. a
mg T

m
= −

...(i)

α τ= =
⋅ − ⋅

I

T l mg
l

ml

2

32( / )

or α = −





1
3

3

2ml
T

mg
...(ii)

a l= α ...(iii)

Solving these three equations we get,

a
g= 3

8
Ans.

24. a g g= +( cos ) ( sin )µ θ θ

= × × + ×0.5 0.8 0.610 10 = 10 2m/s

α µ θ= ( cos )mg R

mR
1

2

2

= 2 µ θg

R

cos

= × × ×2 100.5 0.8

0.4
= 20 2rad /s

Pure rolling will start when,

v R= ω or at = −R t( )ω α0

∴ 10 54 20t t= −0.4 ( )

Solving this equation, we get

t = 1.2s Ans.

25. Angular momentum will remain conserved at the

point of impact P. and just after impact it starts

rotating about point P.

L Li f=

∴ Mv R
R

MR
v

R
MR0

2 0 2

4

1

2

3

2
−



 + 



 = ⋅ω

∴ ω = 5

6

0v

R

∴ v R
v

COM = =ω 5

6

0 Ans.

26. a
mg

m
g= =µ µ

ω = u

R
⇒ α µ µ= =( )

/

mg R

mR

g

R2 5

5

22

Pure rolling will start when

v R= ω
u

at R t
2

−



 = −( )α ω

or
u

gt R
g

R
t

u

R2

5

2
−



 = −



µ µ

Solving we get, t
u

g
= 3

7 µ
Ans.
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N

a

mg

a

mg mg

T
Tα

ω
P

α

a

mg sin θ

µ θcosmg
37°

α
mg mg

ω

a

α
u
2

f mgmax = µ



27. Viscous liquid has only translational kinetic energy

∴ KE = translational + rotational kinetic energy

of hollow sphere + translational kinetic energy

of liquid.

= + × 



 +1

2

1

2

2

3

1

2

2 2
2

2mv mR
v

R
mv

= 4

3

2mv Ans.

28. a
g

I mR

g=
+

=
+

sin

/

sin

( / )

θ θ
1 1 1 22

= 2

3

g sin θ

∴ g asin θ = 3

2

Now, f
mg

mR I

m a=
+

=
+

sin

/

( / )θ
1

3 2

1 22

= 1

2
ma Ans.

29. Only two forces are acting on rod, normal reaction

(vertically upwards) and weight (vertically

downwards). Since, both forces are vertical centre

of mass falls in vertical direction (downwards).

OC
l= °
2

30sin = l

4

α τ=
I

(aboutO)

=
°





+








( ) sinmg
l

ml ml

2
30

12 16

2 2

= 12

7

g

l

a OCC = ( ) α

= 









 =l g

l
g

4

12

7

3

7

Now, mg N ma
mg

C− = = 3

7

∴ N
mg= 4

7
Ans.

30. a OPP = ( ) α

= °











l g

l2
30

12

7
cos

= 3 3

7

g
Ans.

31. Angle between acceleration and velocity is 45°.

32. a
F

M
=

α = =FL

ML

F

ML

/

/

2

12

6
2

a
L

a
F

M
B = − =

2

2α (downwards)

33. ω θ θ
θ

= =v

r

v

b

sin sin

/sin

= v

b

sin2 θ ∝ sin2 θ (as v and bare constants)

θ is decreasing. Therefore, ω will decrease.

34. Decrease in gravitational potential energy

= increase in rotational kinetic energy

∴ Mg
L ML

2

1

2 3

2
2=







 ⋅ω ∴ ω2 3= g

L

r
L L L= + =
3

2 3

2

2

3

/
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α O C

N

Q

mg

P

30°

ap

ac

45°

2v

v

R vω =

α ω= R 2

F

A

α
a

B

r

θ
b

θ v

v sin θ

ω

r
T

C 2
3
Mg



T Mg M
a

M
rC

− = 



 = 





2

3

2

3

2

3

2( )ω

∴ T
Mg Mg L g

L
= + 

















2

3

2

3

2

3

3

= 2 Mg Ans.

35. From conservation of angular momentum, just

before and just after impact about point O we have,

L Li f=

∴ mv
L mL

2 3

2

=






 ⋅ω

∴ ω = 3

2

v

L

v vC = ⋅ =1

2

3

4
ω

Impulse J has changed the momentum of particle

from mv to O. Hence,

J mv=
For rod

J J mv mvH C+ = = 3

4

∴ J mv J mv mvH = − = −3

4

3

4

= − mv

4
or | |J

mv
H =

4
Ans.

36. L Li f=

( ) ( )I mR mvR I+ = + ′2 ω ω

∴ ω ω′ = + −( )I mR mvR

I

2

Ans.

37. About bottommost point,

Angular momentum,

L I mv RC= −ω0 0 (anticlockwise)

= − 





1

2 4

2
0 0mR m

R
Rω ω

= 1

4

2
0mR ω

= + ve or anticlockwise

During slip, friction acts about

bottommost point. So, its torque is

zero or angular momentum about

bottommost point should also

remain anticlockwise when pure

rolling starts. So, figure should be as shown below.

So, the disc will return to its initial position for all

values of µ.

38. x = 30 tan θ

∴ dX

dt

d

dt





 = ⋅( )30 2sec θ θ

or vcar sec= ( )30 2 θ ω

∴ ω
θ

= vcar

sec30 2

=
°

40

30 302( ) sec
= 1 rad/s

39. Two forces normal reaction and weight are the only

forces acting on the rod during motion. Both forces

are vertical. So centre of mass will fall downwards

in a vertical line.

X x
l

dP = = −( ) cos cossay
2

θ θ

or cos θ =
−





x

l
d

2

...(i)

Similarly,

y y dP = = sin θ

∴ sin θ = y

d
...(ii)

Squaring and adding Eqs. (i) and (ii), we get

X

l
d

y

d

2

2

2

2

2

1

−





+ =

This is an equation of a circle for d
l=
4

. For any

other value of ' 'd it is equation of ellipse.
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O

JH

m
v

J
J

C

Just after
impact

ω

ω0
v0 =

ω0R
4

ω
v

v R= ω

30 m

x

θ

θ
d

P
C

C

y

O
x



40. Instantaneous axis of rotation will pass through O.

∴ v0 0=
41. Decrease in gravitational potential energy

= increase in rotational kinetic energy about O

∴ mg
l ml

2

1

2 3

2
2=







 ω

or ω = 3g

l

v r l glA = = =ω ω 3 Ans.

42. a
mg

m
g g= = =µ µ 2

7

α µ= mgR

mR
2

5

2

= 5

2

µg

R

= 5

7

g

R

Pure rolling will start when,

v v R vP = + =ω 0

or at R t v+ =( )α 0

∴ 2

7

5

7
0gt gt v





 + =

∴ t
v

g
= 0

S at= 1

2

2

= 











 =1

2

2

7 7

0

2

0
2

g
v

g

v

g
Ans.

More than One Correct Options

1.
K

K

I

mr

R

T

=
2

∴ K
mr

I mr
KT =

+








2

2 Total

or K
I mr

mr
mvTotal = +






 





2

2

21

2

= =






mgh mg

v

g

3

4

2

Solving we get I mr= 1

2

2

So it is either solid cylinder or disc.

2. (a) I I
ml

m
l

x y= = + 













2

12 2

2 2

= 2

3

2ml

(b) I I I mlz x y= + = 4

3

2

(c) I I m rz= + ( )4 2

= + 





4

3
4

2

2
2

ml m
l

( )

= 10

3

2ml

(d) I
ml

ml= +2
3

2
2 = 5

3

2ml

3. O → instantaneous axis of rotation

v r= ω or v r∝
More the value of r from O more is the speed of

point P.

4. v R v0 0+ =ω ...(i)

v R v0 0 3− =ω ...(ii)

Solving these two equations,

we get v v0 2=

and ω0 = − v

R
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α

a

µmg v R+ ωP
P

O

ω

C

vc

A

y

x
z

r

r

P

v

O ω

ω0

v0



5. x y l m2 2 2 2+ = = ( )0.25

yω = 4 ...(i)

xω = 3 ...(ii)

Squaring and adding, we get

( )x y2 2 2 25+ =ω

or ( )0.25 ω2 25=
∴ ω = 10 rad/s

OC
l= =
2

0.25m

v OCCM 2.5 m/s= =( ) ω

K mv ITotal cm cm= +1

2

1

2

2 2ω

= × × + ×





1

2
2

1

2

2

12
102 2( ) ( )2.5

0.25

= 25

3
J

6. Net acceleration of any point on the rim is vector

sum of a R, ω2 and Rα with a R= α

a RA = →ω2 vertically upwards

If a R aB= ω2, is vertically downwards and so on.

7. C1 is centre of mass of rod

C2 is centre of mass of both

P Pi f=

∴ mv mv= 3 0 ⇒ v
v

0
3

= ...(i)

L Li f= about C2we have,

mv
l

IC
6 2

= ω

=






 + 



 + 















2

12
2

3 6

2 2 2
ml

m
l

m
l

∴ ω = 2

5

v

l
⇒ K mvi = 1

2

2

K m
v

If C= 



 +1

2
3

3

1

2

2
2

2
( ) ω

= + 











1

6

1

2

5

12

2

5

2 2
2

mv ml
v

l

= 1

5

2mv

∴ Loss of kinetic energy = −K Ki f = 3

10

2mv

8. I mK= 2 where, radius of gyrationK
R= =



2

= 



m

R

2

2

= 1

4

2mR

Ball will roll purely if

v R= ω

∴ J

m
R

J h R

mR





 = −









( )

( / )1 4 2

Solving this equation, we get

h
R= 5

4

Further, if ball is struck at centre of mass, there will

be no rotation only translation.

9. Friction always acts upwards. If the ball moves

upwards, it becomes a case of retardation with pure

rolling.

µ α
min

tan=
+1

2mR

I

=
+

=tan
tan

α α
1

3

2

2

5
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Rα

Rω2

A
a

Rα

Rω2 B
a

a R+ α

Rω2

C

m v

⇒
l
3

l
6

C1

C2

ω v0

3 m/s

y c

ω
O

l

x 4 m/s

( – )h R

J

h
ω

v

f v ω

a

α

α



10. I I1 1 2 2ω ω=

∴ ω ω2
1

2
1= ⋅I

I

=
+

⋅( / )

( / )

1 2

1 2

2

2 2

mR

mR mR
ω

= ω
3

P mv m R m Ri i= = =( )2 2ω ω

P mv m R m Rf f= = 



 =ω ω

3

1

3

Impulse J f i= −| |P P

= +P Pi f
2 2 (asθ = °90 )

= 37

3
m Rω

11. Velocity component along AB = 0

∴ v v0 cos sinθ θ=
or v v f= =0 1cot ( )θ θ

at θ = ° =37
4

3
0, v v

ω = ⊥Relative velocity to AB

l

= + =v v

l
f0
2

sin cos
( )

θ θ θ

= +( ) ( / ) ( / ) ( / )v v

l

0 03 5 4 3 4 5 = 5

3

0v

l

Comprehension Based Questions

1. At angle θ shown in figure :

decrease in potential energy of rod

= increase in rotational kinetic energy of rod

+ translational kinetic energy of block.

But v v lP= =sin ( ) sinθ ω θ

∴ mg
l l ml

2 2

1

2 3

2
2−



 =







sin θ ω

+ 1

2

2M l( sin )ω θ

From here we get,

l a
mg

m M
nω θ

θ
2

2

1

3
= = −

+
( sin )

/ sin
...(i)

a l l
I

l

mg
l

Nl

ml
t = = 



 =

−















α τ θ θ

0
2

2

3

cos sin

/

= −3

2

3
g

N

m
cos

sinθ θ
...(ii)

For block

N Ma M a at n= = −[ sin cos ]θ θ ...(iii)

Now putting values of at and an from Eqs. (i) and (ii)

in Eqs. (iii) and then putting N = 0 and θ = °30 in

the equation we get,

M

m
= 4

3
Ans.

2.
M

m
= 4

3

M m= 4

3

ωl
v

2
= ∴ ω = 2v

l

Decrease in potential energy of rod

= increase in rotational kinetic energy of rod

+ translational kinetic energy of block

∴ mg
l l ml v

l2 2
30

1

2 3

2
2 2

− °



 = 









sin

+ 





1

2

4

3

2m
v( )

Solving this equation, we get

v
gl

=
3

4
Ans.
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ω ω
3

Pf

Pi

A

v

y

θ
B

v0
x

mg at

P NN

an

θ
θ

θO ω V

a

⇐

30°

v

M

ωl

2
ω °l cos 60 =

ω

lω

60°



3. a
l l v

l
n = =









2 2

42
2

2
ω

= 











2 3

16l

gl = 3

8
g

a
l

t =
2

α = 





l

I2

τ =
°























l
mg

l

ml2

2
30

32

cos

/

= 3 3

8

g

∴ a a an t= +2 2

= 3

4

g

4. a iC

g
g= ° − °









3 3

8
60

3

8
30cos cos $

+ ° + °






 −3 3

8
30

3

8
60

g
g gcos cos ( $)j

= − 





3

4

g $j

Now, mg m C( $)− + =j F aHinge

Substituting the values we get

F jHinge = 





mg

4

$ Ans.

5. Bottommost point where friction actually acts is at

rest.

6. α = ⋅ =F R

mR

F

mR3

2

2

32

a R
F

m
= =α 2

3

F f ma
F− = = 2

3

∴ f
F

ma= =
3

1

2

7. About point P net torque of F and f is zero. So,

angular momentum is conserved.

8. KTotal after falling a height h is mgh

K

K

R

T

= 2

3

∴ K mv mghT = = 





1

2

3

5

2 ( )

∴ v
gh= 6

5
Ans.

9. H
v

g
= °2 2 37

2

sin sin

= =( / ) ( / )6 5 3 5

2

27

125

2gh

g

h
Ans.

10. R x
u

g
= = ° °2 37 372 sin cos

= ( ) ( / ) ( / ) ( / )2 6 5 3 5 4 5gh

g

= 144

125
h Ans.

Match the Columns

1. (a) t
S

a
= 2

and a
g

I mR
=

+
sin

/

θ
1 2

I of hollow sphere is maximum.

So, a is minimum and t is maximum.

(b) K mghTotal = for all

(c)
K

K

R

T

= 2

5
for solid sphere

= 2

3
for hollow sphere

= 1

2
for disc

It is maximum for hollow sphere.
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30°

C

60°

60°30°

x

y

g3
8

g3 3

8

√

F

α

F a

f

F

P
R/2

f =
F
3

an

30°

mgα

N = 0

at



But
K

K

T

R

is maximum for solid sphere.

2. In all cases,

v
J

m
= (J = linear impulse)

ω = × ⊥J r

IE

Here, r⊥ is from centre E. v is rightwards. So, for

pure rollingωshould be clockwise. Hence, J should

be applied at A.

If it is below A, angular velocity is anticlockwise

and it will cause forward slip.

3. In case of pure roll (upwards or downwards)

required value of friction acts in upward direction.

In case of slip (forward or backward) maximum

friction will act in backward or forward direction.

4. (a) K I m= /

= =m a
a

( )2

3

2

3

2

(b) K
m a a= =( )2

12 3

2

(c) K
ma a= =

2

3 3

(d) K
ma a= =

2

12 12

5. (a) K mgh KTotal say= ( )

K

K

R

T

= 2

5

∴ K K mghR = =2

7

2

7

(b) K mg
h

Total =
2

K

K

R

T

= 2

5

∴ K mg
h

mghT = 



 =5

7 2

5

14

(c) At 3

K mg
h

mghR = 



 =2

7 2

1

7

From 3 to 4, KR will become constant.

(d) K K KT R= −Total

= −mgh mgh
1

7
= 6

7
mgh

6. a R R
I

= = 



α τ

∴ F − = ×

× ×

















20

10
1

20 1

1

2
10 12

( )

Solving this equation, we get

F = 60 N

So, when F = 60 N, friction reaches its maximum

value or slipping will start. F becomes 60 N at 6 s.

(d) a R R
I

= = 



α τ

or
F − = ×

× ×

















10

10
1

10 1

1

2
10 12

( )

F = 30 N

and F becomes 30 N at 3 s.

Subjective Questions

1. Torque about bottommost point in each case is

clockwise.

2. α τ= =







=
I

mg
l

ml

g

l

2

3

3

22
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f mgmax = = 20 Nµ

F

α

a

F

α

a

10 N

T

A
C

B

mg
α



(a) a l
g

B = =α 3

2
Ans.

(b) a
l g

C = =
2

3

4
α Ans.

(c) a
mg T

m
C = −

or
3

4

g mg T

m
= −

∴ T
mg=
4

Ans.

3. mgh K K mvR T= + = 3

4

2

Here h s= sin θ

∴ gs vsin θ = 3

4

2 or s
v

g
= 3

4

2

sin θ

= ×

× ×

3

4
1

2

2( )2.0

9.8

= 0.612 m Ans.

4. I MR= 2

For pure rolling to take place. a R= α

or
F f

M
R

f R

MR

f

M

– .= 



 =

2

∴ f
F=
2

Ans.

and a
F f

M

F

M
= =–

2
Ans.

5. v R+ =ω 1.5 …(i)

and R vω – = 3.0 …(ii)

From Eq. (i) and (ii), we have

Rω = 2.25 m/s and v = – 0.75 m/s

Thus, velocity of point C is 0.75 m/s (towards left).

v v R v RF = + + +2 2 2 90 30( ) ( ) cos ( )ω ω

= + + × × ×



0.5625 5.0625 0.75 2.252

1

2
–

= 1.98 m/s Ans.

6. a
Mg T

M
= –

…(i)

α = =TR

MR

T

MR1

2

2

2

…(ii)

a R= α …(iii)

Solving these three equations, we get

a
g= 2

3
and T

Mg=
3

Ans.

7. From conservation of mechanical energy, decrease

in gravitational PE = increase in rotational KE

or mg R MR mR( ) = +











1

2

1

2

2 2 2ω

or ω =
+

4

2

mg

m M R( )
Ans.

8. Initially there is forward slipping. Therefore,

friction is backwards and maximum.

Let velocity becomes zero in time t1 and angular

velocity becomes zero in time t2.

Then, 0 0 1= −v at

or t
v

a

v

g
1

0 0= =
µ

...(i)

and 0 0 2= −ω αt

or t2
0= ω

α

Here, α µ µ= =mgR

mR

g

R1

2

2

2

∴ t
R

g
2

0

2
= ω

µ
…(ii)

Disk will return back when

t t2 1> or
ω

µ µ
0 0

2

R

g

v

g
>

or ω0
02> v

R
Ans.
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f

F

ω

R – vω

v

v R+ ω

⇒

v0

ω0

µ mg

30°

v F

Rω

30°



9. h R r= − −( )( cos )1 θ …(i)

Kinetic energy at angle θ is,

K mv mgh= 



 −7

5

1

2
0
2

QIn case of pure rolling

K KT = 5

7

∴ 1

2

1

2

5

7

2
0
2mv mv mgh= −

∴ v v gh2
0
2 10

7
= − …(ii)

Equation of motion at angle θ is,

N mg
mv

R r
− =

−
cos

( )
θ

2

∴ N mg
m

R r
v gh= +

−
−



cos

( )
θ 0

2 10

7

Substituting value of h from Eq. (i)

N mg
m

R r
= +

−






cos θ

v g R r0
2 10

7
1− − −








( )( cos )θ

= − +
−

mg mv

R r7
17 10 0

2

( cos )
( )

θ Ans.

Force of friction,

f
mg

mr

I

=
+

sin θ

1
2

(for pure rolling to take place)

=
+

mg sin θ

1
5

2

I mr=





2

5

2

= 2

7
mg sin θ Ans.

10. (a) For pure rolling to take place,

a R= α or
F f

m
R

Fr fR

mR

– =








+ 







1

2

2

Solving this equation, we get

f
r

R
F= 





2

3

1

2
– Ans.

(b) Acceleration a
F f

m
= –

Substituting value of f from part (a), we get

a
F

mR
R r= +2

3
( ) Ans.

(c) a
F

m
> if

2

3
1

R
R r( )+ > or r

R>
2

Ans.

(d) In this case force of friction is in forward

direction. Ans.

11. We can choose any arbitrary directions of frictional

forces at different contacts.

In the final answer, the negative value will show the
opposite directions.

Let f1 = friction between plank and cylinder

f2 = friction between cylinder and ground

a1 = acceleration of plank

a2 = acceleration of centre of mass of cylinder

andα = angular acceleration of cylinder about is

COM.

Directions of f1 and f2 are as shown here

Since, there is no slipping anywhere

∴ a a1 22= …(i)

(Acceleration of plank = acceleration of top point of

cylinder)

a
F f

m
1

1

2

= −
…(ii)

a
f f

m
2

1 2

1

= +
…(iii)

α = −( )f f R

I

1 2
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F

f

v

h

q

a1

f1

m2
F

f1

a2

f2

m1



(I = moment of inertia of cylinder about COM)

∴ α = −( )f f R

m R

1 2

1
21

2

α = −2 1 2

1

( )f f

m R
…(iv)

a R
f f

m
2

1 2

1

2= = −α ( )
…(v)

(Acceleration of bottommost point of cylinder = 0)

(a) Solving Eqs. (i), (ii), (iii) and (v), we get

a
F

m m
1

1 2

8

3 8
=

+

and a
F

m m
2

1 2

4

3 8
=

+

(b) f
m F

m m
1

1

1 2

3

3 8
=

+

f
m F

m m
2

1

1 23 8
=

+
Since, all quantities are positive, they are correctly

shown in figures.

Note Above calculations have been done at t = 0

when ω =0.

12. If α be the angular acceleration of the hoop and a be

the acceleration of its centre, acceleration of m

would be αr a+ .

Here, Tr I= α [where I = moment of inertia of the

hoop about the horizontal axis passing through its

centre]

Also, T Ma= and mg T m a r– [ ]= + α

Solving, we get

a
mg

M m
=

+
= =

[ ]2

2

1.4
1.43 m/s2

Hence, T = 1.43 N

and α = = =Tr

I

T

Mr
7.15 rad /s2

13. Initially the cylinder will slip on the plank, therefore

kinetic friction will act between the cylinder and the

plank.

a
mg

m
gc = =– –

µ µ

a
mg

m

g
p = + = +µ µ

2 2

α µ µ
c

mg R

mR

g

R
= + = +( ) ( )

( / )2 2

2

For pure rolling,

v v Rp c c= – ω

∴ µ µ µg
t v gt R

g

R
t

2

2
0= 



– – ( ) ( )

∴ t
v

g
= =

× ×
=0 7

01 10
2

3.5 3.5
s

µ .

∴ s s v t g t
g

tc p– – ( ) ( ) – ( )= × 



0

2 21

2

1

2 2
µ µ

= ×( ) – ( ) ( ) ( )7 2
1

2
10 40.1

– ( )
1

2

10

2
4 11

0.1
m

×



 =

Also, v v v gt
g

tc P– ( – ) – ( )= 



0

2
µ µ

= × × × × =7 10 2
10 2

2
4– –0.1

0.1
m/s

Hence, the remaining distance ( – )12 11 1= m is

travelled in a time,

t′ = =1.0

4
0.25 s

∴ Total time = + =2 0.25 2.25 s
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a2R α

FBD of hoop FBD of block of mass m

N

T

Mg

T

mg

a a1 2= 2

a2

N

mg

µmg

µmg

2 + Nmg

N ′

FBD of cylinder FBD of plank



14. In rolling without sliding on a stationary ground,

work done by friction is zero. Hence

work done by the applied force

= change in kinetic energy

∴ ( )( )30
1

2
9 20.25 = × × v

+ × × + × × × ×








2

1

2
6

1

2

1

2
62 2

2

2
v r

v

r

or 7.5 13.5= v2

∴ v = 0.745 m/s Ans.

15. Let v0 be the linear velocity and ω0 the angular

velocity of the disc as shown in figure then,

v r v0 0 2− =ω …(i)

and v r v0 0+ = −ω …(ii)

Solving Eqs. (i) and (ii), we have

ω0

3

2
= − v

r

Hence, the angular velocity of disc is
3

2

v

r

anticlockwise. Ans.

16. Let x be the distance of centre

point C of rod from D. Then,

F F ma2 1– =
or F1 3= N

Further, τ c = 0

∴ F x F x2 1= +( )0.2

5 1x F x= +( )0.2

∴ 5 3x x= +( )0.2

or x = 0.3 m

∴ Length of rod = + =2 ( )x 0.2 1.0 m Ans.

17. L Li f= (about bottommost point)

∴ I I mRvω ω0 2= +[ ]

or
1

2
2

1

2

2
0

2mR mR mR R




 = +





ω ω ω( )

∴ ω ω= 0

6
Ans.

and v R
R= =ω ω0

6
Ans.

18. Let,

a1 = linear acceleration of sphere (towards right),

a2 = linear acceleration of plank (towards left)

and α = angular retardation of sphere

a a
mg

m
g1 2= = =µ µ ⇒ α µ µ= =mgr

mr

g

r2

5

5

22

Let pure rolling starts after time ‘t’. Then

ωr v v− =
∴ ω r v= 2

( ) ( )ω α0 12− =t r a t

Substituting the values,

t
r

g
= 2

9

0ω
µ

∴ s a t
r

g
= =1

2

2

81
2

2 0
2 2

( )
ω

µ
Ans.

19. Between A and B, there is forward slipping.

Therefore, friction will be maximum and backwards

(rightwards). At point B where v R= ω, ball starts

rolling without slipping and force of friction

becomes zero.
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v

v0

2v

ω0

ω0

B

A

C

F1

D F2

0.2m

x

µ mg

ω0

µ mg

⇒
ω ω

v

v0

ω0

0.7 v0

ω0ω

v

AB



From conservation of angular momentum between

points A and B about bottommost point (because

torque of friction about this point is zero)

L LA B=
∴ m v R I mvR I( )0.7 0 0− = +ω ω

Substituting ω0
0= v

R
,ω = v

R

and I mR= 2

5

2, we get

v v= = 





3

14

3

14
70 ( )m/s = 1.5 m/s Ans.

20. Let J be the linear impulse applied at B and ω the

angular speed of rod.

J mv= 0 …(i)

J
l ml

2 12

2



 = . ω …(ii)

Solving these two equations,

ω = 6 0v

l

Linear speed of D (mid-point of

CB) relative to C,

v
l

v= 



 =ω

4

3

2
0

∴ Force exerted by upper half

on the lower half,

F

m
v

l
=













2

4

2

Substituting v v= 3

2
0, we get

F
mv

l
= 9

2

0
2

Ans.

21.
I

mR2

2

5
= = 0.4 for sphere

= =1

2
0.5 for disc and = 1 for hoop

s =
°

=2

30
4

sin
m

For sphere

a
g

I

mR

=
+

=
×

+
=sin θ

1

1

2

1
2

9.8

0.4
3.5 m/s

∴ v as= = × × =2 2 43.5 5.29 m/s

f
mg

mR I
=

+
=

× ×

+ 





=sin

/

θ
1

3
1

2

1
12

9.8

0.4

4.2 N

t
s

a
= = × =2 2 4

3.5
1.51s

Similarly, the values for disk and hoop can be

obtained.

22. I I I IA AB AC BC= + +

= + + +







4

3

4

3

1

3
32 2 2 2ml ml ml m l( )

= 6 2ml

If ω is the angular velocity in the second position,

then using conservation of mechanical energy, we

have

For COM h
l

i = + 3

3

and h lf = − 2 3

3

3
3

3

1

2
6 3

2 3

3

2 2mg
l

ml mg
l






 = + −






( )ω

or ω = g

l

3

Now, velocity of C at this instant is 2lω or 2 3gl

and maximum. Ans.

23. (i) C is the centre of mass of the rod. Let ω be the

angular speed of rod about point O at angle θ. From

conservation of mechanical energy,
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A

B

C

D

J

v0

ω

√3l2l
l

l

A B

C

Aω

B C
O

2
3

l√3

θ
θ0

c

c ′

A ′

A

Ο
ω, α

θ
c

O

Mg cos θ
Mg Ftsin +θ

Fr
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Mg
L ML

2

1

2 3
0

2
2(cos cos )θ θ ω− =









∴ ω θ θ2
0

3= −g

L
(cos cos ) …(i)

Now, F Mg M
L

r − = 



cos θ ω

2

2 …(ii)

From Eqs. (i) and (ii), we get

F Mgr = −1

2
5 3 0( cos cos )θ θ Hence proved.

(ii) Angular acceleration of rod at this instant,

α τ θ
= =

I

Mg
L

ML

2

3

2

sin

= 3

2

g

L

sin θ

Tangential acceleration of COM,

a
L

gt = 



 =( ) sinα θ

2

3

4
…(iii)

Now, F Mg Mat t+ =sin θ …(iv)

From Eqs. (iii) and (iv), we get

F Mgt = − 1

4
sin θ Hence proved.

Here negative sign implies that direction of Ft is

opposite to the component Mg sin .θ
24. (a) From conservation of mechanical energy.

( )( )( )3 2
1

2

2m g l I= ω

=








 =1

2

3 4

3
8

2
2 2 2( )( )m l

mlω ω

∴ ω = 1

2

3g

l

Applying,

angular impulse = change in angular momentum

J l I( )3 = ω

or 3 16
1

2

32Jl ml
g

l
=







( )

∴ J ml
g

l
= 8

3

3

or J m gl= 8

3
3 Ans.

(b) Let ω′ be the angular speed in opposite

direction. Again applying conservation of

mechanical energy,

( )( )( ) ( ) ( )3
1

2
82 2 2m g l I ml= ′ = ′ω ω

∴ ω′ = 1

2 2

3g

l

Now, applying, angular impulse = change in
angular momentum

∴ J l I ml
g

l
( ) ( ) ( )3 16

1

2

3
1

1

2

2= + ′ = +





ω ω

∴ J m gl= +4

3
6 2 1( ) Ans.

25. α =
+

= ⋅mgl

m l
ml

g

l( )4

12

3

72
2

∴ ( )a l gC V = =α 3

7
(downwards)

Let V be the vertical reaction (upwards) at axis, then

mg V ma
mg

C− = = 3

7

∴ V mg= 4

7
…(i)

If H be the horizontal reaction (towards CO) at axis,

then

H ml= ω2 …(ii)

∴ Total reaction at axis,

N H V mg
l

g
= + = +







2 2

2
2

4

7
1

7

4

ω
Ans.

(b) a a lC C V= +( ) ( )2 2 2ω

= 



 +3

7

2
2 2g

l( )ω Ans.

(c) Let ω′ be the angular speed of the rod when it

becomes vertical for the first time. Then from

conservation of mechanical energy,

1

2

2 2I mgl( )ω ω′ − =

A

ω

B

C

3l

ω′

60°

A B

Cl

mg

l 2l

ω α,

O



∴ ω ω′ = +2 2 2mgl

I

= +ω2

2

2

7

3

mgl

ml

= +ω2 6

7

g

l

Acceleration of centre of mass at this instance will

be,

a lC = ′ω 2 = +l
gω2 6

7
Ans.

Let V be the reaction (upwards) at axis at this

instant, then,

V mg ma ml
mg

C− = = +ω2 6

7

∴ V mg ml= +13

7

2ω Ans.

(d) From conservation of mechanical energy,

mgl I= 1

2

2ωmin

∴ ωmin = =2 2

7

3

2

mgl

I

mgl

ml

= 6

7

g

l
Ans.

26. Linear momentum, angular momentum and kinetic

energy are conserved in the process.

From conservation of linear momentum,

Mv mv′ =

or v
m

M
v′ = …(i)

Conservation of angular momentum gives,

mvd
Ml=









2

12
ω

or ω = 





12
2

mvd

Ml
…(ii)

Collision is elastic. Hence,

e = 1

or     relative speed of approach

= relative speed of separation

∴ v v d= ′ + ω
Substituting the values, we have

v
m

M
v

mvd

Ml
= + 12 2

2

Solving it, we get

m
Ml

d l
=

+

2

2 212
Ans.

27. Let v = linear velocity of rod after impact

(upwards),

ω = angular velocity of rod

and J = linear impulse at A during impact

Then, J P P Pf i= = −∆
J mv mv= − −( )0

∴ J m v v= +( )0 …(i)

Angular impulse = ∆L

∴ J
l

I
ml

2 12

2

cos θ ω ω



 = = …(ii)

Collision is elastic ( )e = 1

∴ Relative speed of approach = Relative speed of

separation at point of impact

v v
l

0
2

= + ω θcos …(iii)

Solving above equations, we get

ω θ
θ

=
+

6

1 3

0
2

v

l

cos

( cos )
Ans.

28. (a) The distance of centre of mass (COM) of the

system about point A will be

r
l=
3

Therefore, the magnitude of horizontal force
exerted by the hinge on the body is

F = centripetal force

or F m r= ( )3 2ω
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A

J

θ v0

A

θ

v

ω

At the time of impact After impact

θ

v

θ

l
2

ω

√3/2ll l

l

COM

ω α,

F
B C

A
y

x



578 � Mechanics - II

or F m
l= 





( )3
3

2ω

or F ml= 3 2ω
(b) Angular acceleration of system about point A is

α τ= A

AI

=







( )F l

ml

3

2

2 2

= 3

4

F

ml

Now, acceleration of COM along x-axis is

a r
l F

ml
x = = 











α

3

3

4
or a

F

m
x =

4

Now, let Fx be the force applied by the hinge along

x-axis.

Then, F F m ax x+ = ( )3

or F F m
F

m
x + = 



( )3

4

or F F Fx + = 3

4
or F

F
x = −

4

Further if Fy be the force applied by the hinge along

y-axis. Then,

Fy = centripetal force

or F mly = 3 2ω

29. From conservation of linear momentum

mv Mv1 2= …(i)

∴ Velocity of cylinder axis relative to block

v v vr = +1 2 …(ii)

Applying conservation of mechanical energy,

mg R r mv I Mv( )− = + +1

2

1

2

1

2
1
2 2

2
2ω …(iii)

Here, I mr= 1

2

2 and ω = v

r

r

Solving the above equations with given data, we get

v1 = 2.0 m/s

and v2 = 1.5 m/s Ans.

Further, N mg
mv

R r

r− =
−

2

∴ N mg
mv

R r

r= +
−

=
2

(0.5)(10)

+
(0.5)(3.5)

0.525
= 16.67 N

2

Ans.

30. Given µ α> tan ⇒ µ α αmg mgcos sin>
a g g= ( cos – sin )µ α α

α µ α µ α= =( cos ) cosmg r

mr

g

r1

2

2

2

Slipping will stop when,

v r= ω
or at r t= ( – )ω α0

∴ t
r

a r
=

+
ω

α
0 =









r

g g

ω
µ α α

0

3 cos – sin

d at1
21

2
=

=








1

2 3

0

2

( cos – sin )
cos – sin

µ α α ω
µ α α

g g
r

g g

= r

g

2
0
2

22 3

ω µ α α
µ α α
( cos – sin )

( cos – sin )
Ans.

v at g g
r

g g
= =







( cos – sin )

cos – sin
µ α α ω

µ α α
0

3

= rω µ α α
µ α α

0

3

( cos – sin )

( cos – sin )

Once slipping is stopped, retardation in cylinder,

a
g

I

mr

g
g′ =

+
=

+
=sin sin

sin
α α α

1 1
1

2

2

3
2

v1

ω

v2

ω0

mg sin
α

α

µ

α
cos

mg

α

aα



d
v

a

r

g
2

2 2
0
2 2

22

3

3 4
=

′
= ω µ α α

µ α α α
( cos – sin )

( cos – sin ) ( sin )

∴ d d dmax = +1 2

= +r

g

2
0
2

22 3
1

3

2

ω µ α α
µ α α

µ α α( cos – sin )

( cos – sin )

( cos – sin )

sin α










= r

g

2
0
2

4 3

ω µ α α
α µ α α
( cos – sin )

sin ( cos – sin )
Ans.

Note Once slipping was stopped, pure rolling

continues if

µ α>
+

tan

1
2mr

I

or µ α>
+

tan

1 2
or µ α> tan

3

and already in the question it is given that

µ α> tan .That’s why we have taken a g′ = 2

3
sin α.

31. Point A is momentarily at rest.

α
θ θ= =

mg
l

ml

g

l

2

3

3

22

cos
cos

∴ a
l

gC = =
2

3

4
α θcos

Now µN max=
or µ θN maC= sin

or µ θ θN mg= 3

4
sin cos …(i)

Further, mg N may− =
or N mg maC= − cos θ

or N mg mg= − 3

4

2cos θ …(ii)

Dividing Eq. (i) by Eqs. (ii), we have

µ
θ θ

θ
=

−

3

4

1
3

4

2

sin cos

cos

=
−

3

4 3 2

sin cos

cos

θ θ
θ

=
+

3

1 3 2

sin cos

sin

θ θ
θ

Hence proved.

32. Figure (a) and (b)

ω : Decrease in gravitational potential energy =

increase in rotational kinetic energy

∴ mg
l

I
4

1

2
0

2sin θ ω=

= + 















1

2 12 4

2 2
2ml

m
l ω

∴ ω θ= 





24

7

g

l

sin
…(i)

α : α τ=
I

=

+ 















mg
l

ml
m

l

4

12 4

2 2

cos θ

= 12

7

g

l

cos θ
…(ii)

ΣF may y= or mg N matcos θ − =
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θA

C

aC

O

ω,α
θ

mg

(b)

O

C

l/4 3 /4l

l/4

(a)

O

θ

mg

(c)

y

x µN
N

an

at
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or N mg mat= −cos θ

= −mg m
l

cos θ α
4

Substituting value of α from Eq. (ii), we get

N mg= 4

7
cos θ …(iii)

Rod begins to slip when

µ θN mg man− =sin

or
4

7 4

2µ θ θ ωmg mg m
l

cos sin− =

Substitution value of ω from Eq. (i), we get

tan θ µ= 4

13

∴ θ µ= 





−tan 1 4

13
Ans.

33. Writing equations of motion, we get

5 52 2g T a– = …(i)

( – )T T R

M R

2 1 2

2 2
2

21

2

= α …(ii)

T f M a1 1 1+ = …(iii)

( – )T f R

M R

1 1

1 1
2

11

2

= α …(iv)

a R1 1 1= α …(v)

a R R1 1 1 2 2+ =α α …(vi)

R a2 2 2α = …(vii)

We have seven unknowns,T T a a1 2 1 2 1 2, , , ,, α α and

f solving above equations, we get

a2

4

11
= =g 3.6 m/s2 Ans.

v a t
gt= =2

4

11
Ans.

34. Equations of motion are,

F f Ma+ =1 1 …(i)

f f Ma1 2 2+ = …(ii)

2 22 3F f Ma– = …(iii)

α = ( – )f f R

MR

1 2

21

2

or α = 2 1 2( – )f f

MR
…(iv)

For no slipping condition,

a R a2 1+ =α – …(v)

and a R a2 3– α = …(vi)

We have six unknowns, f f a a1 2 1 2, , , , a3 and α .

Solving the above six equations, we get

a
F

M
1

21

26
= and a

F

M
2

26
= Ans.

35. Angular velocity From conservation of mechanical

energy,

decrease in gravitational PE

= increase in rotational KE

or mgr mg rsin ( sin )60 2 60° + °

= +










1

2

3

2
2

2
2 2mr

m r( ) ω

∴ 3 3

2

11

4

2 2mgr
mr= ω

∴ ω = 6 3

11

g

r
Ans.

Angular acceleration

α τ=
I

= ° + °

+










mgr mg r

mr
m r

cos ( cos )

( )

60 2 60

3

2
2

2
2

= =

3

2
11

2

3

112

mgr

mr

g

r
Ans.

36. a a aB B= +0 0/

Here, aB / 0 has two components at (tangential

acceleration) and an (normal acceleration)

M1

f

T1

a1

R1

α1 T1

R2

α2

T2

M2

5 g

T2

a2

M

a1

f1

F

M, R

f1

a2

f2

a3

2M
f22F

α



a rt = = =α (0.3)(5) 1.5 m/s2

a rn = = =ω2 2 24( ( )0.3) 4.8 m/s

and a0
22= m/s

∴ a a aB x y= +( ) ( )Σ Σ2 2

=
+ ° − °

+ ° + °

( cos cos )

( sin sin )

2 45 45

45 45

2

2

4.8 1.5

4.8 1.5

= 6.21 m/s2

37. C is the COM of ( )M m+

BC
M

M m

l=
+







 



2

and OC
m

M m

l=
+







 



2

From conservation of linear momentum,

( )M m v mv+ = 0

or v
m

M m
v=

+






 0 …(i)

From conservation of angular momentum about

point C we have,

mv BC I0( ) = ω

or
mMv l

M m
m

M

M m

l Ml0

2 2 2

2 4 12( )+
=

+






 











+

+
+























M
m

M m

l
2 2

4
ω

Putting
mv

M m
v0

+
=

from Eq. (i), we have

v l m M

M mω
= +

+








6

4

Now, a point (say P) at a distance x
v=
ω

, from C

(towards O) will be at rest. Hence, distance of point

P from boy at B will be

BP BC x= +

=
+







 



 + +

+










M

M m

l l m M

M m2 6

4

= 2

3

l
Ans.

38. Let ω be the angular velocity and α the angular

acceleration of rod in horizontal position. Then

α = =
( )Mg

l

Ml

g

l

2

3

3

22
…(i)

1

2 3 4

2
2Ml

Mg
l






 =ω

∴ ω = ⋅3

2

g

l
…(ii)

F M
l

M
l g

l
Mgx = 



 = 









 =

2 2

3

2

3

4

2ω

Mg F M
l

y− = 



( )α

2

F Mg Mg
Mg

y = − =3

4 4

∴ F F Fx y= +2 2

= 10

4
Mg Ans.

tan
( / )

( / )
α = =

F

F

M g

M g

y

x

4

3 4
= 1

3

∴ α = 





−tan 1 1

3
Ans.
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60°

O
ω, α

α Mg

Fy

Fx

Fy

Fx

F

α

O

v

B

A

C
ω



13. Gravitation

1. F F F FFnet = + + °2 2 2 60cos

= 3 F

= =3
2

3

42

2

2

GMM

a

GM

a( )

2. F Fnet = 2 2( )

= 2 2
2

G m m

r

. .

= =2 2

2

4 22

2

2

2

Gm

a

Gm

a( / )

3. a
F

m

Gm m

r

Gm

r
1

1

1 2
2

2
2

= = =

= × −( ) ( )

(

6.67

0.5)2

10 211

= × −5.3 m/s210 10

Similarly, a
Gm

r
2

1
2

=

4. F F Fnet = ° +2 451 2( cos )

= +2 1 2F F = +( )

( )

2

2 2 2

Gmm

d

Gmm

d

= +







2 1

2

2

2

Gm

d
(Along PB)

5. m m1 2= = ( )(volume density)

= 





4

3

3π ρr

∴ F
Gm m

r
= 1 2

2

=











G r r

r

4

3

4

3

3 3 2

2

π π ρ

or F r∝ 4 Hence proved.

1. g
GM

R
=

2
or g

M

R
∝

2

Mass and radius both are two times. Therefore,
value of g is half.

2. (a) ′ =
+





g
g

h

R
1

2

At h R g
g= ′ =,
4

(d) ′ = −



g g

d

R
1

At d
R

g
g= ′ =

2 2
,

3.
g

h

R

g
h

R
1

1
2

+





= −





Solving this equation, we get

h R= −







5 1

2

4. ∆g g g= ′ −

= − Rω θ2 2cos

= − ×
×







 °( ) cos6.37 106 2

24 3600
45

2

2π

= − 0.0168 m/s2

5. ′ = =
+





g g
g

h

R

0.64

1

2

∴ 1
5

4
+ =h

R

h
R= =
4

1600 km

2F 2F

Fnet

30° 30°

F F

60°

4m 3m

m 2m

4F
3F

2F

F
r

F F

Fnet

m

A

F1

m

2d

md B
m

C

Fnet

F1

F2

P

d
45°

2r
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6. ′ = = − °g g g R
3

5
02 2ω cos

∴ R gω2 2

5
=

or ω = 2

5

g

R
= ×

× ×
2 9.8

5 6400 103

= × −7.8 10 rad/s4

7. At equator, g g R′ = − ω2

= − ×
×







( ( )9.8) 6400 102 3 2

24 3600

2
π

= 9.766 m/s2

Now, mg = 1000

∴ m
g

= 1000

w mg
g

g
′ = ′ = ′






( )1000

= ( ) (

(

1000 9.766)

9.8)
= 997 N

8. g g R′ = − ω2

∴ 0 2= −g Rω

∴ ω = =
×

g

R

9.8

6400 1000

= × −1.237 rad/s10 3 and T = 2π
ω

By putting the value of ω, we get

T ≈ 84.6 min

9.
g

h

R

g R

1

2

+





= − ω

By putting the values of g h R, , and ω, we get

h ≈ 10 km

1. V
Gm

a

Gm

a

Gm

a
= − − = − 2

E
Gm

a
=

2

E E E E Enet = + + °2 2 2 60( )( )cos = 3E

= 3
2

Gm

a

2. V
Gm

a

Gm

a
= −



 = −5

5

For E Five vectors of equal magnitudes, when
added as per polygon law of vector addition make a
closed regular pentagon. Hence, net E is zero.

3. V
Gm

a

Gm

a
= −



 = −4 4

For E

E Enet = = Gm

a2

4. Vp = due to particle + due to

shell

= − −Gm

R

Gm

R/2

= − 3Gm

R

5. E
F i

i= =
×

=−m

4

20 10
200

3

$

( $) N/kg

1. E i j k= − + +










∂
∂

∂
∂

∂
∂

V

X

V

y

V

z

$ $ $

2. | |E = −



 + −







 + −





∂
∂

∂
∂

∂
∂

V

x

V

y

V

z

2 2 2

− =∂
∂
V

x
10 J/kg-m is given

No information is given about

− ∂
∂
V

y
and − ∂

∂
V

z

So, | |E ≥ 10 N/kg

3. F E i j= = −



 + −

















m m

V

x

V

y

∂
∂

∂
∂

$ $

= − +( $ $)10 10i j N or | |F = 10 2 N

4. F E i j= = +m ( $ $)2 3 N/kg

We can check that path given (therefore

displacement) is perpendicular to force.

∴ W = 0
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m

m O

EEnet

E

30°

30°

E

E

E

E

Enet
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m

R/2 m,R

P



1. K U K Ui i f f+ = +

∴ 0
1

2
10 2

1

2
201 2 2 2− = × × + ×Gm m

r
v v

i

( )

− Gm m

rf

1 2

∴ v
Gm m

r rf i

= −










1 2

30

1 1

= × × × −





−6.67 10

0.5

11 10 20

30

1 1

1

= × −2.1 m/s10 5

and 2 10 5v = × −4.2 m/s

2. Total pairs = − =4 4 1

2
6

( )
. Four pairs are at a

distance of a and two pairs at distance of 2a.

3. ∆ =
+

U
mgh

h

R
1

Put h R=

4. (i) ∆U
mgh

h

R

=
+1

Putting h nR= , we get

∆U
n

n
mgR=

+








1

(ii) ∆U
n

n
mgR=

+








1

= 1

2

2mv

∴ v
ngR

n
=

+
2

1

5. h
v

g v R
=

−

2

22 ( / )

=
× −

×

( )

)

10

2

4 2

2

9.8
(10

6.4 10

4

6

= ×2.51 10 m7

= ×2.51 10 km4

6. Apply
1

2
1

2mv
mgh

h

R

=
+

1. KE = 1

2

2mve

= 





1

2

2
m

GM

R

= m

R
gR( )2 (as GM gR= 2)

= mgR

2. v
GM

R
e = 2

or v
M

R
e ∝

3. (a) Total mechanical energy = − = −E E E0 0 02 .

Since, it is negative, it will not escape to

infinity.

(b) E Ei f= ⇒ E E U0 02 0− = + ⇒ U E= − 0

1. Delhi does not lie on equator.

2. T r∝ 3 2/

∴ T r

r

2 2

1

3 2

π




 =









/

or T
r

r
T2

2

1

3 2

1=








/

= ×







2 10

10
28

4

4

3 2/

( ) = 56 2 h

3. r R h R R R1 1 2= + = + =
r R h R R R2 2 3 4= + = + =

KE and PE ∝ 1

r

∴ K

K

U

U

r

r

1

2

1

2

2

1

2

1
= = =

4. (a) v
GM

r
= =

+
GM

R h

(b) KE = GMm

r2
=

+
GMm

R h2 ( )

(c) PE = − GMm

r
= −

+
GMm

R h( )

(d) T
GM

r= 2 3 2π / = +2 3 2π
GM

R h( ) /
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5. (a) W = Energy of satellite in first orbit − energy of

satellite on the surface of earth

= − − −





GMm

R

GMm

R2 2( )

= 3

4

GMm

R

= = × × × × ×3

4

3

4
2 10 103mgR 6.4 106

= ×9.6 10 J10

(b) W = energy of satellite in second orbit

– energy in first orbit

= − − −









GMm

R

GMm

R2 3 2 2( ) ( )

= 1

12

GMm

R
= 1

12
mgR

= × × × × ×1

12
2 10 103 6.4 106

= ×1.07 J1010

Exercises

LEVEL 1

Assertion and Reason

1. U
G m m

r
= − 1 2

If r decreases,U also decreases.

2. V
GM

R
C = −1.5

V
GM

R
S = −

EC = 0 and E
GM

R
S =

2

C → centre, S → surface.

3. If a mass m is displaced from centre along the line

AB, force on it is away from the centre. So, it is in

unstable equilibrium position at centre. So, potential

energy and hence the potential at centre is

maximum.

4. E i j k= − + +










∂
∂

∂
∂

∂
∂

V

x

V

y

V

z

$ $ $

∂
∂
V

X
= 0 does not mean field strength is zero.

Because it also depends on
∂
∂
V

y
and

∂
∂
V

z
.

5. h
u

g
=

2

2
or h u∝ 2 cannot be applied in this case.

Because, for higher values of v, acceleration due to

gravity g does not remain constant.

6. Force on planet is towards centre of sum. Hence,

torque is zero only about centre of sun.

7. Polar satellites don’t have equatorial plane.

8. Earth’s gravity is utilised in providing the necessary

centripetal force. But weight is felt due to moon’s

weight is felt due to moon’s gravity.

9. Geostationary satellites lies about equator and

Moscow does not lies over equator.

10. V
GMm

r
K

GMm

r
E

GMm

r
= − = = −, ,

2 2

and V
GM

r
=

11. By changing the radius, moment of inertia will

change. Hence, angular speed ω will change. But ω
has no effect on the value of g on pole.

Single Correct Option

2. Angular momentum is conserved only about centre

of sun.

3. ′ = −g g Rω φ2 2cos

At φ = 90°, ′ =g g , independent of ω.

5. V is negative.

6. Comparing with

E S∫ ⋅ =






d

q

ε0

We have,
1

4 0π ε
≡ G

⇒ 1
4

0ε
π≡ G

⇒ q m≡
8. E = 0 inside a sheet. Therefore, gravitational force

on m is zero.

9. T r∝ 3 2/
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V

r



10. Area velocity remains constant. If area is half time

taken is half.

11. T
g

∝ 1

T

T

g

g

2

1

1

2

= or
1.05 T

T

g

g
h

R

=
−



1

Solving this equation we get, h = 64 km

12. g
GM

R
=

2
⇒ ∴ g

G

M

R
=

2

13. E
r

∝ 1
2

E

E

r

r

2

1

1

2

2

=








or
1

100

2

=
+









R

R h

e

e

or h Re= 9

14. T r∝ 3 2/

T

T

r

r

R R

R

2

1

2

1

3 2 3 2
3

8=






 = +



 =

/ /

∴ T T2 18=
15. gequator = − −g R g Rω ω2 2and pole

∴
gpole

2
or

g
g R

2

2= − ω

or ω
2
g

R

=
× ×

9.8

2 6.4 106

= × −8.75 10 rad/s4

16. U mV=
or U V∝
U is half, it means gravitational potential is half.

−
+

= −





GM

R h

GM

R( )

1

2

3

2

Solving we get, h
R=
3

Ans.

17. ∆U
mgh

h

R

=
+1

18. T
GM

r
=

T is independent of R, the radius of earth.

19. g
GM

R

G R

R
= =







2

3

2

4

3
π ρ

or g R∝ ρ
or g g1 2=
∴ ρ ρ1 1 2 2R R=

or R R R
R

2
1

2
1

1

2 2
= ⋅ = 



 =ρ

ρ
Ans

20. At 84.6 min, g at equator becomes zero.

ω
ω

π
π

2

1

2

1

1

2

2

2
= =/

/

T

T

T

T

= × =24 60
17

84.6
Ans.

21. ω ω π1 2 2t t+ =

( )ω π π1

6

6
2

23
2+ 



 =

or 6
3

2
1ω π= or ω π

1
4

= 



 rad /h

23. Only due to M1.

24. Time taken in one complete oscillations is 84.6 min.

25. W U U Vf i= = −∆

= −



 − −



3

2
3

GMM

l

GMM

l

= 3

2

2GM

l

26. Change in kinetic energy = change in potential

energy

∴ 1

2

2mv
GMm

R R

GMm

R
= −

+
− −





v
GM

R

GM R
= =

2

2

/

= ve

2

where, ve = escape velocity

27. U
GMm

r
= −

∴ ( )− =GM
Ur

m

E
GM

r
= −

( )2 2
= =( / )Ur m

r

U

mr4 42

F mE
U

r
= =

4
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Subjective Questions

1. Potential at the surface of sphere,

V
GM

R
= −

= − × −( )( )6.67
J/kg

10 20

1

11

= − × −1.334 J/kg10 9

i.e. 1.334 J× −10 9 work is obtained to bring a mass

of 1 kg from infinity to the surface of sphere. Hence,

the same amount of work will have to be done to

take the particle away from the surface of sphere.

Thus,

W = × −1.334 J10 9

2. g
GM

R
=

2

⇒ dg

dR

GM

R
= − 2

3

⇒ dg

h

GM

R R
= − 2 1

2
.

⇒ dg

g

h

R
= − 



2

3. Let vr be their velocity of approach. From

conservation of energy,

Increase in kinetic energy

= decrease in gravitational potential energy

or
1

2

2 1 2µv
Gm m

r
r = …(i)

Here, µ = reduced mass

=
+

m m

m m

1 2

1 2

Substituting in Eq. (i), we get

v
G m m

r
r = +2 1 2( )

4. Close to earth,

T
R

g
= 2π = 2

2
π R

GM R/

or T
R

GM

2
2 34= π

=






4

4

3

2 3

3

π

π ρ

R

G R

or ρ π
T

G
a2 3= = universal constant

5. (a) v ve o= 2 . Given v vo= 1.5

If v v vo e< < , satellite will move in elliptical orbit

with initial position as the perigee position.

(b) v v vo o= >2 2 or ve

Hence, the satellite will escape to infinity.

6. Present angular momentum of earth

L I MR1
22

5
= =ω ω

New angular momentum because of change in

radius

L M
R

2

2
2

5 2
= 



 ′ω

If external torque is zero then angular momentum

must be conserved

L L1 2=
2

5

1

4

2

5

2 2MR ω ω= × ′MR

i.e. ω ω′ = 4

T T′ = 1

4
= × =1

4
24 6 h

7. Particle lies between two shells. Therefore, net force

in exerted only by the inner shell.

∴ F
Gm m

R R
=

+





1

1 2

2

2

=
+

4 1

1 2
2

Gm m

R R( )

8. L R= π

∴ R
L=
π

⇒ F dF= ∫0

π
θsin

= ∫0 2

π
θGdM m

R

.
sin

=







∫0 2

2
π π

θ
π θ

G
M

d m

L
( ) sin

= 2
2

πG mM

L

9. K U K Ui i f f+ = +

∴ 1

2
2

1

2
02 2m gR

GMm

R
mv( ) − = +

dF
dMdM

m

θ

dF
dθ



∴ v gR
GM

R

2 4
2= −

Putting GM gR= 2, we get

v gR gR2 4 2= −

∴ v gR= 2

10. (a)
GM

r

G M

R r2 2

4

12
=

−
( )

( )

Solving this equations, we get r R= 4

v
v

P
Q=
2

∴ −



 = −

−










GM

r

G m

R r

( )4

12

= − −G m

R

GM

R

( )4

2 10

Solving this equation, we get

r R= 7.65 and 1.49 R

11. (a) At distance
3

2

a
which lies between solid sphere

and shell field is only due to solid sphere.

E
GM

a

GM

a
= =

( / )3 2

4

92 2
(towards centre)

(b) At distance
5

2

a
which lies outside the shell. So,

field strength is due to both

∴ E
G M M

a
= +( )

( / )5 2 2
= 8

25 2

GM

a
(towards centre)

12. Volume of small strip dV r dr= ( )4 2π mass of this

strip dm dV= ( ) ( )ρ

= 





ρ π0 24
a

r
r dr( ) = ( ) ( )4π ρ0a rdr

∴ Mass of whole sphere = ∫0
04

a
a rdr( )π ρ

m a= ( )2 3π ρ0

E
Gm

a

G a

a
= =

( )

( )

2

2

42

3
0

2

π ρ

= π ρG a0

2

13. By conservation of momentum, their speeds are

same. Using the energy equations we have

K U K Ui i f f+ = +

0 2
1

2

2− = 



 −Gmm

r
mv

Gmm

ri f

∴ v Gm
r rf i

= −










1 1
…(i)

= Gm

ri

= × ×−6.67 10 11 30

10

10

10

= ×8.16 10 m/s4

= 81.6 km/s Ans.

Using Eq. (i), we have

v Gm
r rf i

= −










1 1

= × ×
×

−






−6.67 10 10

1

2 10

1

10

11 30

5 10

= ×1.8 m/s107 = ×1.8 km/s104 Ans.

14. Using the equation

K U K Ui i f f+ = +

∴ 1

2 2
0 02mv

GmM

R
− = +

∴ v
GM

R
=

15. (a) W U U U Uf i B A= − = −

= −mV mVB A (V = gravitational potential)

= −m V VB A( )

= − − + +





× −( ) ( )1
100

2

400

8

100

8

400

2

116.67 10

= × −7.5 10 J9
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r P 12 –R r

Q

M, R 4 2M, R

r Rf = 2

R

v

dV

r



(b) First let us find the point (say) cbetween A and B

where field strength due to 400 kg and 100 kg

masses is zero. Let its distance from 400 kg is r.

Then,
G

r

( )400
2

=
−

G

r

( )

( )

100

10 2

r = 20

3
m and ( )10

10

3
− =r m

So, we have to move the body only from A to C .

After that 100 kg mass will pull 1 kg mass by its

own.

∴ Minimum kinetic energy = = −∆U U UC A

= −m V VC A( )

= − − + +








 × −( )

/ /
( )1

400

20 3

100

10 3

100

8

400

2

116.67 10

= × −8.17 10 J9

16. (a) F
GM M

R

GM

R
= =.

( )2 42

2

2

(b)
GM

R

MV

R

2

2

2

4
=

∴ v
GM

R
=

4

T
R

v

R

GM R
= =2

4

π 2π( )

/
= 4 3 2πR

GM

/

(c) W E E U U K Kf i f i f i= − = − + −[ ] [ ]

= − −











+ − × ×




















0
2

0 2
1

2 4

2
GMM

R
M

GM

R

= GM

R

2

4

17. (a) E = 2 (energy of one satellite)

= −



 = −

2
2

GMm

r

GMm

r

(b) Immediately after collision

velocity of combined mass = 0

Path is straight line as shown

only potential energy is there.

v
G m M

r
= − ( )2

= − 2GMm

r

18.
2

13 2π
GM

r / = yr ...(i)

G M M

r

Mv

r

( ) ( )

( / )2

2

2
=

∴ v
GM

r
=

2

T
r

v
= 2 2π ( / ) = πr

GM

r2

= 





2 3 2π
GM

r /

= 



 =2

1

2
0 71yr yr. as yr

3/ 2πr

GM
=











1

2

19. W U1 = ∆ = −
+

+GMm

R h

GMm

R( )
=

+
GMmh

R R h( )

W mv2
21

2
= =









1

2

2

m
GM

r

=
+









1

2
m

GM

R h
=

+
GMm

R h2 ( )

W W1 2>

If
h

R
> 1

2
or h

R>
2

or h > 6370

2
km

or h > 3185 km

LEVEL 2

Single Correction Option

1. Just before collision,

v
GM

r

GM

R R

GM

R
0

2
= =

+
=

From conservation of linear momentum,

mv
m m

v0
2

0
2

= × +

∴ v v
GM

R
= =2

2
0

Increase in mechanical energy

= −K Kf i

= −1

2 2

1

2

2
0
2m

v mv

= −1

4
2

1

2

2
0
2m v mv( )0
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M
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v

r/2 M

M
r/2
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= 1

2
0
2mv = 



 =1

2 2

1

4
m

GM

R

GMm

R

= 1

4
mgR as g

GM

R
=



2

2. E dEnet = ∫0

π
θsin

= ⋅
∫0 2

π
θG dM

R
sin

=







∫0 2

π π
θ

θ
G

M
d

R
sin

= =2 2
2 2

GM

R

G M

lπ
π

l R= π

∴ R
l=
π

3. Net force on P towards centre

F F F= +2 1 2

∴ Mv

R

G MM

a

GMM

R

2

2 2
2

2
= 





+.

( )

or
v

R

GM

R

GM

R

2

2 2

2

2 4
= +

( )

∴ v
GM

R
= +2 2 1

4

4. K U K Ui i f f+ = +

1

2
02m kv

GMm

R

GMm

r
e( ) − = −

∴ 1

2
22k gR

GM

R

GM

r
( ) − = −

or
GM

r
k

GM

r
( )1 2− = as gR

GM

R
=





So, r
R

k
=

−1 2

5. a E
GM

R
y= = 



3

as a E
F

m
= =





=





G R

R
y

4

3

3

3

π ρ
= 4

3
π ρG y

6. Earth rotates from west to east. Net velocity of train

= −( )ω θR 2

Now, mg N
m R

R
− = −( )ω θ 2

∴ N mg
m R v

R
= − −( )ω 2

= − + −







mg

R v vR

gR
1

22 2 2ω ω

= − − −








mg

R v

g

v

Rg
1

2 2ω ω( )
Ans.

7. Gravitational field at any point inside the cavity is

uniform (both in magnitude as well as direction).

So, let us find its value at centre of cavity.

E E ER T C= − (at centre of cavity)

R → Remaining, T → total, C → cavity

So, E ER T= (as EC = 0)

= 





GM

R
a

3
or E aR ∝

8. Potential (and hence potential energy) at centre is

3

2
times the value on surface. So, required kinetic

energy is
3

2
times or required speed is

3

2
times.

9. ∫ ∫= −dV Edr

10. a R R= ° =2 30 3cos

F Fnet = 3 is towards centre C

∴ 3
2

F
MV

R
=

a R= 2√
F1

F1

F2

45°

R

C

P a

dE
dMdM

θ

dE

dθ

Enet

θ

y

30°

F
C

v a F

F

Fnet

F

R



or 3
2

2GMM

a

MV

R
=

or
3

3

2

2

2GM

R

MV

R( )
=

or v
GM

R
=

3

11. T R2 3∝ ⇒ ∴ T R2 3/ ∝ or T
R

2

3

1

1
∝

( / )

12. W E E EA= = −∆ α

= + − +( ) ( )K U K UA A α α
= + − +( ) ( )K mVA A 0 0

∴ − = × × +5.5
1

2
1 3 12( ) ( ) VA

or VA = −10 J/kg

13. K U K Ui i f f+ = +

∴ 1

2
2

2
0 02mv

GMm

R
− = +

∴ v
GM

R
= 2 2

14. W U U Ui f= − = −∆

= − + +













Gmm

a

( ) ( ) ( ) ( ) ( ) ( )1 2

1

1 3

1

2 3

2

− × + × + ×







( ) ( ) ( )1 2

1

1 3

1

2 3

1

= −





6
1

1

2

2Gm

a

15. K U K Ui i f f+ = +

∴ 1

2

3

2
02mv

GMm

R

GMm

R
− = −

Solving, we get

v
GM

R
=

16. v nv n gR n
GM

R
e1 2

2= = =

From mechanical energy conservative, we have

1

2

2 1

2

2

2

2
2m n

GM

R

GMm

R
mv

GMm

R
R









 − = −

+
...(i)

From conservation of angular momentum about

centre of earth

m n
GM

R
R mv R

R2

2
2









 = +



 …(ii)

Solving these two equations we get,

n = 0.6

17. Let v is the velocity at centre then.

K U K Ui i f f+ = +

or 0
1

2

3

2

2− = −GMm

R
mv

GMm

R

∴ v
GM

R
=

From conservation of linear momentum.

2 2mv mv m m v− = +( )

∴ ′ = =v
v GM

R3

1

3

Again applying energy conservation,

K U K Ui i f f+ = +

∴ 1

2
3

1

3

3

2

3
2

( )
( )

m
GM

R

GM m

R









 −

= − −





0 3
3

2 2m
GM

R
R r(1.5 0.5

Solving this equations, we get

r
R=
3

So,
R

3
is the amplitude of oscillations.

18. v gRe = 2

or v gRe ∝

19. F
dU

dr
r= − = − 6 2

Now
mv

r
r

2
26=

∴ 1

2
32 3mv r=

E K U r r= + = +3 23 3 = 5 3r

At r = 5m, E = 625 J Ans.

20. E on the surface of earth,

E
F

m
1

10

1
= =

= 10 N /kg

E
r

∝ 1
2
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R
2

v1

v2



∴ E

E

r

r

R

R

2

1

1

2

2 2

3 2

4

9
=







 =







 =

/

∴ E Ef2

4

9

40

9
= = N/kg

F m E2 2 200
40

9
889= = 



 =( ) N

21. g
GM

R
=

2
⇒ ∴ GM gR= 2

v
GM

r

GM

R x

gR

R x
= =

+
=

+

2

22. C → cavity, T → Total, R → remaining

F
GMm

R
1 22

=
( )

…(i)

F F F F F FR T C C= = − = −2 1

or F
GMm

R

G
M

m

R
2 2 22

8

3 2
= −







( ) ( / )

or F
GMm

R
2 2

14

72
= …(ii)

From Eqs. (i) and (ii) we get,

F

F

2

1

7

9
=

More than One Correct Options

1. g
GM

R

G R

R
= =







2

3

2

4

3
π ρ

or g R∝ (asρ is same)

v gR
GM

R
e = =2

2

=





2

4

3

3G R

R

π ρ

So, ve or v R∝ (as ρ is same).

3. K U K Ui i f f+ = +

∴ 0
2

− GMm

R
= −1

2

3

2

2mv
GMm

R

or v
GM

R
= 2

4. E due to point mass is E
Gm

r
=

2

As r → 0, E → ∝

So, just over the point masses, E = ∞. Hence, in

moving from one point mass to other point mass, E

first decreases and then increases.

V due to a point mass is

V
Gm

r
= −

As r V→ → − ∞0,

So, just over the point mass, V is − ∞. Hence, in

moving from one point mass to other point mass, V

first increases and then decreases.

5. Inside a shell, V = constant and E = 0.

Between A and B, Enet = 0, Vnet = constant because

these points µ inside both shells.

Between B and C

E of m ≠ 0, E of 2 0m =
V of m ≠ constant, V of 2m = constant.

Beyond C

E and V due to both shells are neither zero nor

constant.

6. E
Gm

r
=

2

E E
Gm

r
′ = =net 2 2

2 2
2

′ = +E E Enet ( )9 2 2 = 10 E

= 10
2

Gm

r

′ >E Enet net

Potential in both cases is

V
G

r
net = − ( )m m m m+ + +2 3 4

= − 10 Gm

r
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4m 3m

4E
3E

r
E 2E

m 2m

2E 2E

Enet

4m 3m

4E
3E

r E
2E

m2m

3E E

Enet



7. At highest point velocity of particle-1will becomes

zero. But velocity of particle-2 is non zero.

8. At maximum distance (at A) kinetic energy is

minimum. But angular momentum about centre of

sun always remains constant.

9. E
GMm

R
1 = −

U
GMm

R
2

2
= − ( )r R R R= + = 2

K
GMm

R
2

4
=

and E
GMm

R
2

4
= −

10. v
GM

r
=

or v GM∝

T
GM

r= 2 3 2π /

or T
GM

∝ 1

Match the Columns

1. Inside the shell, V U K, , , and v remains constant.

F E, and a are zero.

From A to B, kinetic energy increase and potential

energy decreases.

2. Resultant of five field strength vectors of equal

magnitude acting at same angles is zero.

(b) V
GMm

r
= − 5

(c) If E5 is removed then resultant of rest four

vectors is equal and opposite of E5.

∴ | | | |E Enet = =5 2

Gm

r

(d) V
Gm

r
= − 4

3.
GM

y
x= or GM xy=

(a) E
GM

y

xy

y

x

y
= = =

( )2 4 42 2

(b) | |V
GM

y
y

y= −








3

2
3

4
1.5 0.5

=






 





xy

y
y

3

211

8
= 11

8
x

(c) E
GM

y

y= 



3 2

= =xy

y

y x

y3 2 2

(d) | |V
GM

y

xy

y

x= = =
2 2 2

4. (a) W U
mgh

h

R

= =
+

∆
1

Put h R W mgR= =,
1

2

(b) KE = =GMm

r

GMm

R2 4
= 1

4
mgR (asGM gR= 2)

(c) E
GMm

r
= −

2

E
GMm

R
1

2 2
= −

( )
= − = −GMm

R
mgR

4

1

4

E
GMm

R
mgR2

2 3

1

6
= − = −

( )

E E mgR1

1

12
~ =

(d) KE = =
+

∆U
mgh

h

R
1

Putting h R mgR= =, KE
1

2

Subjective Questions

1. W U U Uf i= = −∆

= −





− −





3
2

3
Gmm

a

Gmm

a

= =3

2

3

2

2Gmm

a

Gm

a
Ans.

2. h
u

ge

=
2

2

∴ u g he= 2 …(i)

For the asked planet this u should be equal to the

escape velocity from its surface.

∴ 2 2g h g Re p p=

or g h g Re p p=
GM

R
h

GM

R
Re

e

p

p

p2 2
. .=
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E4

E5

E3

E2

E1

Enet = 0
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or

4

3

4

3

3

2

3

2

π ρ π ρR h

R

R R

R

e

e

p p

p







=







or R R hP e=

= ×( )( )6.41 1.5106

= ×31 103. m Ans.

3. (a) v
v

o
e=

2

∴ GM

r

GM

R=

2

2

∴ r R= 2

or h r R R= − = or height = radius of earth.

(b) Increase in kinetic energy = decrease in
potential energy

∴ 1

2
1

2mv
mgh

h

R

=
+

∴ v
hg

h

R

=
+

2

1

Substituting the values we have,

v
R

R

= × × ×

+

2 6400 10

1

39.81

= 7924 m/s ≈ 7 92. km/s Ans.

4. (i) At point A, field strength due to shell will be

zero.

Net field is only due to metal sphere. Distance
between centre of metal sphere and point A is 4R.

∴ E
G m

R

Gm

R
A = =( )

( )4 162 2

(ii) At pointB , net field is due to both, due to shell

and due to metal sphere.

∴ E
Gm

R

Gm

R
B = +

( ) ( )5 62 2

= 61

900 2

Gm

R
Ans.

5. Radius of hollow sphere is
R

2
,so mass in this hollow

portion would had been,
M

8
.

Now, net force on m due to whole sphere = force

due to remaining mass + force due to cavity mass.

∴ Force due to remaining mass =force due to whole

sphere − force due to cavity mass

= −
−

G Mm

d

G Mm

d R2 28 2( / )

= −
−























G Mm

d R

d

2 2
1

1

8 1
2

6. Let m1 be the mass of the core and m2 the mass of

outer shell.

g gA B= (given)

Then
Gm

R

G m m

R

1
2

1 2
22

= +( )

( )

∴ 4 1 1 2m m m= +( )

or 4
4

3

4

3

3
1

3
1π ρ π ρR R









= ⋅

+ −







4

3
2

4

3

3 3
2π π ρ( )R R

∴ 4 71 1 2ρ ρ ρ= +

∴ ρ
ρ

1

2

7

3
= Ans.

7. Total mechanical energy of a satellite in an elliptical

orbit of semi major axis ‘a’ is − GMm

a2
.

E K U= +

∴ − = −GMm

a
mv

GMm

r2

1

2

2

or v GM
r a

2 2 1= −





Hence Proved.

8. dF = force on a small mass ‘ ’dm of the ring by the

sphere.

B

A

R

2R

dm

M

2a
√3 a

aθ θ
dF

dm

dF
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Net force on ring = Σ( sin )dF θ or dF∫ sin θ

= ×Σ GM dm

a

( )

( )2

3

22
= 3

8 2

GM

a
dmΣ( )

But Σ( ) ,dm m= the mass of whole ring.

∴ Net force = 3

8 2

GMm

a
Ans.

9. Let there are two stars 1 and 2 as shown below.

Let P is a point between C1 and C2, where

gravitational field strength is zero. Or at P field

strength due to star 1 is equal and opposite to the

field strength due to star 2. Hence,

GM

r

G M

r1
2

2
2

16= ( )
or

r

r

2

1

4=

also r r a1 2 10+ =

∴ r a a2

4

4 1
10 8=

+






 =( )

and r a1 2=
Now, the body of mass m is projected from the

surface of larger star towards the smaller one.

Between C2 and P it is attracted towards 2 and

between C1 and P it will be attracted towards 1.

Therefore, the body should be projected to just cross

point P because beyond that the particle is attracted

towards the smaller star itself.

From conservation of mechanical energy
1

2

2mvmin

= Potential energy of the body at P

– Potential energy at the surface of the larger star.

∴ 1

2

162

1 2

mv
GMm

r

GMm

r
min = − −











− −
−

−










GMm

a a

GMm

a10 2

16

2

= − −





− − −





GMm

a

GMm

a

GMm

a

GMm

a2

16

8 8

8

or
1

2

45

8

2mv
GMm

a
min = 





∴ v
GM

a
min =









3 5

2
Ans.

10. Let mass of the ball be m.

1

2

2mv m V VA B= −( )

= − − −











m
GM

R

GM

R
15.

= GMm

R2

∴ v
GM

R
=

Velocity of ball just after collision,

v ev
GM

R
′ = = 1

2

Let r be the distance from the centre upto where the
ball reaches after collision. Then,

1

2

2mv m V r V′ = −[ ( ) ( )]centre

or
1

8

3

2

3

2 23

2 2GMm

R
m

GM

R

GM

R

R r= − −


















or
1

8

3

2

3

2 2

2

2
= − + r

R

∴ r

R

2

2

1

4
= or r

R=
2

∴ The desired distance,

s R
R R

R= + + =
2 2

2 Ans.

11. Applying conservation of mechanical energy,

Increase in kinetic energy

= decrease in gravitational potential energy

or
1

2
0

2m v U UB A= − = −m V VB A0( )

∴ v V VB A= −2( ) …(i)

Potential at A

VA = potential due to complete sphere

– potential due to cavity

= − − −





1.5 GM

R

Gm

R/2

= −2Gm

R

GM

R

1.5

M

C1 r1 C2
a

1 2

2a

r2P

16 M

A

B

v

u = 0



Here, m
R R= 



 =4

3 2 6

3 3

π ρ πρ

and M R= 4

3

3π ρ

Substituting the values, we get

V
G

R

R
R G RA = −









 = −πρ πρ π ρ

3
3 2

3
2

5

3

Potential at B

V
GM

R
R

R Gm

R
B = − − 













 +

3

2
2

2 2
1.5 0.5

1.5

/

= − +11

8

3GM

R

Gm

R

= − ⋅










G

R

R
R

πρ πρ
3

3

2

11

6
= − 4

3

2π ρG R

∴ V V G RB A− = 1

3

2π ρ

So, from Eq. (i)

v G R= 2

3

2π ρ Ans.

12. (a) Let x be the displacement of ring. Then

displacement of the particle is x x0 − , or ( )3.0 m.− x

Centre of mass will not move. Hence,

(5.4 10 )9× = × −x x( )( )6 10 38

Solving, we get

x = 0.3 m Ans.

(b) Apply conservation of linear momentum and

conservation of mechanical energy.

13. (a) Mean radius of planet,

m
r r

2
1 2 8

2
10= + = ×1.4 km

Now, T r∝ 3 2/

∴ Time period of m2 :

T T2 1

8

8

3 2
10

10
= ×








1.4
/

or T2
3 22= ( /1.4)

= 3.31 yr Ans.

(b) For m2, point P is perigee position. So, speed at

this point is greater than orbital speed for

circular orbit.

∴ U Um m2 1
=

∴ E Em m2 1
>

K Km m2 1
>

(c) vr = constant

14. (a) r r d1 2+ = …(i)

m r m r1 1 2 2= …(ii)

Solving these two equations we get,

r
m

m m
d1

2

1 2

=
+







 or r

m

m m
d2

1

1 2

=
+









The centripetal force is provided by gravitational

force,

m r m r
Gm m

d
1 1

2
2 2

2 1 2
2

ω ω= =

Solving these equations, we get

ω = +G m m

d

( )1 2
3

∴ T = 2π
ω

=
+

2
3

1 2

π d

G m m( )
Ans.

(b)
K

K

I

I

I

I

m r

m r

1

2

1
2

2
2

1

2

1 1
2

2 2
2

1

2
1

2

= = =
ω

ω

=














 =

















m

m

r

r

m

m

m

m

1

2

1

2

2

1

2

2

1

2

= m

m

2

1

Ans.

(c)
L

L

I

I

I

I

1

2

1

2

1

2

= =ω
ω

= m

m

2

1

Ans.

(d) L L L I I= + = +1 2 1 2( ) ω
= +( )m r m r1 1

2
2 2

2 ω

=
+

+
+











m m d

m m

m m d

m m

1 2
2 2

1 2
2

2 1
2 2

1 2
2( ) ( )

ω

= µωd2 Ans.

where, µ =
+

=m m

m m

1 2

1 2

reduced mass

(e) K I I d= + =1

2

1

2
1 2

2 2 2( )ω µω Ans.
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14. Simple Harmonic Motion

1. a x= −4

Comparing with a x= −ω2 , we get

ω = 2 rad/s

Now, T = =2π
ω

π( )sec

2. E kA= 1

2

2

U kx k
A= = 





1

2

1

2 4

2
2

= 





1

16

1

2

2kA

= 1

16
E

Hence,
1

16
fraction is potential energy and

15

16

fraction is kinetic energy.

3. (a) A = initial displacement from mean position

= 15 cm

(b) T
m

k
= =2 2π π 2.0

150
= 0 726. s

(c) F
T

= =1
1.38 Hz Ans.

(d) E kA= 1

2

2

= × ×1

2
150 2( )0.15 = 1.69 J Ans.

(e) v Amax = ω

= 





2π
T

A = 





2
015

π
0.726

( . )

= 130. /m s Ans.

4. v A fAmax = =ω π2

= × −( ) ( ) ( )2 2 8 10 3π
= 0.101 m/s Ans.

a Amax = ω2 = ( )2 2πf A

= × × × × −4 4 8 102 3π

= 1.264 m/s2 Ans.

F mamax max=
= ( ) ( . )0.5 1264

= 0.632 N Ans.

5. No, as acceleration in SHM a x= −ω2 is variable.

1. (a) E mv= 1

2

2
max = 1

2

2 2( )m Aω

= × × 



 ×1

2
15

2
22.0

4

π
( . )

= 1.39 J Ans.

(b) 0.5 1.5 sin
4

= +





π πt1

6

From here find t.

Then, − +



0.75 = 1.5 sin

π πt2

4 6

From here find t2.

Now, t t1 2~ is the required time.

2. ω = 3 rad/s

A = 0.2 m

At x = 5 cm

v A x= ± −ω 2 2

= ± −3.0 (0.2) 0.052 ( )2

= ± 0.58 m/s Ans.

a x= − ω2 = − ( ) ( )3 2 0.05

= − 0.45 m/s2 Ans.

At x = 0

v A= ± ω
= ± ( ) ( )3.0 0.2

= ± 0.6 m /s Ans.

a x= − ω2 = − ( ) ( )3 02

= 0 Ans.

3.

x A t= + °sin ( )ω 30

∴ δ = °30 Ans.

4. (b) ω π π= = =2 2

4T
1.57 rad /s Ans.

A/2

A

x
–A +A

30°

60°

sin

INTRODUCTORY EXERCISE 14.2INTRODUCTORY EXERCISE 14.1



(c) ω = k

m

∴ k m= =ω2 2( )0.8 (1.57) = 1.97 N/m Ans.

(d) At t = 1 s,

v = slope of x -t graph = 0

(e) At t x= 1 s, is maximum ( )= + A . Therefore.

magnitude of acceleration is also maximum.

a = maximum = ω2A = ( . ) ( )157 2 0.08

= 0.197 m/s2 Ans.

5. X t= +



5 20

3
sin

π

v
dx

dt
t= = +



100 20

3
cos

π

a
dv

dt
t= = − +



2000 20

3
sin

π

(a) v = 0 for the first time when,

20
3 2

t + =π π

∴ t = π
120

s Ans.

(b) a = 0 for the first time, when

20
3

t + =π π

∴ t = π
30

s Ans.

(c) When a = 0 for the first time, its speed will be

maximum.

t = π
30

s Ans.

6. Simple harmonic with mean at x = 10, amplitude 4

and extreme positions at x = 6 and x = 14. At t = 0,

it starts from x = 6. Here, x is coordinate, not

displacement from mean position.

1. a x= −16

Comparing with a x= −ω2 ⇒ω = 4 rad/s

Now, T = = 





2

2

π
ω

π
sec

2. 2 2= π M

k
…(i)

3 2
4= +π M

k
…(ii)

Solving two equations, we get

M = 3 2. kg

3. 2 2
0 3 01= +π ( . . )

k
…(i)

T
k

= 2π 0.1
…(ii)

Solving these two equations we get,

T = 1 s

4. Comparing with a x= − ω2

ω2 = p

∴ ω = p

5. T
M

k
= 2π

5

3
2

T M m

k
= +π

Solving these two equations, we get

m

M
= 16

9

6. T l∝

′ = ′ = =T

T

l

l

l

l

121.
1.1

∴ ′ =T T1.1

Hence, percentage increase in T is 11%.

7. ω ω2 2 2x A x= − =
−

=
A x

x
f

2 2

2π

∴ f
A x

x
= −2 2

2π
Substitute, A = 2cm and x = 1 cm

1. In such situation, amplitudes are added by vector

method.

AR = + +( ) ( ) ( ) ( ) cos4 3 2 4 32 2 φ

= +25 24 cos φ …(i)

Now, we can substitute different values of φgiven
in different parts in the question and can find the
value of AR.

2. AR = + + °( ) ( ) ( ) ( )cos4 3 2 4 3 602 2

= 6.1units

tan
sin

cos
φ = °

+ °
3 60

4 3 60
= 0.472
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INTRODUCTORY EXERCISE 14.4

3

4

AR

φ
60°



∴ φ = °25.3

∴ x t= + °61 100. sin ( )π 25.3

(a) At t x= = °0 61 25 3, . sin .

= 2.6 unit

(b) v Amax = ω
= ( ) ( )100 π 6.1

= 1917 unit

(c) a Amax = ω2

= ( ) ( )100 2π 6.1

= ×6.0 105 units

3. Resultant of 1 and 3 is also A in the direction of 2.

∴ A AR = 2

4. A A A A A= + +2 2 2 . cos φ
Solving we get,

cos φ = − 1

2
or φ = °120 or

2

3

π

Exercises
LEVEL 1

Assertion and Reason

1. x is measured from the mean position.

2. y A t= −( cos )ω at the particle starts from − A.

So, displacement from the mean position will be

− A tcos ω .

.

∴ x y= + 2

= − +2 2cos ωt

3. By applying a constant force on spring-block

system mean position is changed but time period

remains unchanged.

4. t t
T

T
1 2

6

2 12
= = = =θ

ω
π
π

/

/

5. In angular SHM, path is not straight line.

6. k
l

∝ 1 ⇒ ω = k

m

∴ ω ∝ 1

ml

It m and l both are halved then ω will become

2 times.

7. F kx= − . For all displacements. From the mean

position, whether they are small or large.

8.
π
ω

π
π2 2 2 4

= =
( / )T

T
. In the given time particle

moves from x A= to x = 0.

9.
x

a

T= 



 =

2

1
2

2π ω
= constant for a given SHM.

10. If a particle P rotates in a circle with constant

angle speed ω and we draw a perpendicular on and

diameter. This perpendicular cuts the diameter at

point Q then motion of Q is simple harmonic. But

motion of P is circular.

Single Correct Option

1. In equation x A t= cos ω , putting x
A=
2

we get

ω π
t =

3

∴ 2

3

π π
T

t




 =

or t
T=
6

2. Kinetic energy and potential energy in SHM

oscillate with double frequency.

3. v A x= −ω 2 2

∴ v x
A

2

2

2

2

2

1ω
+ =

( )

Hence, v x− graph is an ellipse.

4. l in the equation T
l

g
= 2π is measured from

centre of mass and centre of mass in both cases

remains at same location.

Chapter 14 Simple Harmonic Motion � 599

60°

60°

A A

A
1

3 2

X = 0 X = 2

x

2 y

At = 0t Mean position

O

t1

t230°

30°A
2

3
2
A
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5. At t = 1 s

φ π φ1
2

= +

and φ π φ2 = +2

3

∴ ∆φ φ φ π= − =2 1
6

6. v A x= −ω 2 2

∴ ω ωA
A A x

2

2 2= − or x A= 3

2

7. All other equation can be converted into the from

y a t= ±sin ( )ω φ or a tcos ( )ω θ± .

8. Phase difference between cos πt and sin πt is 90°.

AR = 4 2 units

9. ω ω π1 2 2t t= + (θ θ π1 2 2= + )

∴ t =
−

2

1 2

π
ω ω

=
−

2

2 21 2

π
π π( / ) ( / )T T

=
−

T T

T T

1 2

2 1

= ×
−

4

4

4.2

4.2
= 84

Number of vibration of X in this time are,

N
t

T
1

1

84

4
21= = =

10. mg kx= ⇒ ∴ k
mg

x
=

T
M m

R

M m x

mg
= + = +

2 2π π ( )

11. ω ω1 1 2 2A A=

∴ A

A

k m

k m

k

k

1

2

2

1

2

1

2

1

= = =ω
ω

/

/

12. I mR mR mR= + =1

2

3

2

2 2 2

T
I

mgl
= 2π

Here l R=

13. U kx= 1

2

2

i.e.U versus x2 graph is a straight line passing

through origin.

14. T

g
l R

=
+





2
1

1 1
π

Put l R=
15. x A t= cos ω

F x∝ −
Hence, F is − cos ωt graph.

16. In equilibrium, let x0 is extension in spring then

kx mg0 = sin θ

∴ x
mg

k
0 = sin θ

= amplitude of oscillations

17.
d x

dt
x

2

2

2= − π

Comparing with
d x

dt
x

2

2

2=− ω

We have, ω π=
∴ 2π πf =

f = 1

2
Hz

18. f
k= 1

2π µ
where, µ = reduced mass

=
+

M m

M m

19. T
g M R

∝ ∝1 1

2/

or T
R

M
∝

R and M both are doubled. So, T will become

2 times.

∴ T T− = =1 2 2 2 s (as T = 2 s)

20. x3 can be written as

x t3 15 2= −sin ( / )ω π

4

4

AR

15

3

5

37°

y

x



A i j i j= ° ° −3 5 37 5 37 15$ cos $ sin $ $+ +

= +7 12$ $i j

∴ | | ( ) ( )A = +7 122 2 =13.89

21. X S S= + °1 2 37cos

= +( sin )a t b tω ω0.8 sin …(i)

y S= °2 37sin

= 0.6 sinb tω

sin ωt
y

b
=

0.6

Substituting this value in Eq. (i), we have

x
a b

b
y= +





0.8

0.6

This is equation of a straight line passing through

origin.

22. (a) Kinetic energy is 0.64 times, it means speed is

0.8 times

0.8 ω ωA A x= −2 2

∴ x A= =0.6 6cm

(b)
ω ωA

A x
2

2 2= −

∴ x A= 3

2

23. T
x

a
= 2π

∴ ω π= =2

T

x

a
=

× −
0 5

4 10 2

.

= 3.53 rad /s

24. Let x0 is the compression in equilibrium. Then,

kx ma0 =

x
ma

k
0 = = ×1 2

100

=0.02 m

Amplitude = x0 = 0.02 m Ans.

Subjective Question

1. Resultant of k and k is 2k. Then, resultant of 2k

and 2k is k.

Now T
m

k
= 2π

2. T
m

k
= 2π = =2

10
π π0.2

80
s

= 0.314 s Ans.

3. F kx=

∴ k
F

x
= = =9

0.05
N/m180

m
W

g
= = =27

10
2.7 kg

T
m

k
= =2 2π π 2.7

180

= 0.78 s Ans.

4. ∆ ∆T T= 1

2
α θ

⇒ ∆ ∆
t

T

T
t=

1

But T T′ ≈

∴ ∆ ∆t t= 1

2
α θ ( )

= × × × ×1

2
20 24 36000.000012

= 10.37 s Ans.

At higher temperature, length of pendulum clock
will be more. So, time period will be more and it
will lose the time.

5. (a) kx mg=

∴ k
mg

x
= = ×

×

−

−
( ) ( )20 10 10

7 10

3

2

= 20

7
N/m Ans.

(b) T
m

k
= 2π

= × −
2

20 7

3

π 50 10

( / )

= 0.84 s Ans.

6. k
l

∝ 1

Length is halved, so value of force constant of

each part will become 2k. Now net force constant

of 2k and 2k as shown in figure will becomes 4k.

T
m

k
= 2π

or T
k

∝ 1

k has becomes 4 times. Therefore, T will remain

half.
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8. g ge = − Upthrust

mass

= −g
V g

V

( / )δ
δ
10 = 9

10
g

′ = =






T

l

g

l

ge

2 2
10

9
π π

=








10

9
T

9. For small values of x, the term x2 can be

neglected.

∴ F x= − 6

Comparing with F kx= − , we get

k = 6 N m/ Ans.

10. ω π π π= = =2 2
8

T 0.25
rad /s( )

x A t= +sin ( )ω φ

U
dx

dt
A t= = +ω ω φcos ( )

At t = 0

x A= sin φ
∴ 5 = A sin φ …(i)

U A A= =ω φ π φcos ( ) cos8

∴ 218 8= ( ) cosπ φA …(ii)

Solving Eqs. (i) and (ii) we get,

A = 10 cm and φ π=
6

or 30°

11. KE at mean position

K m v m A= =1

2

1

2

2 2 2
max ω

∴ ω =








2 1K

m A

= × ×











−2 10 8 13

0.1 0.1
= 4 rad/s

Now, y A t= +sin ( / )ω π 4 is the required

equation.

12. U 0 = minimum potential energy at mean position

= 10 J

At extreme position

U = Total mechanical energy

= 26 J = + −10 2 2( )x

∴ ( )x − = ±2 4

Hence, x = 6 m and x = − 2 m are the extreme

positions.

(a) K E Umax = − =0 16J

∴ 1

2
162 2m Aω =

or
1

2
2 4 162 2× × × =ω ( )

or ω =1 rad/s

(b) At mean position

E = 26J

U U= =0 10J

∴ K = 16J

At extreme position

K = 0

∴ U E= = 26 J

13. ′ =
+





g
g

h

R
1

2

Putting h R=

g
g′ =
4

T
l

g
= 2

4
π

( / )

= 4π l

g

= =4 4 10l . (as g = π2)

= 4 s Ans.

14. In such situation, upthrust also behaves like a

spring force of force constant = ρAg

knet in the given situation is ( )k Ag+ ρ

∴ T
m

k Ag
=

+
2π

ρ

=
+ × × ×−2

10

100 1000 20 10 104
π

= 1.8 s Ans.

k
A

ρ

x = –2 x = 2 x = 6

A



15. g
v

r
ge =







 +

2
2

2

T
g

ge

= 2π ⇒ θ =






−tan 1

2v

rg

16. ω = = ×k

m

4 103

01.
= 200 rad/s

X t= 10 200sin ( )

6 10 200 1= sin t

∴ 200
3

5
1

1t = 



 =−sin 0.646 rad

∴ t1 = 3.23 ms

8 10 200 2= sin t

or 200
4

5
2

1t = 



 =−sin 0.925 rad

∴ t2 = 4.62 ms

∴ ∆ t = × −1.4 ms = 1.4 10 s3 Ans.

17. (a) For small displacement x, the term x2 can be

neglected.

∴ F x= −100

Comparing with F kx= − we have,

k = 100 N/m

T
m

k
= 2π

= 2π 0.2

100
= 0.28 s Ans.

(b) | | ( )∆F x= = =10 102 20.04 0.016 N

| | ( )F x= = =100 100 40.04 N

∴ % error = × =| |

| |

∆F

F
100 0.4%

18. It is a physical pendulum, the time period of which

is,

T
I

mgl
= 2π

Here, I = moment of inertia of the ring about

point of suspension

= +mr mr2 2 = 2 2mr

and l = distance of point of suspension from

centre of gravity = r

∴ T
mr

mgr
= 2

2 2

π

= 2
2π r

g

∴ Angular frequency

ω π= 2

T

or ω = g

r2
Ans.

19. (a) Frequency = 1

2π
k

m

(Frequency is independent of g in spring)

(b) Extension in spring in equilibrium

initial = mg

k

Extension in spring in equilibrium in

accelerating lift = +m g a

k

( )

∴ Amplitude = + − =m g a

k

mg

k

ma

k

( )
Ans.

20. ω π π π= = =2 2
40

T 0.05
rad /s( )

Since, the body starts from the extreme position,

we can write

θ θ ω= 0 cos t

or θ π π= 



10

40cos t Ans.

21. ω π π π= = =2 2

16 8T
rad /s

If at t = 0, particle passes through its mean position

( sin )x A t= ω with maximum speed its v t-

equation can be written as

v A t= ω ωcos

Substituting the given values, we have

2
8 8

2= 











π π
A cos ( )

∴ A = 16 2

π
m

= 7.2 m Ans.
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θ

mg

θ

mv
r

2
= pseudo force

+ g2m v
r√( )
2 2



22. The two forces acting on the bob are shown in

figure

geff in this case will be
w F

m

e−

or g
mg qE

m
eff = −

= −g
qE

m

∴ T
l

g
= 2π

eff

=
−

2π l

g
qE

m

Ans.

23. (a) g g ae = +
(b) g g ae = −
(c) ge = 0

(d) g g ae = +2 2

24. (a) Before the lump of putty is dropped the total

mechanical energy of the block and spring is

E kA1 1
21

2
= .

Since, the block is at the equilibrium position,

U = 0, and the energy is purely kinetic. Let v1 be

the speed of the block at the equilibrium position,

we have

E Mv kA1 1
2

1
21

2

1

2
= =

∴ v
k

M
A1 1=

During the process momentum of the system in

horizontal direction is conserved. Let v2 be the

speed of the combined mass, then

( )M m v Mv+ =2 1

∴ v
M

M m
v2 1=

+
Now, let A2 be the amplitude afterwards. Then,

E kA M m v2 2
2

2
21

2

1

2
= = +( )

Substituting the proper values, we have

A A
M

M m
2 1=

+
Ans.

Note E E2 1< , as some energy is lost into heating up

the block and putty.

Further, T
M m

k
2 2= +π Ans.

(b) When the putty drops on the block, the block
is instantaneously  at rest. All the mechanical
energy is stored in the spring as potential
energy. Again the momentum in horizontal
direction is conserved during the process. But
now it is zero just before and after putty is
dropped. So, in this case, adding the extra
mass of the putty has no effect on the
mechanical energy, i.e.

E E kA2 1 1
21

2
= =

and the amplitude is still A1. Thus,

A A2 1=

and T
M m

k
2 2= +π Ans.

25. Let v is speed of combined mass just after

collision. Then, from conservation of linear

momentum, we have

( )M m v mv+ = 0

∴ v
mv

M m
=

+
0

This is maximum speed of combined mass at mean

position

∴ v A= ω

or
m v

M m

k

M m
A0

+






 =

+








∴ A
mv

k M m
=

+
0

( )

26. Mass per unit area =
−

=m

R rπ
σ

( )2 2
(say)

Whole mass m R1
2= ( )π σ

=
−









R

R r
m

2

2 2
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F qEe =

w mg=



Mass of cavity m r2
2= ( )π σ

=
−









r

R r
m

2

2 2

I m R m r m R= − +





3

2

1

2
1

2
2

2
2

2

=
−









 −

−













3

2

1

2

2

2 2

2
2

2 2

2R

R r
mR

r

R r
mr

+
−














r

R r
mR

2

2 2

2

=
−

− −m

R r
R r r R

2
3 2

2 2

4 4 2 2

( )
[ ]

= +m R r( )3

2

2 2

Now, T
I

mgl
= 2π …(i)

Here, l R=

∴ I

mR

R r

R
= +3

2 2

2

Substituting in Eq. (i) we have,

T

R r

R

g
=

+
2

3

2 2

2

π

Comparing with

T
l

g
= 2π

l of pendulum = +3

2 2

2R r

R

l
R= 3

2
as r → 0

and l R= 2 as r R→

27. 2 2π πl

g

I

mgl
=

′

∴ l
I

ml
=

′
or I m l l= ′( ) ( ) ( )

= ( ) ( ) ( )200 20 35

= ×1.4 10 g - cm5 2

28. At earth’s surface, the value of time period is

given by

T
L

g
= 2π or T

g
∝ 1

At a depth h below the surface,

g g
h

R
′ = −



1

∴ T

T

g

g

′ =
′

=
−





=
−

1

1
h

R

R

R h

∴ T T
R

R h
′ =

−

or T
R h

′ ∝
−

1
Hence proved.

Further, T
R

R R
R /

/
2 2

2
=

−

= 2 2 s Ans.

29. (a) Distance travelled in first 4 s

= + = + =OP PO A A A2

Distance travelled in next 4 s

= + = + =OQ QO A A A2

Two distances are equal.

(b) Distance travelled in first 2 s = =OP A and

distance travelled in next 2 s = =PO A

Again the two distances are same.

30. (a) u A x= −ω 2
1
2 … (i)

v A x= −ω 2
2
2 …(ii)

Solving Eqs. (i) and (ii), we get the result,

A or a
v x u x

v u
= −

−

2
1
2 2

2
2

2 2

(b) u A x1
2

1
2= −ω …(iii)

u A x2
2

2
2= −ω …(iv)

Solving Eqs. (iii) and (iv), we find

ω π= −
−

=u u

x x T

1
2

2
3

2
2

1
2

2

∴ T
x x

u u
= −

−
2 2

2
1
2

1
2

2
2

π
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31. At equilibrium position, kx mg0 =

In displaced position,

U k x y mg y= + −1

2
0

2( )

= + + −1

2

1

2
0
2 2

0kx ky kx y mgy

Substituting kx mg0 = we get,

U kx ky= +1

2

1

2
0
2 2

= + + −1

2

1

2
0
2 2

0kx ky kx y mgy

But
1

2
0
2k x = constant sayU 0

∴ U U ky= +0
21

2

32. While returning to equilibrium position,

1

2

1

2

2
1 2

2k d m m v= +( )

∴ v
k

m m
d=

+








1

1 2

Now, after mean position m2 is detached from m1

and keeps on moving with this constant velocity v

towards right. Block m1starts SHM with spring and

this v becomes its maximum velocity at mean

position.

∴ v A= ω

∴ k

m m
d

k

m
A

1 2 1+








 =











∴ A
m

m m
d=

+








1

1 2

Ans.

33. (a) In equilibrium, let x0 is the elongation then,

F kx= 0

∴ x
F

k
0 =

This x0 is the amplitude

∴ A x
F

k
= =0

T
M

k
= 2π

(b) E kx k
F

k
= = 





1

2

1

2
0
2

2

= F

k

2

2

(c) Kinetic energy at mean position

= =E
F

k

2

2

34. (a) F kx= 0

∴ x
F

k
0

10

100
= = = 0.1 m Ans.

(b) E mv kx= +1

2

1

2

2
0
2

= × × + × ×1

2
1 2

1

2
1002 2( ) ( )0.1 = 2.5 J Ans.

(c) T
M

k
= 2π

= =2
1

100 5
π π

sec Ans.

(d) From P to Q

Work done by applied force = change in

mechanical energy.

∴ FA E EQ P= −

∴ ( ) ( )10
1

2
0

2A k A x= + − 2.5

= × + −1

2
100 2( )A 0.1 2.5

Solving this equation, we get

A = 0 2. m Ans.

(e)U k A xQ = +1

2
0

2( )

= ×1

2
100 2( )0.2 + 0.1

= 4.5 J Ans.

(f) P = mean position

x0

Natural length2 m/s

θ
A

P

F

x0

y

Natural length

Equilibrium position ( = 0)h

Displaced position

0.1 m0.1 m

A = 0.2 m A = 0.2 m

Q P R S



Q S, = extreme position

R = natural length

U kS = 1

2

2( )0.1

= × ×1

2
100 2( )0.1 = 0.5 J

Due to work done by the applied fore, F, answer

are different.

35. T
I

mgl
A = 2π

= 2
3

2

2

π ( / )

( / )

md

mg d
=









2

3
2π d

g

and T
d

g
B = 2π

∴ T

T

A

B

= =2

3
0.816 Ans.

36. In displaced position,

E kx mv I= + +1

2

1

2

1

2

2 2 2ω

Putting I mR= 1

2

2

and ω = v

R

we get E kx mv= +1

2

3

4

2 2

Since, E = constant

∴ dE

dt
= 0

or 0
1

2
2

3

4
2= 



 +k

dx

dt
x m v

dv

dt
( ) ( )

Putting,
dx

dt
v= and

dv

dt
a=

we get, F ma
k

x= = − 



( )

2

3

Since, F x∝ − motion is simple harmonic

k
k

e = − 2

3

T
m

k

m

ke

= =2 2
3

2
π π Hence Proved.

37. In equilibrium

k x mg0 =

∴ x
mg

k
0 = = ×0.5 10

20

= 0.25 m

When displaced downwards by x from the mean

position, total mechanical energy,

E mgx mv I= − + +1

2

1

2

2 2ω + +1

2
0

2( )x x

Substituting I MR= 0.6 2 and ω = v

R

We have,

E mgx mv MR
v

R
= − + + 





1

2

1

2

2
2

( )0.6 2

+ +1

2
0

2k x x( )

Since E = constant

∴ dE

dt
= 0

or 0
1

2
2= − 



 + ⋅



mg

dx

dt
m v

dv

dt

+ + +( [ ( )]0.6 ) + ( )M v
dv

dt
k x x

dx

dt

1

2
2 0

Putting
dx

dt
v kx mg= =, 0 and

dv

dt
a=

We have

0 = + +( )ma Ma kx0.6

or a
k

m M
x= −

+








0.6

Since, a x∝ − motion is SHM.

f
a

x
= 1

2π

=
+

1

2π
k

m M0.6

=
× ×

1

2

20

π 0.5 0.6 5

= 0.38 Hz Ans.

38. x A t= sin ω …(i)

y A t= +sin ( / )2 2ω π
= A tcos 2ω
= −A t( sin )1 2 2ω

From Eq. (i),

sin ωt
x

A
=

∴ y A
x

A
= −







1

2 2

39. (a) x x x= +1 2

At t = 0.0125 s
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x1 2= − cm

and x2 1= − cm

∴ x x x= + = −1 2 2.41 cm

(b) At t = 0.025 s.

x1 = 2cm

and x2 = −1.73cm

∴ x x x= +1 2

= 0.27cm

LEVEL 2

Single Correct Option

1.
1

2

2kA = 1.0

1

2

2k ( )0.4 1.0=

or k = 12.5 or
25

2
N/m

T
m

k
= 2π = 2

2

25

2

π = 4

5

π
s

2. v A
K

m
amax = =







ω

∆P m v m
K

m
a= =







2 2max

F
P

t

P

T
= =∆

∆
∆

/2
= =

2 2ma k m

m k

aK/

/π π

3. A1 40= units

Putting A A1 2= we get,

c = 15

4. T
F

= = =1 1
0 4

2.5
s.

t
T= 0.3 s =

3

4

At the given time, particle will be in its extreme

position if at t = 0 it crosses the mean position.

5. ω π π π= = =2 2

16 8T
rad /s

At t = 0, particle crosses the means position. Hence

its velocity is maximum. So, velocity as a function

of time can be written as

v v t= max cos ω
or v A t= ω ωcos

∴ 1
8 8

2= 











π π
A cos ( )

= 





π
8 2

A

∴ A = 8 2

π
m

6. g g ae = + = +2 2 2 210 4( ) ( )

= 10.77 m/s2

T
l

ge

= =2 2
1π π

10.77

= 1.90 s

7. If v v t= 0 sin ω , then

a
dv

dt
v t= = 0ω ωcos

sin ωt
v

v
=

0

…(i)

cos ω
ω

t
a

v
=

0

…(ii)

Squaring and adding these equations, we get

1 2

0
2

2

0

= +v

v

a

v ω

∴ v
v

a v2 0 2
0
2= −



 +

ω
Hence, v2 versus a2 equation is  a straight line with

positive intercept and negative slope.

8. T
l

g
= 2π

2
1000

20
l = g

= 50 cm = 0.5 cm

⇒ l = 0.25 m

Now T = =2 1π 0.25

9.8
s
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vmax

vmax

10c

10

A c2
2= 10 + 1√

l
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9. T
m

k
= 2π

Here m a= ( ) ( )ρ0
3

and K A g a gl= =ρ ρ 2

∴ T
a

g
= 2 0π ρ

ρ

10. T
I

mgd
= 2π

=
+

2 12

2
2

π

ml
md

mgd

= +
2

12

12

2 2

π l d

d

= +






2

12

2

π l

d
d

T is minimum when first derivation of the quantity

inside the root with respect to d is zero.

− + =l

d

2

212
1 0

or
d

l
= 1

12

11. In solved example, we have shown that

T
m

k
1 2= π

T
m

k
2 2

4= π

and T
m

k
3 2

4
= π

12. T
m m

k

s= +
2

3π /
(in general)

Here ms = mass of spring

and m = mass of block

13. Half the oscillation is completed with one spring

and the other half with other spring. Hence,

T
T T= +1 2

2 2
= +

2

2

2
4

2

π πM

k

M

k

= +





π M

k
1

1

2
= 3

2

π M

k

14. F
dU

dx
x= − = −20 10

F = 0

at x = 0

So, from x = − 3 to x =2, amplitude in 5.

Hence, other extreme position will be

x = + =2 5 7

15. k ∝ 1

Length of spring

Length Force constant

L k

nL k n/

( )1 − n L k n/( )1 −

m nm1 =
and m n m2 1= −( )

f

f

k n

n m

k n

nm

1

2

1

2 1

1

2

1
1=

−
−

=
π

π

/

( )

/ ( )

16.
1

2

1

4

1

2

2 2 2k A x kA( )− = 





∴ x A= 3

2

∴ CD CB R= = 3

2

or BD CD= 2 ( )

or 2 3( )CB R=

17. K
YA

L
Q =

K
Y A

L

YA

L
p = =( ) ( / )2 2

∴ K K K
YA

L
P Q= = =

Half oscillation is completed with P and half with

Q. But their value of K is same. Hence, we can

say that in one oscillation one time period is

completed with spring.

T
L

v

m

K

L

v

mL

AY
= 



 + = +2

2
2

2π π

18. X A t= cos ω

5 8= cos ωt

x 3 cm

x
t t

= 5
=

x
t

= 8
= 0



ωt = =−cos ( / )1 5 8 0.9

∴ t
T

= =0.9 0.9

(2 / )ω π

= = ×0.9 0.9 1.2T

2 2π π
= 0.17 s Ans.

19. OP a
a= ° =sin 60

3

2

OC l OP
a= = =2

3 3
( )

I I
ma

m OP
ma= =







 + +0

2
2

2

2
3 12

( )

= + +2

3

3

4

1

12

2 2 2ma ma ma = 3

2

2ma

T
I

m gl
= 2

3
π

( )

=






2

3
3

2

π ( )

( )

3/2m a

m g
a

= 2
3

2
π a

g

Putting a = 1

3
m and g = 10 m/s2

We get, T = π
5

s Ans.

20. t
T

= =2 5 2 5

2

. .

( / )

π
ω

π
π

= 



( . )2 5

2

T

= 



5

4

T

Particle starts from extreme position and in every
T

4
time it travels a distance A. So, in time

t T= 5 4( / ) it will travel a distance 5 A.

21. Half of the oscillation is completed with length l

and rest half with l/4.

∴ Time period = +T T1 2

2 2

= +










1

2
2 2

4π πl

g

l

g

/

=










3

4
2π l

g
= 3

4
T

22. A = radius = =Diameter
0.4 m

2

f = =30

60

1

2
rps or

1

2
Hz

∴ T
f

= =1
2 s.

23. T = 0.6π

∴ ω π π
π

= =2 2

T 0.6

= 10

3
rad/s

Particle starts from y A= − = − 2 cm

∴ y A t= − cos ω
= −A tsin ( / )ω π 2

= −



2

10

3
2sin /t π

24. Mean velocity = displacement

time

= =( / )

( / )

a

T

a

T

2

6

3

25. Maximum acceleration = g

∴ ω 2A g=

∴ ( ) ( . )2 0 52πf g=

f
g2

2

2

2
=

( )π

∴ f
g

=
2

2π

26.
1

2

1

2

2 2 2kX k A X= −( )

∴ X
A= ±
2

Average speed = =
+

d

t

A

T T

2

8 8/ /

= 4 2 A

T

610 � Mechanics - II

60°

C

O

P

a

T/6

x = 0
a/2

x = 0– 2A/

T/8 T/8

A/ 2

2 2 = 2A / A



27. V V1 2=

tAB = 2 s

∴ tOB = 1 s

tBCB = 2 s

∴ BC = 1 s

∴ t tOB BC=

∴ OB
A=
2

or
OB

A
= 1

2

28. t = π
ω6

∴ ω πt = ( / )6

According to the equation,

X A t= cos ω
X A= at t = 0

and X
A= 3

2
at ω πt = /6

∴ Distance travelled

= −A A
3

2

= −( )2 3
2

A

Average speed = distance

time

= −( ) /

( / )

2 3 2

6

A

π ω
= −3

2 3
ω
π

A
( )

More than One Correct Options

1. tan θ = =ma

mg

a

g

∴ θ =






−tan 1 a

g

T F= net

= +m a g2 2

2. x A t= + °sin ( )ω 150

= +



A

T
tsin

2 5

6

π π

or x A t= + °cos ( )ω 60

= +



A

T
tcos

2

3

π π

3. k x mg0 =

∴ x
mg

k
0

1 10

500
= = ×

= 0.02 m = 2 cm

So, equilibrium is obtained after an extension

of 2 cm of at a length of 42 cm. But it is

released from a length of 45 cm.

∴ A = 3cm = 0.03 m

(b) v A
k

m
Amax = =ω

=








500

1
( )0.03 = 0.3 5 m/s

= 30 5 cm/s

(c) a Amax = ω2

= 





k

m
A( ) = 





500

1
( )0.03 = 15 m/s2

(d) Mean position is at 42 cm length and amplitude

is 3 cm. Hence block oscillates between 45 cm

length and 39 cm. Natural length 40 cm lies in

between these two, where elastic potential

energy = 0.

4. v or KE = 0 at y A= ±
v or KE = maximum at y = 0

F or a is maximum at y A= ±
F or a is zero at y = 0

Chapter 14 Simple Harmonic Motion � 611

θ T

mg

Fnet

θ

Pseudo force
= ma

A

60° Q

P

cos
A
2

sin

2π
T

ω =

v2 v1

C B O A

1s 2 s



5. v A x= −ω 2 2

∴ v x
A

2

2

2

2

2

1ω
+ =

( )

i.e. v x- graph is an ellipse.

a x= − ω2

i.e. a x- graph is a straight line passing through

origin with negative slope.

6. a = 0 at x = 0.5 m

and particle is released from x = 2m

Hence,

A = −2 0.5

= 1.5 m

ω2 100=
∴ ω = 10 rad/s

T = =2 2

10

π
ω

π

= 0.63 s

v Amax ( ) (= =ω 10 1.5)

= 15m/s

7. Two particles shown in figure are in same phase,

although they have distances from the mean

position at t = 0

8. The given equation can be written as

y t t= + − −3 100 4 4 100 6sin ( cos )π π
= + + −3 100 4 100 2 2sin sin ( / )π π πt t

or y = − ° −5 100 53 2sin ( )π

ymax = − =5 2 3

ymin = − − = −5 2 7

Mean position = +y ymax min

2
=− 2cm

Comprehension Based Questions

1. ω = = =k

m

400

2
10 2 rad/s

2. Kx ma0 =

x
ma

K
0

2 5

400
= = ×

m

= 0.025 m

= 2.5cm

∴ A x= =0 2 5. cm

Match the Columns

1. xmin = − =2 2 0→ extreme position

xmin = + =2 2 4 → extreme position

Mean position = + =x xmin min

2
2

Maximum potential energy is at extreme positions.

2. U KA U0
21

2
+ = max

4
1

2
202+ = −kA or

1

2
162kA = J

(a) U U kX= +0
21

2

= + 



U k

A
0

2
1

2 2

= + =4
16

4
8 J

(b) KE = −








1

2 116

2
2

k A
A

= 



 = × =15

16

1

2

15

16
16 152kA J

(c) KE = −1

2
02k A( )

= =1

2
162kA J

(d) KE = −








1

2 4

2
2

k A
A

= 





3

4

1

2

2kA = =3

4
16 12( )J J

3. (a) x ∝ − α
At time t1 acceleration is positive. Hence, X will

be negative.

(b) At time t2 a = 0 ∴ x = 0

(c) At time t1, x is negative and a is increasing.

So, the particle is moving toward extreme

position.

∴ Velocity is negative.
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–A1 +A1

x = 0

+ /2A2x = 0

–A2 +A2

+ /2A1

53°

4

3

–A +A

a

v x = 0

x



(d) At mean position, velocity is maximum. Just

after few seconds acceleration becomes

positive. So displacement will becomes

negative. Hence, the velocity should be

negative.

4. v Amax ( )( )= =ω π4 2

= 25.12 m/s

T = =2 2

4

π
ω

π
π

= 0.5 s

Hence the given time

t T= =1 2s

Maximum KE = 1

2

2m vmax

= × ×1

2
2 2( )25.12

= 631 J

Given kinetic energy of 400 J is less than this

maximum kinetic energy. So in one time

period kinetic energy becomes 400 J four

times. In time 2T it becomes 400 J eight times.

(d) | |maxa A= ω2

= ( ) ( )4 22π

= 315.5 m/s2

Given acceleration is less than this. So, it becomes

two times in one time period and four times in

time 2T .

5. xmax = + =4 6 10m

xmin = − = −4 6 2m

Mean position = + =x xmax min

2
4 m

T = = =2 2
2

π
ω

π
π

s

(a) x = 10m to x = 4 m t
T= =
4

1

2
s

(b) x = 10m to x = 7m, t
T= =
6

1

3
s

(c) x = 7m to x , t
T= 



 =2

12

1

3
s

(d) x = 10m to x = − 2m, t
T= =
2

1 s

Subjective Questions

1. f
k

m
= =1

2

1

2

100

4π π
= =2.5

0.8 Hz
π

Ans.

with 1 kg mass, f0

1

2

100

1

5= =
π π

Hz

Further, from conservation of linear momentum

(at mean position)

ω ωA A= 1

4
0 0

or fA f A= 1

4
0 0

or A
f A

f
= −0 0

4

5

4

( / )( )

( )( )

π
π

0.1

2.5/

= 0.05 m Ans.

2. (a) θ ω ω0 1 2= +t t

but ω ω π
1 2

2= =
T

and θ π π π π0
3 4

19

12
= + + =

∴ 19

12

2 2π π π= +
T

t
T

t

or t T= 19

48

(b) θ π θ π π π= − = − =2 2
19

12

5

12
0

Two particles will collide when line XX ′ becomes

the line of bisector of angle θ.
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A/2 A/2 A/2

–2 m 1m 4m 7m 10m

6 m

12

π/4 π/3

θ0

12

θ

X X N
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∴ Any one of the particles (say-2) has rotated an

angle

ω π θt = +/ /4 2

or
2

4

5

24

11

24

π π π π
T

t = + =

∴ t
T= 11

48

3. 1.5 = =ωA A2 ⇒ ∴ A = 0.75 m

Further, the particle will start its journey from its

mean position in downward direction

(−ve direction).

4. (a) ω = =
+

=k

m

600

2 1
10 2 rad/s

From conservation of linear momentum (at

mean position) velocity of combined mass will

be 2 m/s.

This is the maximum velocity of combined

mass.

∴ v A= ω

or A
v= =
ω

2

10 2
m

= =0.141 m 14.1 cm

T = = =2 2

10 2

π
ω

π
0.44 s

(b) If the collision is  elastic,

ω′ = =600

2
10 3 rad/s

In elastic collision,

v
m m

m m
v

m

m m
v2

2 1

2 1
2

1

1 2
1

2′ = −
+







 +

+








= ×
+







 =2 1

1 2
6 4( ) m/s (As = 0)2v

This is maximum velocity.

∴ v A2′ = ′ ′ω

or A
v′ =

′
=

′2 4

10 3ω
= =0.23 m cm23

T ′ =
′

= =2 2

10 3

π
ω

π
0.36 s

(c) In both cases journey is started from mean

position

∴ x A t= ± sin ω
will be the displacement-time equation. For

impulse we can apply the equation. Impulse

= change in linear momemtum.

5. ω = = =k

m

400

4
10 rad/s

Let t1 be the time from x = 0 to x = 12 cm

and t2 the time from x = 0 to x = 9 cm. Then,

12 15 10 1= sin ( )t

or t1 = 0.093 s

9 15 10 2= sin ( )t

or t2 0 064= . s

∴ Total time = + =t t1 2 0.157 s

6. (a) y a t= −( cos )1 ω

d y

dt
a t

2

2

2= ω ωcos

N mg m
d y

dt
− = .

2

2

or N mg ma t= + ω ω2 cos

or N m g a t= +( cos )ω ω2 Ans.

(b)
d y

dt
a

2

2

2






 =

max

ω or a gω2 =

∴ a
g= =

ω2 2

980

11( )

= 8.1 cm Ans.

7. F i j= − −kx ky$ $

F = 0 at ( , )0 0

When it is displaced to a point P whose position

vector is

r i j= +x y$ $

Force on it is F i j r= − + = −k x y k( $ $)

Since, F r∝ − , motion is simple harmonic. At

t = 0 particle is at ( , )2 3

(0,0)

(x,y)
r

P

r

x

y

(2,3)



y

x
= 3

2
or 2 3 0y x− =

i.e. the particle will oscillate simple harmonically

along this line.

8. In equilibrium, mg kxsin θ = 0 …(i)

When displaced by x,

E mv I k x x mgx= + + + −1

2

1

2

1

2

2 2
0

2ω θ( ) sin

Since, E = constant

dE

dt
= 0

0 0= 



 + 



 + +mv

dv

dt
I

d

dt
k x x

dx

dt
ω ω

( )

− mg
dx

dt
sin θ

Substituting,

dv

dt
a= , ω = v

R
, I mR= 1

2

2

d

dt

a

R

ω α= = ,
dx

dt
v=

and kx mg0 = sin θ
We get, 3 2ma kx= −

∴ f
a

x

k

m
= 


 


 =1

2

1

2

2

3π π
Substituting the values,

f = ×
×

1

2

2 200

3 100π
9.8

= 0.56 Hz Ans.

9. In the displaced position,

E mv I k x= + +1

2

1

2

1

2
22 2 2ω ( )

I mR= 1

2

2 and ω = v

R

∴ E mv k x= +3

4
22 2

E = constant

∴ dE

dt
= 0

or
3

2
4 0mv

dv

dt
kx

dx

dt
+ =

Substituting,
dx

dt
v= and

dv

dt
a=

a
k

m
x= − 8

3
.

Comparing with, a x= − ω2

We have

ω = = ×
× =8

3

8 1000

3 100

k

m

9.8

16.16 rad/s

∴ θ θ ω= 0 cos t

or θ = 0.4 16.16cos ( )t Ans.

10. Similar to Q.9

11. Let F be the restoring force (extra tension) on

block m when displaced by x from its equilibrium

position.

x x x= +2 21 2

= +








2

2 2

1 2

F

k

F

k

= +





4 1 2

1 2

F
k k

k k

or F
k k

k k
x=

+
–

( )

1 2

1 24

∴ a
k k

m k k
x=

+
–

( )

1 2

1 24

ω =
+

k k

m k k

1 2

1 24 ( )
Ans.

12. (a) f
k k k

m m
= = +

+
1

2

1

2

1 2

1 2π π
eff

total mass

(b) Suppose the system is displaced towards left
by a distance x.

Restoring force on m1 :

F m x= 1
2ω (towards right)

= +
+







m

k k

m m
x1

1 2

1 2

Friction f on it will be towards right if,

k x F1 <

or k x m
k k

m m
x1 1

1 2

1 2

< +
+









or
k

k

m

m

1

2

1

2

< Ans.

(c) k A m g m
k k

m m
Am m1 2 1

1 2

1 2

+ = +
+







µ

A
m k m k

m m
k m gm

1 1 1 2

1 2
1 2

+
+

−






 = µ

or A
m m m g

m k m k
m = +

−
µ ( )1 2 2

1 2 2 1

Ans.
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m1k x1

f
m2

f
k x2



13. (a)
1

2

1

2
0
2 2kx vr= µ

Here, µ = = ×
+

reduced mass
6 3

6 3

= 2 kg

∴ v
k

xr =
µ 0 =







 × −200

2
3 10 2( )

= = +0.3 m/s 2v v

∴ v = 0.1 m/s

∴ v1 = 0.2 m/s

and v2 = 0.1 m/s Ans.

Angular frequency

ω
µ

= =k 200

2

= 10 rad/s

(b) v
m v m v m v

m m m
cm = + +

+ +
1 1 2 2 3 3

1 2 3

=
+ +

( )3

3 6 3

(0.2) – (6)(0.1) + 3(0.4)

= 0.1 m/s (towards right) Ans.

(c) After collision velocity of combined blocks

( )A C+

v0

3 3

3 3
= × +

+
=( ( )(0.2) 0.4)

0.3 m/s

and velocity of block B is v2 = 0.1m/s

The spring will compress till velocity of all the

blocks become equal to the centre of mass.

Applying conservation of mechanical energy,

1

2
3 3

1

2
6

1

2

2 2( )( ( )+ + =0.3) (0.1)

( )(3 3 6
1

2

2 2+ + +0.1) kA

Solving this we get, A = 0.048 m

or A = 4.8 cm Ans.

(d) ∆E = +1

2
3

1

2
32 2( )( ( )(0.4) 0.2)

− +1

2
3 3 2( )(0.3)

= 0.24 + 0.06 – 0.27 = 0.03 J Ans.

14. Restoring torque

τ θ θ θ= − − 



 = −( )kl l k

l l
kl

2 2

5

4

2

Now,
ml

kl
2

2

3

5

4







 = − 



α θ

f
k

m
= 


 


 =1

2

1

2

15

4π
α
θ π

15. When the mass m is displaced from its mean

position by a distance x, let F be the restoring

(extra tension) force produced in the string. By this

extra tension further elongation in the springs are

2

1

F

k
,
2 2

2 3

F

k

F

k
, and

2

4

F

k
respectively.

Then,

x
F

k

F

k

F

k

F

k
=







 +







 +







 +







2

2
2

2
2

2
2

2

2 2 3 4

or F
k k k k

x
4 4 4 4

1 2 3 4

+ + +






 = −

Here negative sign shows the restoring nature of

force.

a
x

m
k k k k

= −
+ + +









4 4 4 4

1 2 3 4

T
x

a
= 


 


2π

= + + +






4

1 1 1 1

1 2 3 4

π m
k k k k

Ans.

16. Let F be the extra tension in the string, when the

block is displaced x from its mean position.

Extension in spring-2 is

x
F

k
2

2

=

Extension is spring-1 is

x
F

k
1

1

2=

x x x
F

k

F

k
= + = +2

4
1 2

1 2

Extra tension F will become restoring force for the

block. Therefore, above equation can be written as,

F

k k

x
k k

k k
x= −

+



















=
+









1

4 1 4

1 2

1 2

2 1

616 � Mechanics - II

A 2v v B

A BC

0.3 m/s 0.1 m/s



or k
k k

k k
e =

+
1 2

2 14

T
m

ke

= 2π

= +
2

4 2 1

1 2

π m k k

k k

( )
Ans.

17. In equilibrium,

T F Mg+ = …(i)

When the block is further depressed by x, weight

Mg remains unchanged, upthrust F increases by

ρAxg and let ∆T be the increase in tension.

If a is the acceleration of block then,

∆T Axg Ma+ =ρ …(ii)

Restoring torque on the cylinder,

τ = 





kx R
T R

2 2
– ∆ = 





kxR
Ma Axg R

4
– ( – )ρ

1

2 4

2
2

MR
kR

MR AgR Rα θ α ρ θ=








– ( – )

or
3

2 4

2
2

2MR
kR

AgRα ρ θ= +










or α
ρ

θ=
+





–
k

Ag

M

4

3

2

Here negative sign has been used for restoring

nature of torque.

∴ f = 1

2π
α
θ

= +1

2

4

6π
ρk Ag

M
Ans.

18. If the mass M is displaced by x from its mean

position each spring further stretches by 2x.

Net restoring force

F kx= − 8

∴ M a kx⋅ = − 8

f
a

x
= 


 


1

2π

= 1

2

8

π
k

M

= 1 2

π
k

M
Ans.
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15 Elasticity

1. ∆l
Fl

AY
= or ∆l

Y
∝ 1

2. ∆l
l

AY
= = ×

× ×
F 1000 100

4 2 106

= 0 0125. cm

3. σ
π

= =
−

F

A

F

R r( )2 2

R
F

r= +
σπ

2

= ×
× ×

+16 10

90 10 314
01

6

6

2.

.
( . )

= 0.1251 m = 1251. mm

Diameter = =2R 250.2 mm

4. Stress = Force

Area

Strain = ∆l

l

Modulus of elasticity = Stress

Strain

1. Energy density = energy per unit volume

2. (a) Energy stored U = 1

2
(stress) (strain) (volume)

or U
F

A

l

l
Al= 











1

2

∆
( )

= ⋅1

2
F l∆

= × −1

2
100 10 3( )( )0.3

= 0.015 J Ans.

(b) Work done = Potential energy stored

= 1

2

2k l( )∆

= 





1

2

2YA

l
l( )∆ as k

YA

l
=





Substituting the values, we have

W = × ×1

2

10 10

2
10 3 2(2.0 )( )

( )
(0.1 )

11 –6
–

= × −5.0 J10 4 Ans.

Exercises
LEVEL 1

Assertion and Reason

2. At higher pressure, it is difficult to press the gas

more. So, bulk modulus is high.

3. If length is doubled, ∆l will also becomes two

times and Y will remain same.

4. Bulk modulus is related to volume change and

volume change is possible in all three states.

Young’s modulus is related to length change,

which is possible only in solids.

6. Stress ∝ strain only in proportionality limit.

7. B PT =

⇒ B pS = γ

∴ B

B

T

S

= 1

γ

8. Case I F ma= ⇒ a
F

m
=

F T m a− = ′ = m

L
xa

T F
m

L
x

F

m
F

x

L
= − ⋅ = −



1 …(i)

Case II F mg ma− = ′

INTRODUCTORY EXERCISE 15.1 INTRODUCTORY EXERCISE 15.2

F

x

a

F

a′

mg

x



a
F

m
g′ = −

F T m g m a− − ′ = ′ ′

F T m g m
F

m
g− − ′ = ′ −





F T m
F

m
− = ′ ⋅

F T
m

L
x

F

m

x

L
F− = ⋅ =

⇒ T F
x

L
= −



1 …(ii)

Tension at a point on the rod (of length L) at a

distance x from point of application of force is

same in both cases. [from Eqs. (i) and (ii)]

Hence, weight has no effect on tension in case (II).

Note You can appreciate the extension of rod in first case,

by comparing it with a case of many identical blocks

connected by ideal springs.

Extension in rod occurs due to force acting at any

point on the rod. In certain cases, when net force

acts at the centre of rod like weight, extension may

not occur like the given case (II).

9. Y Ysteel copper> . So, for the same strain, stress to be

produced in steel is more.

Also, Work done = ×1

2
Stress Strain

Volume = ×1

2

2Y ε

Single Correct Option

1. B = − ∆
∆

p

V V/

∆V = 0 for an incompressible liquid.

∴ B = ∞
2. Young’s modulus of elasticity is a materials

property.

3. σmax
max= F

A

∴ F Amax max( ) ,= σ

which is independent of length of wire.

4. T = 0 is free  fall.

5. B
p

V V
= − ∆

∆ /

= × ×
×

−

−
( )( )1.2 10

0.3 10

5 1 10 3

3

= ×4 105 2N m/ Ans.

6. Length of the wire is l = 20 m

Radius of the wire is r = × −2 10 3 m

Increase in length is

∆l = × −0.031 10 m3

g = × −3.1 ms 2π
Young’s modulus is

Y
F

A

mg

r
= =l

l

l

l∆ ∆
( )

( )π 2

∴ Y = × × ×
× × ×− −

4 3.1 20

(2 10 ) 0.031 103 2 3

π
π

= × −2 1012 2Nm

7. Volume of wire is V L r= × π 2

= × −1 10 3 2π( )

= ×π 10 6 3– m

Area of square cross-section

= × −( )2 10 3 2

= × −4 10 6 2m

Length of new wire = = ×
×

=
−

−
Volume

Area

π π10

4 10 4

6

6
m

Initially extension is x = =
×







−

FL

AY

F

Y

1

10 6π

∴ F

Y
x= × −( )π 10 6

Finally extension is ′ = ′
′

= ⋅ ′
′

x
FL

A Y

F

Y

L

A

′ = × ⋅
×

=−
−x x x( )

/π π π
10

4

4 10 16

6

6

2

8. In the figure, the reciprocal of slope of stress-strain

(x and y-axes)  curve, upto proportionality limit,

gives Young’s modulus. The measure of ductility

is obtained as the length of the stress-strain curve

between yield point and ultimate load.
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m

l, r

F

xa′

T

m′

m g′



9. ρ ρ ρ′ =
−

≈ +





1

1
dp

B

dp

B

∆ρ ρ ρ ρ= ′ − = ( )dp

B
…(i)

∆ρ
ρ

× =100 0.1

∴ ∆ρ
ρ

= 0 001.

From Eq. (i),

dp or ∆ ∆
p B= ρ

ρ
= ×( ) ( )2 109 0.001 = ×2 106 N/ m2

10. W U F
YA= = = ⋅1

2

1

2

2

( )
( )∆ ∆

l
l

l

∴ U
A∝
l

(QIn both the cases ∆ l is same)

U

U

A

A

r

r

2

1

2

1

1

2

2

1

2

1

2

4 2= ⋅ =






 ⋅ =l

l

l

l
( )( )

∴ U U2 18 8 2 16= = =( ) J

11. U Y= =1

2

1

2
σ ε ε ε( )

⇒ U Y= 1

2

2ε is similar to x ky= 2

Which is a parabola passing through origin and

symmetric about x-axis.

12. Change in volume, ∆ ∆
V

p V

B

i= ⋅–

Hence, density at depth of about 11 km is

= Mass

Volume
=

×
=

ρ ρ
0 0

V

V
pv

B

B

B p

i

i
i–

( – )∆ ∆

= =
×
×

ρ ρ0

1 1
1 10

2 10

0
8

9
– –

∆p

B

= =ρ ρ0 0

1
1

20
–

0.95
⇒ ρ ρ= 0

0.95

⇒ ρ ρ0 = 0.95

∴ % change in density = − ×ρ ρ
ρ

0

0

100

=
−















×

1
1

1
1000.95

≈ 5 %

13. ∆l = =FL

AY

FL

r Y( )π 2

∴ ∆l ∝ L

r2

∴ ∆
∆

l

l

1

2

2

22 2
2= =L R

L R

/

/( )

14. The net pressure at a depth of 1 km in the ocean is

p gh p= +ρ atm

= +(10 ) (9.8) (10 ) 103 3 5

= ×99 105 Pa = ×9.9 10 Pa6

This pressure acts uniformly on all sides of the
balloon (which is in equilibrium) and the restoring
forces with in the balloon are equal to external
forces. So, normal stress will be same as external
pressure.

15. Let T be the tension in the rope. Then,

2 10T = kN

⇒ T = 5000 N

Longitudinal stress in the rope is

σ = = = −T

A

5000

10
5

3 2

2N
N

mm
mm

Extension in the rope = ×Stress

Y
L

= × +5

10
600 900

3
( ) = 7.5 mm

∴ Downward deflection of the load = =7.5

2
3.75 mm

16. Change in length of element is

d L
F dx

AY
( )∆ =

Cross-sectional area of the element is

A a
b a

L
x= + −





π
2

where, a
b a

L
x= −

is radius of the wire at the

location of element.
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3.14 kg

a

x

dx

b

θ
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d L
F

a
b a

L
x Y

dx( )∆ =
+ −





π
2

Total change in length of wire is

∆L
F

Y
a

b a

L
x

dx
L

=
+ −





∫π 0 2

1

Let a
b a

L
x t+ − =

⇒ b a

L
dx dt

− = ⇒ dx
L

b a
dt=

−
When x t a= =0, and when x L t b= =,

∴ ∆L
F

Y
t

L

b a
dt

a

b
= ⋅

−∫ −

π
2

=
−

− −





FL

Y b a b aπ ( )
( )1

1 1

=
−

⋅ − =FL

Y b a

b a

ab

FL

Y abπ π( )

( )

=
× × −

(3.14) (9.8) (10)

(3.14) (2 10 ) (5 10 ) (9.11 4 8 10 )4× −

= −10 3 m ⇒ ∴ ∆ L = −10 3 m

Subjective Questions

1. The changed density, ρ ρ′ =
−1

dp

B

Substituting the value, we have

ρ′ =
×
×

11.4

1 –
2.0

8.0

10

10

8

9

or ρ′ =1169. g / cm3 Ans.

2. ∆l
Fl

AY

Fl

d Y
= =

( / )π 2 4

∴ d
Fl

l Y
= 4

π ( )∆

= × ×
× × × ×−

4 400 3
23.14 0.2 10 2.1 1011

= × −1.91 10 3m = 1.91 mm Ans.

3.
m g a

A

( )
max

+ = 1

3
σ

∴ a
A

g= −σmax

3m

= × ×
×

−
−( ) ( )3 10 4 10

3 900

8 4

9.8

= 34.64 m/s2 Ans.

4. Refer solved example 1

∆l
mgl

AY
=

2
= ρ π

π
( )

( )

r l gl

r Y

2

22

= gl

Y

2

2

ρ =
× ×

(9.8) (5)2 ( )8000

2 2 1011

= × −4.9 10 6m

U k l= 1

2

2( )∆ = 1

2

2YA

l
l( )∆

= × ×1

2

2
2Y r

l
l

π
( )∆

= × × ×
×

− −( ) ( ) ( ) ( )2 10 6 10

2 5

11 3 2 6 23.14 4.9 10

= × −5.43 10 5J Ans.

5. σmax on upper string = + +
× −

( )m m m g1 2
40.006 10

∴ 8 10
10 20 108

4
× = + + ×

× −
( )m

0.006 10

or m= 18 kg

σmax on lower string = + ′
× −

( )m m g1
4100.003

or 8 10
10 108

4
× = + ′ ×

× −
( )m

0.003 10

or ′ =m 14 kg

So, answer is 14 kg and lower string will break

earlier.

6. (a) σ = F

A

F and A both are same. Hence, the ratio is 1.

(b) Strain = ∝Stress

Y Y

1

∴ (Strain)

Strain

steel

copper

copper

steel( )
= =

Y

Y

13

20
Ans.

7. ′ =
−

≈ +



ρ ρ ρ

1

1
dp

B

dp

B

∴ ∆ρ ρ ρ = ρ= ′ − ( )dp

B

= ρ ρ( )gh

B

= × ×
×

( )1030

2 10

2

9

9.8 400

= 2.0 kg/m3 Ans.



8. B
p

V V

gh

V V
= =∆

∆ ∆/ ( / )

ρ

= ( ) ( ) ( )

( )

10 1803 9.8

0.1/100

= ×1.76 109 N m/ 2 Ans.

LEVEL 2

Single Correct Option

1. Extension in the first case is

l = =FL

AY

wL

AY

Extension in the second case is

′ = + =l
w L

AY

w L

AY

wL

AY

( / ) ( / )2 2

It is clear that l' l=

Note In the above problem, even if lengths of wire are

unequal on two sides of the pulley, the elongation

will still be l.

2. Force on wire = Load carried

= +m g a( ) = +



m g

g

2
= 3

2

mg

Stress σ = F

A
⇒ A

F=
σ

Hence, A
F

min
max

=
σ

π
σ

d
m g

min
2

4

3

2=
⋅

⇒ d

mg

min
2 2

4

=
×3

σ π

d
mg

min = ⋅6

π σ

3. T ml= ω2

T

A
= σmax = ml

A

ω2

∴ ω σ= max A

ml

= × ×
×

−4.8

0.3

10 10

10

7 6

= 4 rad/s Ans.

4. T
M

g
L

s g= = 



2 2

ρ

∴ σ ρ= =T

S
gL

1

2
Ans.

5. F
dU

dr
= − = −slope of U r- graph

At B, slope = 0

∴ F = 0

Hence, atoms are in equilibrium at B. From A to B

or even before A slope is negative. Hence, force is

positive and positive force mean repulsion.

6. l l
T l

AY
1

1− = …(i)

l l
T l

AY
2

2− = …(ii)

Dividing Eq. (i) by Eq. (ii) and then simplifying,

we get

l
l T l T

T T
= −

−
2 1 1 2

1 2

Ans.

7. ∆l
Fl

AY

Fl

V l Y
= =

( / )
( )V = Volume

= Fl

VY

2

∴ ∆ 2l l∝ (as F V, and Y = constants)

8. ∆ ∆l l= α θ

∴ Strain = =∆ ∆l

l
( )α θ

Stress = Y Y× =Strain α θ∆
Energy stored per unit volume

= × ×1

2
stress strain

= × ×1

2

2Y ( )α θ∆

= × × × ×−1

2
10 12 10 2011 6 2( )

= 2880 3J m/ Ans.
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9. ∆l due to temperature rise

= l α θ∆
= −( ) ( ) ( )1000 10 204

= 2mm

But 1 mm is allowed (1000 mm to 1001 mm)

∴ ∆ le = 1 mm

Stress Strain= ×Y

=






( )10

1

1000

11 mm

mm

= 108 2N m/ Ans.

10.

a
F

m
= 0

T m a
m

l
x

F

m

F

l
xx= = 









 = 





0 0

∆l
Tdx

SY

L
=∫0

= 



 ×F

lsY

l0
2

2

strain = =∆l

l

F

SY

0

2
Ans.

More than One Correct Options

1. U k x= 1

2

2. It is a parabola symmetric about

U -axis.

At x = 0.2 mm, U 0.2 J= (from the figure)

∴ 0.2 =
1

2
(2 10 )4 2k × −

⇒ k = −107 Nm 1

k
YA

L
=

⇒ A

L

k

Y
= =

×
= × −10

2 10
5 10

7

11

5 …(i)

AL = Volume = × −200 10 6 3m …(ii)

On solving Eqs. (i) and (ii), we get

A = −10 4 2m and L = 2m

2. WF = elastic potential energy stored in the wire

= 1

2

2k l( )∆

= 





1

2

2YA

L
l( ) = YAl

L

2

2

3. ∆x
Fl

AY
=

∴ F
AY

L
x= 



 ∆

i.e. F versus ∆x graph is a straight line of slope
YA

L
.

( ) ( )Slope SlopeB A>

∴ YA

L

YA

LB A





 > 





or ( ) ( )A AB A>
They are of same material. Hence,

Y YB A=
4. Half of energy is lost  in heat and rest half is stored

as elastic potential energy.

l
Mgl

AY
= …(i)

U K l
YA

L
l= = 





1

2

1

2

2 2 …(ii)

From Eqs. (i) and (ii), we can prove that

U Mgl= 1

2

5. When, T
mg

Q =
3

and T mg
mg mg

P = + =
3

4

3

Stress, σ
π

= T

r2

σ
σ

P

Q

P

Q

Q

P

T

T

r

r
= ⋅









2

If r rP Q P Q= =, σ σ4 , then P breaks.

If r rP Q P Q< >2 , σ σ , then P breaks.

If r rP Q A B= =2 , σ σ , then either P

or Q may break.

6. Area of cross-section is A
d= π 2

4

∆ L
F

d

L

Y
= ⋅

π 2 4/

⇒ ∆L
d

∝ 1
2

∴ ∆
∆

L

L

d

d

B

A

= ( )

( )

2 2

2

⇒ ∆ ∆L LB A= 4
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F0

a

T

a

x



Strain = =∆L

L

F

d Y

4
2π

⇒ Strain ∝ 1
2d

∴ (Strain) 4 (Strain)B A=
7. If stress in steel = stress in brass,

then
T

A

T

A

S

S

B

B

=

T

T

A

A

S

B

S

B

= =
×

=
−

−
10

2 10

1

2

3

3
…(i)

System is in equilibrium. So, taking moments

about P

T x T xS B⋅ = −( )2

⇒ T

T

x

x

S

B

= −2
…(ii)

From Eqs. (i) and (ii), we get x = 1.33 m

Strain = Stress

Y

If strain in steel = strain in brass,

then
TS S

S

B B

B

A

Y

T A

Y

/ /=

∴ T

T

A Y

A Y

S

B

S S

B B

= = ×
×

=
−

−
( ) ( )

( ) ( )

10 2 10

2 10 10
1

3 11

3 11
…(iii)

From Eqs. (ii) and (iii), we get x = 1m

8. Area of steel rod, A S = 16 cm2

Area of two brass rods,

AB = × =2 10 20 cm2

F = 5000 kg

σS = Stress in steel

and σB = Stress in brass

Decrease in length of steel rod = Decrease in

length of brass rod

σ σS

S
S

B

B
B

Y
L

Y
L⋅ = ⋅

⇒ σ σS
S

B

B

S
B

Y

Y

L

L
= ⋅ ⋅

or σ σS B= ×





 





2 10

10

20

30

6

6

⇒ σ σS B= 4

3
…(i)

Now, F A AS S B B= +σ σ
or 5000 16 20= × + ×σ σS B …(ii)

From Eqs. (i) and (ii), we get

σB = −120.9 kg cm 2

and σS = −161.2 kg cm 2

Comprehension Based Questions

1. Initially, ∆L
FL

AY
=

= ×
× ×−

10 1

10 2 103 5

= =0.05 m 5 cm

2. Force constant of string is

k = Force

Elongation

= F

FL AY/

or k
YA

L
= = × × −1 10 10

1

5 3

= −200 1Nm

Initial elastic potential energy of string

= 1

2

2k (0.05)

= × −1

2
200 25 10 4( ) ( )

= × −25 10 2 J

Let after force F = 10 N is applied extra elongation

is x, then

0.25 + 30
1

2
(200) ( 25 10 0.1 )2 4x x x= + × +−

0.25 + 30 100 0.25 102x x x= + +
∴ 100 202x x=

⇒ x = = =20

100

1

5
m 0.2 m

= 20 cm

∴ x max cm= + =20 5 25
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3. When the displacement of the pulley is 25 cm, the

string gets loosened on both the sides. So, point A

moves down by 50 cm.

4. Young’s modulus is a material constant.

5. On crossing the yield region, the material will

experience the breaking stress and further

elongation causes reduction in stress and breaking

of the wire.

6. Stress-strain curve flattens on crossing elastic

region.

Match the Columns

1. Stress, modulus of elasticity, energy density and

pressure have SI units J/m3 or N/m2.

Strain, coefficient of friction and relative density are

dimensionless. Force constant have SI unit N/m.

2. ∆l
Fl

AY
= and stress = F

A

3. For A and B, the rod is in equilibrium and hence
internal restoring force developed per unit area
across any cross-section is same and thus stress is
uniform. But in C and D, the case is opposite.

Subjective Questions

1. Increase in pressure is ∆p
Mg

A
=

Bulk modulus is B
p

V V
= ∆

∆( / )

∴ ∆ ∆V

V

p

B

Mg

AB
= = …(i)

Also, the volume of the sphere is

V R= 4

3

3π ⇒ ∆ ∆V

V

R

R
= 3

or
∆ ∆R

R

V

V
= ⋅1

3
,

Using Eq. (i), we get

∆R

R

Mg

AB
=

3
⇒ ∴ α = 3

2. Force constant of the wire is

k
F

L
=

∆
= =F

FL AY

YA

L/

ω = =k

m

YA

Lm
⇒ ∴ YA

Lm
= 140

⇒ Y × ×
×

= ×
−4.9 10

1 0.1

7

140 140

Y = ×
× −

140 140

49 10 7
= ×4 109

⇒ p = 4

3. Consider an element as shown in the figure.

Stress in the element = = =Force

Area

xA g

A
x g

ρ ρ

Now, elastic potential energy stored in the wire is

dU = 1

2
(Stress) (Strain) (Volume)

= ⋅1

2

(Stress)
(Volume)

2

Y

dU
x g

Y
A dx

g A

Y
x dx= ⋅ = ⋅1

2

1

2

2 2 2
2( )ρ ρ

Total elastic potential energy = ⋅ ∫
1

2

2 2

0

2ρ g A

Y
x dx

L

= ρ2 2 3

6

g AL

Y

4. ∆
∆

l
Fl

Y
=

Here, F = Upthrust = V gi lρ ⇒ A
d= π 2

4

∴ ∆l
V gl

d Y

i l= 4
2

ρ
π

=
× ×

−

−
( ) ( ) ( ) ( ) ( )

( . ) ( ) ( )

4 10 800 3

314 8 10

3

2 10

9.8

0.4 10 3

= × −2 34 10 3. m Ans.

5. ∆l = − −521 500 20 = 1 cm = 0.01 m

T mg
mv

R
− =

2

∴ T m g
v

R
= +









2

= +






m g

v

l

2

x xA gρdx

500 cm

20 cm

∆l

v

T

mg



∆l
Tl

AY

m g
v

l
l

d Y
= =

+








2

2 4( / )π

= +mgl mv

d Y

2

2 4( / )π

∴ v
d lY

m
gl= −π 2

4

∆

= × ×
×

− ×
−(3.14)(4 ) (0.01)(2 10 )

9.8 5
2 1110

4 25

3

≈ 31 m s/ Ans.

6. 2 2T d dm Rsin ( )θ ω=

For small angles, sin d dθ θ≈
∴ 2 2 22T d R d r R f( ) ( ) ( ) ( ) ( ) ( )θ θ π ρ π=

T f R r= ( )4 3 2 2 2π ρ

Now ∆l
Tl

AY
=

∆l

l

T

AY

T

r Y
= =

π 2

l R= 2π
∆ ∆l R= 2π( )

∴ ∆ ∆l

l

R

R

T

r Y
= =

π 2

= 4 3 2 2 2

2

π ρ
π
f R r

r Y

7. T mg ml ml f− = =ω π2 22( )

∴ T mg mlf= + 4 2 2π
= ×6 6 0 6 2 29.8 + 4 2π ( )( . ) ( )

= 628 N

Now, ∆l
Tl

AY
=

=
× ×−
(628) (0.6)

0.05 10 2 104 11( ) ( )

= × −3.8 10 4m Ans.

8. 2T T mgC S+ = …(i)

∆ ∆l lC s=

∴ T l

A Y

T l

A Y

C C

C C

S S

S S

=

∴ T TS C= 2

(as Y Y l l A AS C S C S C= = =2 , , )

or T TS C= 2 …(ii)

Solving these two equations we get,

T
mg

C =
4

and

T TS C= 2

9.

(a) T
M

a
L

S a= 



 = 



2 2

0 0ρ

∴ Stress = =T

S

L aρ 0

2
Ans.

(b) T M a x Sax x= =0 0ρ

∆l
T dX

S Y

x Sa

SY
dX

L
x

L
= =∫ ∫0 0

0ρ

= ρa L

Y

0
2

2
Ans.

10. ∆l
Fl

AY
=

U K l= 1

2

2( )∆

= 





1

2

2YA

l
l( )∆

= 











1

2

2
YA

l

Fl

AY

= F l

AY

2

2
= mS∆θ

∴ ∆θ = F l

AYms

2

2

= ( )

( ) ( )

Mg l

r Y l r s

2

2 22 π π ρ

= M g

r Y s

2 2

2 42π ρ

= ×
× ×−

( )

( ) ( ) ( ) ( )

100 9

2 2 10 7860 420

2

2 3 4

.8

2.1 1011π

≈ × °−4.568 10 3 C Ans.
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16. Fluid Mechanics

1. p gh p gh0 1 1 0 2 2+ = +ρ ρ

∴ h
h

1
2 2

1

= ρ
ρ

= ×20 0.9

1

= 18 cm Ans.

2. Suppose the atmospheric pressure = p0.

Pressure at A p h g= + −
0 1000( kgm )3

Pressure at B p g= + −
0 0 02 13600( . )( )m kgm 3

These pressures are equal as A and B which are at

the same horizontal level. Thus,

h = ×( . ) .0 02 13 6m

= =0 27 27. m cm

3. (a) p p g h= +0 ρHg ∆

(b) p p gh= +0 ρHg RHS

Here, ∆h = − = = × −( )8 2 6 6 10 2cm m

and hRHS cm m= = × −8 8 10 2

4. Let the pressure of the liquid just below the piston

be p. The forces acting on the piston are:

(a) its weight, mg (downward)

(b) force due to  the air above it, p A0 (downward)

(c) force due to the liquid below it, pA (upward)

It the piston is in equilibrium,

pA p A mg= +0

or p p
mg

A
= +0

5. In equilibrium, the pressure at the two surfaces

should be equal as they lie in the same horizontal

level. If the atmospheric pressure is p and a force F

is applied to maintain the equilibrium, the pressure

are

p0 2

5

1
+ N

cm
and p

F
0 210

+
cm

respectively.

This gives F = 50 N

6. ∆ ∆p p1 2=
F

A
h g= ( )∆ ρ

∴ ∆h
F

A g

g

g
= =

× −ρ
45

900 10 104 3( )( )

= =0.5 m cm50

1. In vertical direction pressure increases with depth.

In horizontal direction pressure decreases in the

direction of acceleration.

2. p h a
h

pN g M+ − 



 =ρ ρ

2

But p pN M=
∴ a g= 2

3. p p
x

B A= + ρω2 2

2
= +p

x
0

2 2

2

ρω

1. Weight = upthrust

V g V gρ ρ1 2

3

4
= 





∴ ρ ρ2 1

4

3
=

2.

T + weight = upthrust

∴ T = upthrust − weight

= 



 −( )71.2

1

0.75
71.2

= 23.7 N Ans.

3. Reading = weight of water + magnitude of upthrust

on piece of metal (acting downwards)

= × + −( ) ( ) ( ) ( )0.02 9.8 9.810 106 3

= 0.206 N Ans.

4. (a) a = −upthrust weight

mass

= − ×
×

−( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

V V

V

1000 10

10

3

3

9.8 0.4 9.8

0.4

= 14.7 m/s2 Ans.

(b) t
s

a
= 2

= ×2 2.9

14.7

= 0.63 s Ans.

INTRODUCTORY EXERCISE 16.1

INTRODUCTORY EXERCISE 16.3

INTRODUCTORY EXERCISE 16.2
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1. (a) Apply continuity equation

(b) Apply Bernoulli's equation

2. (a)
dV

dt
Av=

(b)
dV

dt
Av=

(c) Apply Bernoulli's equation

3. From conservation of energy

v v gh2
2

1
2 2= + …(i)

[can also be found by applying Bernoulli’s theorem]

From continuity equation

A v A v1 1 2 2=

v
A

A
v2

1

2
1=







 …(ii)

Substituting value of v2 from Eq. (ii) in Eq. (i),

A

A
v v gh1

2

2
2 1

2
1
2 2. = +

or A
A v

v gh
2
2 1

2
1
2

1
2 2

=
+

∴ A
A v

v gh
2

1 1

1
2 2

=
+

Substituting the given values, we get

A2

4

2

10

2 10 5
=

+

−( )( )

( ) ( ) ( )

1.0

1.0 0.1

A2
5 210= × −5.0 m

4. From continuity equation,

A v A v1 1 2 2=

∴ v
A

A
v2

1

2
1

10

5
1 2=







 = 



 =( ) m/s

Applying Bernoulli’s theorem at 1 and 2

p v p v2 2
2

1 1
21

2

1

2
+ = +ρ ρ

∴ p p v v2 1 1
2

2
21

2
= + −ρ ( )

= + × −



2000

1

2
10 1 43 ( )

∴ p2 500= Pa

1. ∆p v= 1

2

2ρ

∴ v
p= 2∆

ρ

= −2 3 1( )atm atm

ρ

= × × =2 2 10

10
20

5

3
m/s

2. t
A

a

H

g
= 2

(to empty the complete tank)

Now, t t tH
H

H H→
→ →

= +0
0

3 3

Given,
A

a

H

g
t

A

a

H

g

2 2
0= + ( )/3

From here find,

A

a

H

g

2 ( )/3

3. Applying continuity equation at 1 and 2, we have

A v A v1 1 2 2= …(i)

Further applying Bernoulli’s equation at these two

points, we have

p gh v p v0 1
2

0 2
21

2
0

1

2
+ + = + +ρ ρ ρ …(ii)

v1
v2

21

INTRODUCTORY EXERCISE 16.5

A1

A2

h

v1

v2

2

h

1

INTRODUCTORY EXERCISE 16.4



Solving Eqs. (i) and (ii), we have v
gh

A

A

2
2

2
2

1
2

2

1

=
−

Substituting the values, we have

v2
2

2

2 10

1
= × ×

−
2.475

0.1( )
= 50 m s2 2/

1. Using, V
r g= −2

9

2 ( )ρ σ
η

η = = × −1.0 mPi 1.0 Pi10 3

= × × × − ×
×

−

−
2

9

20 10 2 10 10

10

6 2 3 3

3

( ) ( ) 9.8

1.0

= 0.871 mm/s

2. Q Volume of bigger drop

= ×n volume of smaller drop

4

3
2

4

3

3 3π πR r= ×

R r= 21 3/

Terminal velocity ∝ r2

∴ v v′ = 22 3/

3. F A
V

x
= η ∆

∆
= × × ×− −10 10 2 103 1

= × −2 10 2

= 0.02 N

4. Q F A
V

x
= η ∆

∆
F

A

V

x
= =shearing stress η ∆

∆

= × =− −10
5

5
103 3 2N/m

1.
4

3
10

4

3

3 6 3π πR r= 





⇒ r R= =− −( )10 102 2 cm

A Ri = 4 2π

A rf = ( ) ( )10 46 2π

∆A A Af i= −
∴ ∆ ∆U T A= ( ) ( )

2. W T A= ( )∆
= T l d( ) ( ) ( )2 ∆
= × × × ×− −7.2 0.1010 2 102 3

= × −1.44 J10 5

3. W T A= ( )∆
Soap bubble has two free surfaces.

∴ W T R= ( )8 2π

4. p p
T

r
h− = 2

∴ p p
T

r
h= + 2

= + +p h g
T

r
0

2ρ

1. h
T

r g
= 2 cos θ

ρ

∴ hr
T

g
= =2 cos θ

ρ
constant

∴ h r h r1 1 2 2= or h
h r

r
2

1 1

2

=

Substituting the values, we get

h2 3= ( ) ( )2.0
r

r

2

1

1

3
=









= 6.0 cm Ans.

2. Q h
T

r g
= 2 cos θ

ρ

T
h rg

1
1 1

12
= ρ

θcos

T
h rg

2
2 2

22
= ρ

θcos

T

T

h

h

2

1

2

1

2

1

1

2

= ⋅ ⋅ρ
ρ

θ
θ

cos

cos

= 7.23

3. h
T

R g
= 2

ρ
( R = radius of meniscus at the top)

∴ R
T

h g
= = ×

−
2 2 0 07

10 10 102 3ρ
.

( ) ( ) ( )

= × −1.4 m10 3

= 1.4 mm

4. p p p ghA C B= = +( )ρ
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INTRODUCTORY EXERCISE 16.8

INTRODUCTORY EXERCISE 16.6
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Exercise

LEVEL 1

Assertion and Reason

1. Direction of force in p
F

A
= is always perpendicular

to the surface or it is always specific. Hence, it is not

a vector.

3. p p gh1 0= + ρ
p p g h p2 0 12 2= + ≠ρ ( )

5. Area of cross-section is different. So, heights are

different. In pressure height is more important.

6. Speed will also depend on h.

9. On moon, atmospheric pressure is zero. Hence

barometer height is zero.

10. Pressure at P is less. As liquid is flowing at P while

liquid is at rest at Q.

11. Force of buoyancy,

U V g= ρair

Since, ρair is negligible. Hence,U is negligible.

Single Correct Option

1. v = constant

∴ a = 0

or Fnet = 0

2.
η
ρ







=








 =

− −

−
−ML T

ML
M L T

1 1

3

0 2 1[ ]

9. n n n= +1 2

pV

RT

p V

RT

p V

RT
= +1 1 2 2

or pV p V p V= +1 1 2 2

∴ 4 4

3

4 4

3

3

1
1
3T

r
r

T

r
r











 =







 



π π

+






 





4 4

32
2
3T

r
rπ

∴ r r r= +1
2

2
2

= 5 cm

10. Drag force + upthrust = weight

∴ ku F mg+ =

or u
mg F

k
= −

11. B will have a tendency to keep its area as low as

possible.

12. m r∝ 3 and terminal velocity ∝ r2 mass is eight

times. So, radius is two times and terminal velocity

will be four times.

14. N r R
4

3

4

3

3π π 3



 =

∴ r R
N

= 





1
1 3/

W A= σ ( )∆
= −σ ( )A Af i

= −σ π π[ ( ) ]N r R4 42 2

= 



 −









4

13
2 3

2πσ NR
N

R

/

= −4 12 1 3σπR N( )/ Ans.

15. ( )p p
T

R
2 1

4− =

where R = radius of common surface

∴ 4 4 4

2 1

T

R

T

R

T

R
− =

or
1 1

2 1R R R
= − 1

16. Pressure (and hence the level of liquid) will keep on

decreasing in the direction of motion of liquid.

17. v
r g

t = −2

9

2 ( )ρ σ
η

Ignoring the density of air σ we have,

v
r g

T = 2

9

2ρ
η

∴ r
v

g

T= 9

2

η
ρ

= × × ×
× ×

−9 10

2 10

5

3

1.8 0.3

9.8

= × −0.49 m10 4

≈ 0.05 mm Ans.

A

B
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18. If angle of contact in 90°, then liquid will neither

rise nor fall.

19. v rT ∝ 2

Radius or diameter is half. So, uniform or terminal

speed is
1

4
th.

20. h gρ = 105 Pa (given)

∴ p h
h

gx = −



5

ρ = 0.8 h gρ

= ×0.8 Pa105

21. Fraction of volume immersed

f s

l

= ρ
ρ

or r
l

∝ 1

ρ

f

f

l

l

1

2

2

1

=
ρ

ρ
or ρ ρl l

f

f2

1

2
1

=








= −( / )

( / )

V V

V
l

3

3 1
ρ

= 2
1

ρl

22. Let ρ = density of sugar solution

> ρw

m =mass of ice.

In floating condition weight = upthrust

∴ mg V gD= ρ

or V
m

D =
ρ

…(i)

When ice melts, m mass of ice becomes m mass of

water. Volume of this water formed.

V
m

F
w

=
ρ

…(ii)

Since, ρ ρw F DV V< >, . Hence, level will increase.

23. Upthrust = V gi l eρ
Value of ge will decrease. So upthrust will decrease.

24.

p p1 2=
∴ p gh p ghw0 0+ = +ρ ρ
⇒ ρ ρ= w

25. F1 will decrease and F2 will increase. So f1 may or

may not be greater than f2.

Total weight to system in both conditions will

remain same. Hence,

f f F F1 2 1 2+ = +

26. ∆p v= 1

2

2ρ

∴ v
p= 2∆

ρ
= × ×2 10

10

5

3

0.5

= 10 m/s

27.

Mg U Ma− = 0 …(i)

U M m g M m a= − = −( ) ( ) 0 …(ii)

Solving these two equations we get,

m
Ma

g a
=

+
2 0

0

28. Diameter of left hand side is
1

5
times. So area will be

1

25
times.

∆ ∆p pLHS RHS= ⇒ F

A

Mg

A( / )

( )

25
=

∴ F
Mg=
25

Equating the volumes

Displacement on LHS = 5 times

Displacement on RHS

∴ S = =( ) ( . )5 0 5 2.5 cm

W FS=

∴ ( ) ( )500
25

10 2= 



 × −Mg

2.5

∴ M = ×5 104 kg (with g = 10 2m s/ )

29. 4
2

1 2= +Vd Vd

V

or d d1 2 8+ = …(i)

h
h

1 2

U

Mg

a0

U

(M – m)g



3
1 2

= +
+

m m

m d m d( / ) ( / )
or

2
31 2

1 2

d d

d d+
= …(ii)

Solving Eqs. (i) and (ii), we get

d1 6= and d2 2=
30. Total weight = total upthrust

( ) ( )A g g× × +0.5 900 100 = × × ×A g0.5 1000

∴ A = 2 2m Ans.

31. Change in weight = upthrust.

∴ ( ) ( )38.2 36.2 gold cavity− = +g V V gwρ

∴ 2 = 



 +38.2

19.3
cavityV as

g

cm
ρw =





1
3

∴ Vcavity 0.02 cm= 3 Ans.

32. See the hint of Q-No. 23 (a) of subjective questions

of Level 1.

33. v gH= 2 ⇒ dV

dt
av a gH= = 2

This is independent of ρliquid.

34. ( ) ( )Σ ΣQ Qinflow outflow=

∴ ( ) ( )4 10 4 106 6× + + ×− −Q

= × + × + ×− − −( ) ( ) ( )8 10 2 10 5 106 6 6

+ × −( )6 10 4

∴ Q = × −13 10 6 m /s3

35. Weight = Upthrust

∴ Mg a g= 





3

4

3 ρ

∴ a
M= 4



3

1 3

ρ

/

36. h
T

r g
= 2 cos θ

ρ

10
2 01

1

= °T

r g

cos

ρ
…(i)

− = °
3.42

2 1352

2

T

r g

cos

ρ
…(ii)

From these two equations, we get

T

T

1

2 2

10 135

0
= °

− °
. (cos )

( ) (cos )3.42 ρ

= −
−
( ) ( / ) ( )

( ) ( ) ( )

10 1 2 1

13.42 13.6

= 1: 6.5

37. Area is halved, means radius of tube is made

1

2
times.

h
T

r g
= 2 cos θ

ρ
or h

r
∝ 1

Hence, h will become 2 times.

38. In steady state,

Volume flow rate entering the vessel

=volume flow rate leaving the vessel

∴ Q av a gh= = 2 or h
Q

ga
=

2

22

=
×

( )

( ) ( )

10

2 1000 1

2 2

2
= 5 cm Ans.

39. Area at other point is half. So, speed will be double.

Now,

p v p v1 1
2

2 2
21

2

1

2
+ = +ρ ρ

∴ p p v v2 1 1
2

2
21

2
= + −ρ ( )

= + × −( ) ( )8000
1

2
1000 4 16

= 2000 Pa Ans.

40. Equating the volume, we have

8
4

3

4

3

3 3π πr R




 = or R r= 2

vT ∝ (radius)2

Radius has become two times.Therefore, terminal

velocity will become 4 times.

41. Under normal conditions, upward surface tension

force supports the weight of liquid of height h in the

capillary. In artificial satellite effective weight will

be zero, but upward surface tension force will be

there. Hence, liquid rises upto the top.

42. Pressure inside a soap bubble is given by,

P P
T

r
= +0

4

So, pressure inside a smaller soap bubble will be

more and air will flow from smaller drop to bigger

drop.

43. h
T

R g
= 2 cos θ

ρ
or h

R
∝ 1

Now, M R h= ( )π ρ2

or M R h∝ 2

or M R∝
Radius is doubled, so mass in the capillary tube will

also become two times.

44. ρgh
T

r
= 4 ⇒ T

rh g= ρ
4
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45. h g
T

r
ρ = 2 ⇒ h

T

r g
= 2

ρ

= ×
× ×

2 70

1 10000.005
= 28 cm

46. N a b
4

3

4

3

3 3π π



 = ⇒ N

b

a
=

3

3

A N a
b

a
i = =( )4

42
3

π π

A bf = 4 2π

∆A A A b
b

a
i f= − = −



4 12π

W T A b
b

a
T= = −



( )∆ 4 12π

= = 





1

2

1

2

4

3

2 3 2mv b vπ ρ

Solving we get

v
T

a b
= −





6 1 1

ρ

47. p
T

r
p= +2

0

= ×
×

+−
2

10
10

3

50.7

0.14

= ×1.01 N/m105 2

48. From two surfaces,

F Tl T r= =2 2 2( ) ( ) ( )π
= 2 2( ) ( ) ( )T π 1.5

= ( )6 πT dyne

49. ∆p h g
T

r
= +ρ 2

= × × + ×
2 1 980

2 70

0.05

= 4760 2dyne/cm

Subjective Questions

1. In floating condition,

weight of liquid displaced = weight of solid

2. Weight = V gwρ
Upthrust = =V g V ge wρ ρ

Since,       weight = upthrust

Apparent weight = 0

3. F pA gh B= ( )ρ
∴ F h∝

4. If volume is doubled, then radius becomes ( )2

1

3

times.

W T R= ( )8 2π

or W R∝ 2.

Therefore W W′ = ( )2

2

3 .

5. Concept is same as in Q.No-2 of same exercise.

6. Relative density of metal in this case is given by

RD
weight in air

change in weight in water
=

=
−

0.096

0.096 0.071
= 3.84

∴ Density of metal = 3.84 ρw

= 3840 3kg m/ Ans.

7. Weight = upthrust

∴ ( ) ( )25 5 2+ = +g V gwρ
Putting ρw = 1 3g cm/

We get, V = 28 3cm Ans.

8. Weight of both (block + woman)

=upthrust on 100% volume of block

∴ 50 850 1000g V g V g+ =( ) ( )

∴ V = 0.33 m3 Ans.

9. Weight of ice block + weight of metal piece

= upthrust on 100% volume of ice cube.

Let a = side of ice cube. Then,

[( ) ] ( ) ( ) ( )a g a g3 3900 1000× × + =0.5 g

∴ a3 35 10= × −( )m3

or a ≈ 0.17 m or 17cm Ans.

10. Fraction of volume immersed is given by

f s

l

= ρ
ρ

In first case 0.6 = =ρ
ρ

ρs

w

s

1
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or ρs = =0.6 g/cm3 density of wood

In second case

0.8
0.6= =ρ

ρ ρ
s

l e

or ρl = 0.6

0.85

= 0.705 g/cm3 Ans.

11. Extra weight = extra upthrust on extra immersed

volume.

∴ ( ) ( )∆ ∆m g r h gw= π ρ2

∴ ∆ ∆m r h w= π ρ2

= ( ) ( ) ( ) ( )π 0.8 2 3 1

= 6.03 g Ans.

12. p
F

A
= = ×

× −
3000

425 10 4

9.8

= ×6.92 N m105 2/ Ans.

13. p h g p h gw w s s0 0+ = +ρ ρ

∴ ρ
ρ

s

w

w

s

h

h
=

= 1 =0

12.5
0.8

= relative density of mercury

14. ( ) ( )p h g p h g h gw w s s0 0+ − + =ρ ρ ρHg Hg

∴ h
hw w s s

Hg
Hg

= −ρ ρ ρ
ρ

= −( ) ( ) ( ) ( )1 25 0.8 27.5

13.6

= 0.221 cm Ans.

15. (i) Absolute pressure in part ( )a

= 76 cm of Hg + 20 cmof Hg

= 96 cm of Hg

Gauge pressure in part ( )a = 20 cm of Hg

Absolute pressure in part ( )b

= 76 cm of Hg − 18 cm of Hg = 58 cm of Hg

Gauge pressure in part ( )b = −18 cm of Hg.

(ii) 13.6 cm of water is equivalent to 1 cm of Hg. So

the new level difference will become 19 cm.

16. v
p p

L
R r= − −1 2 2 2

4η
( )

or v R r∝ −2 2

(a)
v

v

R r

R r

1

2

2
1
2

2
2
2

= −
−

or
3 400 0

400 1002v
= −

−
∴ v2 = 2.25 m/s Ans.

(b) v
R r

R r
v2

2
2
2

2
1
2 1= −

−








v2 0= at r R2 =

17. (a) Q
R p p

L
=









−





π
η8

4
1 2

= 



 ×

×−
π
8 10

14004

1

( )0.04

1.005 0.2

= × −7 10 2 m /s3

(b) Q Q1 2=

∴ [( ) ] [( ) ]p p R p p Ri f1 2
4

1 2
4− = −

Since, diameter or radius has decreased to half.

Therefore gauge pressure should become

16 times.

or ( )p p f1 2 16 1400− = ×
= ×2.24 Pa104 Ans.

(c) Q ∝ 1

η

∴ Q

Q

1

2

2

1

= η
η

or Q Q2
1

2
1=









η
η

= 



 × −1.005

0.469
( )7 10 2

= 0.15 m /s3 Ans.

18. (a) Relative density of metal

= weight in air

change in weight in water
= =10

2
5

∴ Density of metal = 5ρw = 5000 3kg m/

Now,         volume = mass

density

= × −10 10

5000

3

= × −2 10 6 3m

(b) Change in weight

= upthrust on 100% volume of solid

or ∆w V gs l= ρ
∴ ∆ w l∝ ρ
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∴ ∆
∆

w

w

l

w

l

w

= ρ
ρ

or ρ ρl
l

w
w

w

w
=







 = 





∆
∆

1.5

2
1000( )

= 750 3kg m/

19. Let ( )x mm is in water and ( )60 − x mm is in

mercury.

Total upthrust = weight

= × +−( ) ( ) ( ) ( )0.06 0.062 3 3 210 10x g

( ) ( ) ( )60 10 103 3− ×−x g13.6

= × −( ) ( ) ( )0.06 7.73 310 g

Solving this equation, we get

x = 28 mm and 60 32− =x mm

20. T U w+ = +60 …(i)

Σ (Moments) about = O

∴ = 



 + = 



U

l
T l W

l

4 2
( )

or U T W+ =4 2 …(ii)

w = 120 N …(iii)

Solving these three equations we get T = 20 N and

U = 160 N

Now, 160
2 2

1000 10
V

g
V

w





 = 



ρ ( ) ( )

∴ V = × −32 10 3 3m Ans.

21. (a) Upthrust − Weight − =T ma

∴ T = Upthrust − Weight − ma

= 



 + − −2

500
1000 10 2 20 4( ) ( )

= − −48 20 4 = 24N Ans.

(b) Downward force T suddenly becomes zero.

Therefore

a
m

= −upthrust weight = −48 20

2

= 14 2m s/

∴ Acceleration w.r.t. tank.

= −14 2

= 12 m s2/ Ans.

22. (a)  Force from left hand side

= force from right hand side

∴ kx pA= ∆

or x
p A

k
= ( )∆

= + × × × −( )30 101 10 10

60

3 40.5

= 0.109 m or10.9 cm Ans.

(b) x
p A

k
= ( )∆

= × × × −30 10

60

3 40.5 10

= =0.025 m 2.5 cm Ans.

23. (a) dF p dA gy ldyy= =( ) ( ) (ρ ) ( )

∴ F dF
glhh

= =∫0

2

2

ρ

(b) Perpendicular distance of about force from

point O is

r h y⊥ = −
∴ d dF rτ = ⊥( ) = −( ) ( )ρgly h y dy

= total torque = ∫ d
h

τ
0

After substituting the values we get,

τ ρ= glh3

6
Ans.

(c) F r× =⊥ τ

∴ r
F

⊥ = τ

Substituting the values we get,

r
h

⊥ =
3

Ans.

24. PQ is original level of mercury. Equating the

pressures at the level of M from left hand side and

right hand side.
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dF

y
dy

O

r = h – y⊥
∆

U

T

wO

60 N

l
4

l
4

l
2



p g h p ghw w0 0+ = +ρ ρHg Hg

or ρ ρw wh h= Hg Hg

∴ ( ) ( ) ( . ) ( )1 30 3 13 6 4+ =x x

Solving we get, x = 0.58 cm Ans.

25.

R Hh= 2

∴ H
R

h
=

2

4
Ans.

26.

p v p v1 1
2

2 2
21

2

1

2
+ = +ρ ρ

p
F

A
p v0 0

20
1

2
+



 + = + ρ

∴ v
F

A
= 2

ρ
Ans.

27.
1

2

2ρ ρair v ghw w=

v
g hw w= 2ρ

ρair

= × × × −2 10 10 103 2

1.3

= 12.4 m/s Ans.

28.
Mg

A
gh v





 + =ρ ρ1

2

2

∴ v
Mg

A
gh= +2

2
ρ

= × ×
×

+ × ×2 20 10

10
2 10

30.5
0.5

= 3.28 m/s Ans.

29. v
p p R

L
max = −( )1 2

2

4η

∴ ( )p p
L v

R
1 2 2

4− = η max

= × × ×
×

− − −

−
( ) ( ) ( )

( )

4 4 10 10 10

2 10

3 3 3

6 2

0.66

= × =2.64 N/m103 2 h gρ

h
g

= ×2.64 103

ρ

= ×
× ×

2.64

13.6 9.81
m of Hg

10

10

3

3

= 0.0195 m of Hg

≈ 19.5 mm of Hg

p
T

R
p− =2

0

∴ P
T

R
P= +2

0

R
r=

cos θ
,

For water θ = °0

∴ R r= or P
T

r
P= +2

0

As temperature is constant.

p V p V1 1 2 2=

∴ p p h0 ( ) ( )0.11 0.11= −

or p p
T

r
h0 0

2
( ) ( )0.11 0.11= +



 −

Substituting the values, we get

( ( ) [1.01 0.11 1.01× = ×10 105 5

+ × × 


 =

−

−
2 10

10

2

5

5.06
0.11( )h

Solving this equation we get,

h = 0.01 m or 1 cm

If seal is broken, then water will rise in the capillary.

31. W T A= ( )∆
= T ld( )2

= × − −( ) ( ) ( ) ( )72 10 2 103 30.1

= × −14.4 J10 6 Ans.
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1

2

F
v

(0.11– )h

h

P

30.

H

h

R

⇒

3
0

c
m

3
0

c
m

P M 3x

x

A 3A

Q



32. Let the pressures in the wide and narrow capillaries

of radii r1 and r2 respectively be p1 and p2. Then

pressure just below the meniscus in the wide and

narrow tubes respectively are

p
T

r
1

1

2−






 and p

T

r
2

2

2−








[excess pressure = 2T

r
]

Difference in these pressures

p
T

r
p

T

r
h g1

1
2

2

2 2−






 − −







 = ρ

∴ True pressure difference = −p p1 2

= + −






h g T

r r
ρ 2

1 1

1 2

= × × + × × −0 2 10 9 8 2 72 103 3. .

1

144 10

1

7 2 103 4. .×
−

×








− −

= × =186 10 18603 2. /N m

33. The surface tension of the liquid is

T
rh g= ρ

2

= ( .0 025

2

cm)(3.0cm)(1.5gm / cm )(980cm / s )3 2

= 55 dyne/cm

Hence, excess pressure inside a spherical bubble

p
T

R
= 4 = ×4 55

0 5

dyne/cm

cm( . )

= 440 2dyne / cm

34. Suppose pressure at the points, A B C, , and D be pA,

pB, pC and pD respectively.

The pressure on the concave side of the liquid

surface is greater than that on the other side by
2T

R
.

An angle of contact θ is given to be 0°, hence

R rcos0° = or R r=

∴ p p
T

r
A B= + 2

1

and p p
T

r
C D= + 2

2

where, r1 and r2 are the radii of the two limbs

But p pA C=

∴ p
T

r
p

T

r
B D+ = +2 2

1 2

or p p T
r r

D B− − −






2

1 1

1 2

where, h is the difference in water levels in the two

limbs

Now, h
T

g r r
= −









2 1 1

1 2ρ

Given that T = −0 07 1. Nm , ρ = −1000 3kgm

r1
3

2
= mm = 3

20
cm =

×
3

20 100
m

= × −15 10 3. m, r2
33 10= × − m

∴ h = ×
× ×

−
×







− −

2 0 07

1000 9 8

1

15 10

1

3 103 3

.

. .
m

= × −4 76 10 3. m = 4 76. mm

35. The total pressure inside the bubble at depth h1 is

(p is atmospheric pressure)

= + + =( )p h g
T

r
p1

1
1

2ρ

and the total pressure inside the bubble at depth h2 is

= + + =( )p h g
T

r
p2

2
2

2ρ

Now, according to Boyle’s law

p V p V1 1 2 2=

where, V r1 1
34

3
= π and V r2 2

34

3
= π

Hence, we get

( )p h g
T

r
r+ +









1

1
1
32 4

3
ρ π

= + +








( )p h g

T

r
r2

2
2
32 4

3
ρ π
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or ( ) ( )p h g
T

r
r p h g

T

r
r+ +









 = + +









1

1
1
3

2
2

2
32 2ρ ρ

Given that h1 100= cm, r1 01= . mm = 0 01. cm,
r2 0126= . mm = 0 0126. cm, T = 567 dyne/cm,
p = 76 cm of mercury. Substituting all the values,
we get

h2 9 48= . cm.

36. Let n be the number of little droplets.

Since, volume will remain constant, hence volume

of n little droplets = volume of single drop

∴ n r R× =4

3

4

3

3 3π π

or nr R3 3=
Decrease in surface area = × −n r R4 42 2π π
or ∆ = −A nr R4 2 2π[ ]

= −








 = −









4 4

3
2

3
2π πnr

r
R

R

r
R

= −





4
1 13πR
r R

Energy evolved W T= × decrease in surface area

= × −





T R
r R

4
1 13π

Heat produced, Q
W

J

TR

J r R
= = −





4 1 13π

But Q msd= θ
where, m is the mass of big drop, s is the specific

heat of water and dθ is the rise in temperature.

∴ 4 1 13πTR

J r R
−





= Volume of big drop

× density of water × sp. heat of water × dθ

or
4

3
1 1

4 1 13
3

π θ π
R d

TR

J r R
× × × = −





or d
T

J r R
θ = −





3 1 1

37.

Applying pressure equations between 1 and 2,

p gh
T

r
p0 0

2+ − =ρ

⇒ h
T

r g
= 2

ρ

LEVEL 2

Single Correct Option

1. When ice melts into water its volume decreases.

Hence, over all level should decrease.

Now suppose m is the mass of ice, V1 is volume

immersed in water and V2 the volume immersed in

oil. Then in floating condition,

weight upthrust=
∴ mg V g V gw= +1 2 0ρ ρ

∴ V
m V

w
1

2 0= − ρ
ρ

= −m V

w wρ
ρ

ρ
2 0

…(i)

When ice melts, m mass of ice converts into m mass

of water. Volume of water so formed is

V
m

w
3 =

ρ
…(ii)

From Eqs. (i) and (ii),V V3 1>
∴ Interface level will rise.

2. ge = 0 so, pressure inside and pressure outside the

hole will be same.

3.

T U w w+ = + =1 2 360 N …(i)

U
V

g Vw= =
2

2 10 103ρ ( / ) ( ) ( )

or U V= ×0.5 104 …(ii)

(Σ Moments) about M = 0

∴ 120
4

3

4
240

4

l
T

l l



 + 



 = 





or T = −240 120

3

= 40 N = 4g

Now from Eqs. (i) and (ii), we get

V = × −6.4 10 m2 3 Ans.

4. Volume flow rate = =av
V

t

∴ v
V

A t
1

1

= = ×
× × ×

−

−
120 10

5 10 2 60

3

4

T

U P

C l/2

M

l /4

w2 = 120 N

O w1 = 240 N

l /4

h

1

2



Now, A v A v1 1 2 2=

A2 is
1

5
th of A1.

Hence, v2 is five times of v1 or 10 m/s.

t
h

g
0

2= = ×2 1

10

= 0.447 s

R v t= 2 0 = 4.47 m

5.

z y= sec θ
dz dy= sec θ
p gy= ( )ρ

dA b dz b dy= =( ) ( ) sec θ
dF pdA gb y dy= = ( sec )ρ θ

∴ F dF bh g
h

= =∫0

21

2
ρ θsec

6. Velocity of body just before touching the lake

surface is,

v gh= 2

Retardation in the lake,

a = −upthrust weight

mass

= − = −





V g V g

V
g

ρ ρ
ρ

σ ρ
ρ

Maximum depth d
v

a

h
max = =

−

2

2

ρ
σ ρ

7. ρ ρgh aL=

∴ h
aL

g
=

8. Radius of meniscus = =R
r

cos θ

∆p due to spherical surface = 2σ
r

= 2σ θcos

R

p pB = atm

9. a v a v1 1 2 2=

∴ ( ) ( ) ( )L gh R g h2 22 2 4= π

R
L=
2π

10. Let h = final height of liquid.

Equating the volumes we have,

Ah Ah A h1 2 2+ = ( )

∴ h
h h= +1 2

2

W U U Umg i f= − = −∆

= 



 + 











Ah g
h

Ah g
h

1
1

2
2

2 2
ρ ρ

− +





+











2
2 4

1 2 2A
h h h hρ 1

Simplifying this expression we get the result.

11. ∆p g h ghw w= +ρ ρ0il 0il

= × + × × ×− −( )( )( ) ( )600 10 10 10 1000 10 2 102 2

= 800 2N m/

12. ∆p v= 1
2

2ρ

∴ v
p= 2∆

ρ
= × ×2 5 10

1000

5

= 31.5 m/s

13. From continuity equation,

v v vA B= = 0

∴ p gh pA B+ = +ρ 0

∴ p p ghB A− = ρ …(i)

Now, let us make pressure equation from

manometer.

p g h H gh pA + + − =ρ ρ( ) Hg 3

Putting p p ghB A− = ρ we get h = 0

14. F
p

t

m

t
v= = 





∆
∆

∆
∆

∆( )

= 



ρ ∆

∆
V

t
v( )2

= ρ ( ) ( )Av v2 = 2 2ρAv

15. ∆p ghA = ρ or ρal

16. At every instant half of the length remains up the

surface and half below the surface of liquid.

Since, D d>> , over all level will remain unchanged.
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Let at t = 0, length of candle is 10 cm.

Time
( )s

Length of candle
(cm)

Length about
the surface

(cm)

Length below
the surface

(cm)

0 10 5 5

1 8 4 4

17.

Net torque about hinge = 0

dF gx dx= ⋅( ) ( )ρ 1

d gx x dxτ ρ= −( ) ( )0.5

∴ Net anticlockwise torque

= = 



∫ d

gτ ρ
0

1

12

Net clockwise torque of applied force = =F
F

( )0.5
2

Equating the two torques we get,

F
g= ρ
6

18. See the typed example 12.

tan θ ρ ρ
ρ ρ

= −
+

1 2

1 2

= ° = 1
tan 30

3

Solving this equation we get,

ρ
ρ

1

2

3 1

3 1
= +

−

19. F
p

t

m

t
v= = 





∆
∆

∆
∆

∆( )

= 



 +ρ ∆

∆
V

t
v v( )1 2 = +ρV v v( )1 2

20. v
r g

T = −2

9

2 ( )ρ σ
η

= × × − ×
×

2 1260 2 1260 102( ) ( )0.003

9 1.26

= 0.0 m s2 /

t
d

vT

= = × =
−10 10

5
2

0.02
s.

21. Torque of hydrostatic force about centre of sphere is

already zero as hydrostatic force passes through the

centre.

∴ F FLHS RHS=
For finding force refer Q-No. 23 (a) subjective

questions of section Level 1.

∴ 1 =
2

2
1

2
32 2( ) ( ) ( ) ( )ρ ρg h g R

∴ h R= 3

2

22.

ρ ρ1 1 2 2gh gh=
∴ ( ) ( ) ( ) ( ) ( ) ( )4 1 60g x g=
or x = 15 cm

Total volume of liquid = +( )20 15 3cm

= 35 3cm

23. Viscous force = mg sin θ

∴ η ( ) sina
v

t
mg mg2 37

5
= ° = 3

= 3

5

3( )a gρ ⇒ ∴ η ρ= 3

5

agt

v

24. Reading =weight of bucket of water + magnitude of

upthrust on block

= +






( )10

1

2
g g

w
w

7.2

7.2 ρ
ρ

= 10.5 g = 10.5 kg

25. Sum of all three terms are different at three points

A B, and C .

26. a = −upthrust weight

mass
(upwards)

= −V g V g

V

σ ρ
ρ

= −





σ
ρ

1 g (upwards)

27. h
H H

HTop 1.5= + =2

2

Since, this point lies in the tank. So hole should be

made at this point.

28. Viscous force F ∝ (area)

So let F kA=
F k A A0 1 2= +( ) …(i)

and T k A= 1 …(ii)
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x

dF
dx

( – 0.5)x



Dividing Eq. (ii) by Eq.(i) we get,

T

F

A

A A0

1

1 2

=
+

∴ T
F A

A A
=

+
0 1

1 2

29.

p p1 2=
∴ p gh p g hw w0 0 0 0+ = +ρ ρ
or ρ ρ0 0h hw w=
or ( ) ( ) ( ) ( )0.8 h + =50 1 50

or h = 12.5 cm

30.

F = Tension

Surface tension force is radially outwards.

On AB :

2F dsin θ = Surface tension force from

two films from two sides

For small angle,

sin d dθ θ≈
∴ 2 2 2 2F d Tl T Rdθ θ= =( ) ( ) ( )

∴ F TR= 2

31. Surface tension force on liquid is

downwards. But on the disc it is upwards.

In the figure, F = Surface tension force

= =Tl T rcos ( ) cosθ π θ2

U = =upthrust ω
W = weight of disc

For equilibrium of disc,

W U F Tr= + = +ω π θ2 cos

32. p p1 2=

p
T

r
gh p

T

r
0

1
0

2

2 2− + = −ρ

∴ T
ghr r

r r
=

−
ρ 1 2

2 12 ( )

33. When the capillary is inside the liquid, the surface

tension force supports the weight of liquid of height

‘h’.

When the capillary is taken out from the liquid

similar type of surface tension force acts at the

bottom also, as shown in second figure. Hence, now

it can support weight of a liquid of height 2h.

34. Let L be the width of plates (perpendicular to paper

inwards).

Surface tension force in upward direction

= weight of liquid of height h

∴ Tl Vdgcos θ = ( )V = volume

or T L Lxh dg( ) cos ( )2 θ =

∴ h
T

xdg
= 2 cos θ
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water

25 cm
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h

S.T. Force

x

h
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35. Let R1 and R2 are the radii of soap bubbles before

and after collapsing. Then given that,

V R R= 



 −2

4

3

4

3
1
3

2
3π π ...(i)

S R R= −2 8 81
2

2
2( )π π ...(ii)

PV PV1 1 2 2=

∴ P
T

R
R P

T

R
R0

1
1
3

0
2

2
34

2
4

3

4 4

3
+







 ×



 = +







 

π π 


...(iii)

Solving these three equation we get the desired

result.

36. pV p Vi i f f=

∴ p
r

r p
r

r
1

3
2

4 4

3

4

2

4

3 2
+









 = +







 





σ π σ π
/ 




3

Solving this equation we get,

p p
r

2 18
24= + σ

37. W r r T= +2 1 2π ( )

∴ T
W

r r
=

+2 1 2π ( )
= × ×

× ×

−

−
7.48 10 10

2 17 10

3

2π

= × −70 10 3 N/m

More than One Correct Options

1. Velocity gradient = ∆
∆

v

h
= = −2

1
2 1m s

m
s

/

F A
v

h
= η ∆

∆
= −( ) ( ) ( )10 10 23

= 0.02 N

2. For contact angle θ = °90 , liquid neither rises nor

falls.

3. Restoring force = − ( )ρAg x or F x∝ −
This is just like a spring-block system of force

constant

K Ag= ρ
4. From continuity equation Av = constant

v v2 2> as A A2 1<
From Bernoulli’s equation,

p v+ =1

2

2ρ constant (as h =constant)

p p2 1< as v v2 2>
5. Fraction of volume immersed,

f s

l

= ρ
ρ

This fraction is independent of atmospheric

pressure. With increase in temperature ρs and ρl

both will decrease.

6. U gh t
h

g
R h hT

B
T B= = =2

2
2: ,

Here, hT = distance of hole from top surface of

liquid

and hB = distance of hole from bottom surface

7. Pressure increase with depth in vertical direction

and in horizontal direction it increases in opposite

direction of acceleration based on this concept

pressure is maximum at point D and minimum at B.

8. In air, a g1 = (downwards)

In liquid, a2 = −upthrust weight

mass

= ( −V g V g

V

) ( ) ( ) ( ) ( ) ( )

( )

2ρ ρ
ρ

= g ( )upwards

∴ a a1 2≠
9. Initially

dV

dt
v a gh R1

1 1
22 2= = ( ) ( ) ( )π …(i)

dV

dt
v a g h R2

2 2
22 16= = ( ( )) ( ) ( )π …(ii)

From Eqs. (i) and (ii), we can see that

dV

dt

dV

dt

1 2=

After some time v1 and v2 both will decrease, but

decrease in the value of v1 is more dominating. So,

a v1 1 or
dV

dt
a v1

2 2< or
dV

dt

2

10. Fraction of volume immersed is given by

f s

l

= ρ
ρ

ρs and ρl are same. Hence :

f f f1 2 3= =
Base area in third case is uniform. Hence h3 is

minimum.

Comprehension Based Questions

2. x h h3 2= ×Top bottom

= ×2 3a a = 2 3 a

3. x a a a1 2 3 2 3= × =

x a a a2 2 2 2 2 4= × =

x a3 2 3=
∴ x x x1 3 2= <
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4. Weight = upthrust

∴ L
A

Dg
L A

d g
L A

d g
5 4 5

2
3

4 5





 = × × × + × × ×

∴ D
d= 5

4

5. pA p A= +0 weight of two liquids + weight of

cylinder

= + 



 + 



p A

H
A d g

H
A d g0

2 2
2( ) ( ) ( ) ( ) ( ) ( )

+ 









L

A d
g

5

5

4

∴ p p
L H

dg= + +
0

6

4

( )

6. Applying Bernoulli’s equation just inside and just

outside the hole,

p
H

d g
H

h d g0
2 2

2+ 



 + −



( ) ( )( ) = +1

2
2 2

0( )d v p

∴ v
g

H h= −
2

3 4( )

7. t
h

g
= 2 ⇒ ∴ x vt H h h= = −( )3 4

Match the Columns

1. v ghT= 2 and R h hT B= 2

Here, hT = height of hole from top surface

and hB = height of hole from bottom

2. (a) and (b) In floating condition upthrust = weight

By increasing temperature of density liquid, weight

remains unchanged. Hence, upthrust is unchanged.

(c) When density of solid is increased (with

constant volume) mass and hence weight of

solid will increase. So, upthrust will increase.

3. Ball will oscillate simple harmonically. The mean

position in at depth

ρ α= h or h AB= =ρ
α

h ACmax = 2 =ρ
α

Amplitude = =ρ
α

AB or BC

From A to B l: ,ρ ρ> weight > upthrust

At B l, ,ρ ρ= weight = upthrust

From B to C ,ρ ρe > , upthrust > weight.

From A to C → upthrust will increase and

gravitational potential energy will decrease.

From C to A, upthrust will decrease and

gravitational potential energy will increase.

From A to B, speed will increase.

From B to C , speed will decrease.

4. Surface tension = F

e

Viscous force f A
v

y
= η ∆

∆
`

Energy density = Energy

Volume

Volume flow rate = Volume

Time

5. F F2 1− = upthrust

= weight of cylinder in equilibrium or floating

condition.

From liquid-1, horizontal pair of forces cancel out.

So, net force = 0

Subjective Questions

1. w = Weight, F = Upthrust

OA
OB=
2

= 0.5 sec θ
2

= 0.25 sec θ

About point O , clockwise moment of

w = anticlockwise moment of F.

∴ w
L

F OA
2

sin ( sin )θ θ



 = = ⋅F ( sin )0.25 secθ θ

Given, L = 1 m

∴ cos θ = F

w2
= ( )( )(

( )( )(

0.5 sec .0)

(0.5)

θ A g

A g

1

2 1

or cos ,2 1

2
θ = cos θ = 1

2

∴ θ = °45 Ans.
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2. Fraction of volume immersed before putting the

new weight = ρ
ρ

block

water

= 800

1000
= 0.8

i.e. 20% of 3 cm or 0.6 cm is above water. Let w is

the new weight, then spring will be compressed by

0.6 cm.

∴ w + weight of block = Upthrust on whole

volume of block + spring force

or w = × × × + ×−( )3 10 1000 10 502 3

( ) ( )0.6 × − × × ×− −10 3 10 800 102 2 3

∴ w = 0.354 N Ans.

3. Net force on the block at a height h from the

bottom is

Fnet = upthrust – weight (upwards)

=

















−






 −m h

h
g mg

5

2

4
3

0

0
0ρ

ρ

Fnet = 0 at h
h= 0

2

So, h
h= 0

2
is the equilibrium position of the block.

For h
h> 0

2
, weight > upthrust

i.e. net force is downwards and for h
h< 0

2

weight < upthrust

i.e. net force is upwards.

For upward displacement x from mean position, net

downward force is

F
m h x

h
g mg= −

















− +







−















5

2

4
3

0

0
0ρ

ρ ( )
h

h=





0

2

∴ F
mg

h
x= − 6

5 0

…(i)

(because at h
h= 0

2
upthrust and weight are equal)

Since F x∝ −

Oscillations are simple harmonic in nature.

Rewriting Eq. (i)

ma
mgx

h
= − 6

5 0

or a
g

h
x= − 6

5 0

∴ f
a

x
= 


 


1

2π

f
g

h
= 1

2

6

5 0π
Ans.

4. (a) v gh= = × ×2 2 10 5

= 10 m/s

(b) From conservation of energy,

v v gH′ = +2 2 2

= + × × =100 2 10 5 200

v′ = 14.1 m/s

(c) t
A

a g
H

H= −










2

2 2

= × ×
×

−−
2 1

10 2 10
5

2

4

π ( )
[ ]2.5

= 9200 s

5. Writing equation of motion for the block

T mg ma– sin 30° = …(i)

For the sphere

Weight – Buoyant force – T ma= …(ii)

or mg
mg

T ma– –
2

=

Solving, we get a = 0

6. w V g= (0.25) Hgρ …(i)

Let x fraction of volume is immersed in mercury in

the second case. Then,

w xV g x V gw= + −ρ ρHg ( )1 …(ii)

Equating Eqs. (i) and (ii), we have

ρ
ρ ρHg

Hg
4

1= + −x x w( )

∴ 12.6 2.4x =
or x = 0.19 Ans.
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7. (a) p v gh pA D− + =1

2

2ρ ρ

But p p pA D= = 0

∴ 1

2

2ρ ρv gh=

∴ v gh= 2

Here, h = + =( )4 1 5 m

∴ v = × ×2 59.8 = 9.9 m/s

(b) Applying Bernoulli’s equation at A and B,

p p v gA B+ + = + +0 0
1

2

2ρ ρ ( )1.5

or p p v gB0
21

2
= + +ρ ρ1.5

∴ pB = × − × ×1.01 (9.9)210
1

2
9005

− × ×1.5 9.8900

= ×4.36 Pa104 Ans.

(c) Applying Bernoulli’s equation at A and C,

p p v gC0
21

2
= + −ρ ρ ( )1.0

∴ p p g vC = + −0
21

2
ρ ρ

= × × × ×1.01 10 + 900 9.8 –
1

2
900 (9.9)5 2

= ×6.6 Pa104 Ans.

8.
1

2

2ρ ρv gh
mg

A
= +

Here, h = 1.0 – 0.5 = 0.5 m,

A = Area of piston = 0.5 m2

∴ v gh
mg

A
= +2

2

ρ

= × × + × ×
×

2
2 20

10 0 53
9.8 0.5

9.8

.

= 3.25 m/s

∴ Speed with which it hits the surface is

v v gh′ = + ′2 2

= + × ×(3.25) (2 9.8 0.5)2

= 4.51 m /s Ans.

9. a gy x
dy

dt
2 2= −



π …(i)

Here, − = × = ×
−dy

dt

4 10

3600

2

1.11 10 m/s–5

a r= = × −π π2 3 22 10( )

= × −1.26 m10 5 2

Substituting these values in Eq. (i), we have

( ) ( )1.26 9.8 1.11× × × = ×− −10 2 105 5 2y xπ

or y x= 0.4 4

This is the desired x-y relation.

10. Initially, kx mg= …(i)

In the second case,

F mg kx= + 2

or kx
F mg= −

2
…(ii)

From Eqs. (i) and (ii), we have

mg
F mg= −

2

or F mg= 3

Let V be the total volume then,

V g mgwρ = 3

∴ V
mg

gw

= 3

ρ
= ( )( )3 8

103

3m

= 0.024 m3

Volume of wood = mass

density

= 8

840
= 0 0095.

∴ Volume of cavity = 0.024 – 0.0095

= 0.0145

∴ Percentage volume of cavity

= ×0.0145

0.024
100

= 60.41%

11. v g h= −2 10( ) …(i)

Component of its velocity parallel to the plane is

v cos .30°
Let the stream strikes the plane after time t. Then

0 30 30= ° − °v g tcos sin

∴ t
v

g
= °cot 30
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kx

mg

F

mg kx+ 2



Further x vt
v

g
= = °2 30cot

= 3 y

or
v

g
h gt

2
230

3
1

2

cot ° = −





∴ 3
3

2

302 2 2

2

v

g
h

g v

g
= − °








cot

or
v

g
h

v

g

2 23

2
= −

∴ 5

2

2v

g
h= or 5 10( )− =h h

∴ h = 8.33 m Ans.

12. In elastic collision with the surface, direction of

velocity is reversed but its magnitude remains the

same.

Therefore, time of fall = time of rise.

or time of fall = t1

2

Hence, velocity of the ball just before it collides

with liquid is

v g
t= 1

2
…(i)

Retardation inside the liquid

a = −upthrust weight

mass
= −Vd g Vdg

Vd

L

= −





d d

d
gL …(ii)

Time taken to come to rest under this retardation

will be

t
v

a
= = gt

a

1

2
=

−





gt

d d

d
gL

1

2

=
−

dt

d dL

1

2( )

Same will be the time to come back on the

liquid surface.

Therefore,

(a) t2 = time the ball takes to came back to the

position from where it was released

= +t t1 2 = +
−

t
dt

d dL
1

1

= +
−









t

d

d dL
1 1 or t

t d

d d

L

L
2

1=
−

(b) The motion of the ball is periodic but not simple

harmonic because the acceleration of the ball is

g in air and
d d

d
gL −



 inside the liquid which is

not proportional to the displacement, which is

necessary and sufficient condition for SHM.

(c) When d dL = , retardation or acceleration inside

the liquid becomes zero (upthrust = weight).

Therefore, the ball will continue to move with

constant velocity v
gt= 1

2
inside the liquid.

13. Pressure inside the bubble = + +p gh
T

r
0

2ρ

∴ Amount of pressure inside the bubble greater

than the atmospheric pressure = +ρgh
T

r

2

Substituting the values we get,

∆p = × × + ×
−10

2

10

3

3
9.8 0.1

0.075

= + =980 150 1130 N/m2

14. (a) F rvr = 6πη

= − −6π(0.8)(10 )(103 2)

= 1.5 10 N4× − Ans.

(b) Hydrostatic force = Upthrust

= 





4

3

3π ρr g = × ×−4

3
10 12603 3π ( ) 9.8

= × −5.2 N10 5 Ans.

(c) At terminal velocity

w = Upthrust + viscous force

or ( ( )50 10 103 5× × = ×− −9.8) 5.2

+ −6 10 3π( ( )0.8) vT

Solving we get vT = 32.5 m/s Ans.

15. The loop will take circular shape after pricking.

Radius of which is given by the relation.

l R= 2π or R
l=

2π
=

×
6.28

3.142
= 1 cm

= −10 2 m
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2T dsin ( )θ force in inward direction is balanced by

surface tension force in outward direction.

∴ 2T dsin ( )θ = (Surface tension) × (length of arc)

For small angles, sin d dθ θ≈
∴ 2 2T d S Rdθ θ= ( ) (S = Surface tension)

∴ T SR=
= −(0.030)( )10 2

= × −3.0 N10 4 Ans.

16. (a) Time taken to empty the tank (has been derived

in theory) is

t
A

a g
H= 2

2

Given,
A

a
= 400

Substituting the values we have,

t = ×
×

2 400

2
1

9.8

= =180 3s min Ans.

(b) Rate of flow of water Q a gH= =2 constant

Total volume of water V AH=
∴ Time take to empty the tank with constant

rate

t
V

Q
= = AH

a gH2

= ×
× ×

400 1

2 9.8 1

= s = 1.5 min90 Ans.

17. (a) ∆p h gw= − = −( ) ( )( )ρ ρ0 10 1000 500 9.8

= 49000 2N/m

Now, ∆p vw= 1

2

2ρ

∴ v
p

w

= 2∆
ρ

= ×2 49000

1000

= 9.8 m/s Ans.

The flow will stop when,

(b) ( )10 5 50 0+ = +ρ ρ ρg g h gw

10 0ρ ρ= h w

∴ h = ×10 500

1000
= 5 m

i.e. flow will stop when the water-oil interface is

at a height of 5.0 m. Ans.

18.
F

A
v= 1

2

2ρ

or F Av= 1

2

2ρ …(i)

Here, v is the velocity of liquid, with which it comes

out of the hole.

Further V Ax= …(ii)

t
V

sv
= …(iii)

and w F x= ⋅ …(iv)

From the above four equations,

w A v
V

A
= 











1

2

2ρ

= ⋅ =1

2

1

2

2

2 2

3

2 2
ρ ρV

s t
V

V

s t
Ans.

19. (a) p A kx0 =

∴ x
p A

k

p r

k
= =0 0

2( )( )π

= ×(1.01 10 )( )(0.025)

3600

5 2π

= 0.055 m = 5.5 cm Ans.

(b) Work done by atmospheric pressure

W kx= 1

2

2 = 1

2
3600 2( )(0.055)

= 5.445 J Ans.

20. Given, A1
3 24 10= × − m , A2

3 28 10= × − m ,

h1 2= m, h2 5= m , v1 1= m/s and ρ = 103 kg/m3

From continuity equation, we have

A v A v1 1 2 2=
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F

A

x

v

h1

A1

A2

v2

h2

v1
2

1



or v
A

A
v2

1

2
1=







 or v2

3

3

4 10

8 10
1= ×

×








−

− ( )m/s

v2

1

2
= m/s

Applying Bernoulli’s equation at sections 1 and 2

p v gh p v gh1 1
2

1 2 2
2

2

1

2

1

2
+ + = + +ρ ρ ρ ρ

or p p g h h v v1 2 2 1 2
2

1
21

2
− = − + −ρ ρ( ) ( ) …(i)

(i) Work done per unit volume by the pressure as the

fluid flows from P to Q.

w p p1 1 2= −

= − + −ρ ρg h h v v( ) ( )2 1 2
2

1
21

2
[From Eq. (i)]

= − + −













( ) ( . )( ) ( )10 9 8 5 2
1

2
10

1

4
13 3 3J/m

= −[ ]29400 375 3J/m = 29025 3J/m

(ii) Work done per unit volume by the gravity as the

fluid flows from P to Q.

W g h h2 2 1
3 310 5 2= − = −ρ ( ) {( )( ( )}9.8) J/m

or W2
329400= J/m

21. Volume of the portion of the plate immersed in

water is

10
1

2

3× × =( )1.54 0.2 1.54 cm

Therefore, if the density of water is taken as 1, then

upthrust

= weight of the water displaced

= × × =1.54 1509.21 980 dynes

Now, the total length of the plate in contact with the

water surface is 2 10 0 2 20 4( . ) .+ = cm

∴ Downward pull upon the plate due to surface

tension

= × =20 4 73 1489 2. . dynes

∴ Resultant upthrust

= −1509 2 1489 2. .

= 20 0. dynes = 20

980

= 0 0204. gm-wt

∴ Apparent weight of the plate in water

= weight of the plate in air − resultant upthrust

= − =8.2 0.0204 8.1796gm Ans.

22. Given that r1
3 0

2
15= =.
. mm = × −15 10 3. m,

r2
6 0

2
3 0= =.
. mm = × −3 0 10 3. m,

T = × − −7.3 Nm10 2 1, θ = °0 ρ = ×1.0 kg/m103 3,

g = 9.8 m/s2

When angle of contact is zero degree, the radius of

the meniscus equals radius of bore.

Excess pressure in the first bore, p
T

r
1

1

2=

= × ×
×

=
−

−
2 7 3 10

15 10
97 3

2

3

.

.
. Pa

Excess pressure in the second bore, p
T

r
2

2

2=

= × ×
×

=
−

−
2 7 3 10

3 10
48 7

2

3

.
. Pa

Hence, pressure difference in the two limbs of the

tube

∆ = − =p p p h g1 2 ρ

or h
p p

g
= −1 2

ρ

= −
× ×

97 3 48 7

10 10 9 83

. .

. .

≈ × −5 10 3 m

= 5 0. mm

23. p V p V1 1 2 2=

∴ p
T

r
r p

T

R
R0

3
0

34
2

4

3

4 4

3
+



 ×



 = +









π π

From here we can find expression of T .

24. p V p V1 1 2 2=

∴ p
T

r
r p

T

R
R0

3
0

2

0

34 4

3

4

2

4

3
+









 = + −







 

π σ
ε

π 


Here, V
R= σ

ε0

or σ ε= V

R

0

25. p V p V1 1 2 2=

p
T

R
R p

T

R
0

3
0

2

0

4 4

3

4

2 2

4

3
+









 = + −







 


π σ

ε
π ( )2 3R

Here, σ
π

= =q

A

q

R4 2 2( )
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JEE Main
1. Seven identical circular planar discs, each

of mass M and radius R are welded

symmetrically as shown in the figure. The

moment of inertia of the arrangement

about the axis normal to the plane and

passing through the point P is (2018)

(a)
19

2

2MR (b)
55

2

2MR

(c)
73

2

2MR (d)
181

2

2MR

2. From a uniform circular

disc of radius R and

mass 9 M, a small disc of

radius
R

3
is removed as

shown in the figure. The

moment of inertia of the

remaining disc about an axis

perpendicular to the plane of the disc and

passing through centre of disc is (2018)

(a) 4 2MR (b)
40

9

2MR (c) 10 2MR (d)
37

9

2MR

3. A solid sphere of radius r made of a soft

material of bulk modulus K is surrounded

by a liquid in a cylindrical container. A

massless piston of area a floats on the

surface of the liquid, covering entire

cross-section of cylindrical container.

When a mass m is placed on the surface of

the piston to compress the liquid, the

fractional decrement in the radius of the

sphere,
dr

r







is
(2018)

(a)
Ka

mg
(b)

Ka

mg3
(c)

mg

Ka3
(d)

mg

Ka

4. The mass of a hydrogen molecule is

3.32 10 27× − kg. If 1023 hydrogen molecules

strike per second, a fixed wall of area

2 2cm at an angle of 45° to the normal and

rebound elastically with a speed of 103

m/s, then the pressure on the wall is

nearly (2018)

(a) 2 35 103. × N/m2 (b) 470 103. × N/m2

(c) 2 35 102. × N/m2 (d) 470 102. × N/m2

5. The moment of inertia of a uniform

cylinder of length l and radius R about its

perpendicular bisector is I. What is the

ratio l/ R such that the moment of inertia

is minimum? (2017)

(a)
3

2
(b) 1 (c)

3

2
(d)

3

2

6. A slender uniform rod of mass M and

length l is pivoted at one end so that it can

rotate in a vertical plane (see the figure).

There is negligible friction at the pivot.

The free end is held vertically above the

pivot and then released. The angular

acceleration of the rod when it makes an

angle θ with the vertical, is (2017)

(a)
2

3

g

l

sin θ (b)
3

2

g

l

cos θ

(c)
2

3

g

l

cosθ (d)
3

2

g

l

sinθ

Previous Years’ Questions (2018-13)

JEE Main and Advanced

O

P

R

2
3
R



7. The variation of acceleration due to

gravity g with distance d from centre of

the Earth is best represented by (R =
Earth’s radius) (2017)

8. A particle is executing simple harmonic

motion with a time period T . At time t = 0,

it is at its position of equilibrium. The

kinetic energy-time graph of the particle

will look, like (2017)

9. A magnetic needle of magnetic moment

6 7 10 2. × − Am2 and moment of inertia

7 5 10 6. × − kg m2 is performing simple

harmonic oscillations in a magnetic field

of 0.01 T. Time taken for 10 complete

oscillations is (2017)

(a) 8.89 s (b) 6.98 s (c) 8.76 s (d) 6.65s

10. The following observations were taken for

determining surface tension T of water by

capillary method. Diameter of capillary,

d = × −1 25 10 2. m rise of water,

h = × −1 45 10 2. m. Using g = 9 80. m/s2 and

the simplified relation T
rhg= ×

2
103 N m/ ,

the possible error in surface tension is

closest to (2017)

(a) 1.5% (b) 2.4% (c) 10% (d) 0.15%

11. A man grows into a giant such that his

linear dimensions increase by a factor of

9. Assuming that his density remains

same, the stress in the leg will change by

a factor of (2017)

(a)
1

9
(b) 81

(c)
1

81
(d) 9

12. A particle of mass m

is moving along the

side of a square of

side a , with a

uniform speed v in

the xy-plane as

shown in the figure.

Which of the following statements is false

for the angular momentum L about the

origin? (2016)

(a) L = −mv
R

2
$k when the particle is moving

from A to B

(b) L = −





mv
R

a
2

$k when the particle is

moving from
C to D

(c) L = +





mv
R

a
2

$k when the particle is

moving from B to C

(d) L = mv
R

2
$k when the particle is moving from

D to A

13. A roller is made

by joining

together two

corners at their

vertices O. It is

kept on two rails

AB and CD which

are placed asymmetrically (see the

figure), with its axis perpendicular to CD

and its centre O at the centre of line

joining AB and CD (see the figure). It is

given a light push, so that it starts rolling

with  its centre O moving parallel to CD in

the direction shown. As it moves, the

roller will tend to (2016)

(a) turn left

(b) turn right

(c) go straight

(d) turn left and right alternately
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B D

A C

O

D
a

C

A B
a

a a

O x

y

45º
R

vv

v

v

(a)

KE

tO T
(b)

KE

tO TT/2

(c)

KE

t
O T/4 TT/2

(d)

KE

t
O TT/2 T

(a) (b)

(c) (d)

g

O R
d

g

O R
d

g

O R

d

g

O R
d



14. A satellite is revolving in a circular orbit

at a height h from the Earth’s surface

(radius of earth R h R, < < ). The minimum

increase in its orbital velocity required, so

that the satellite could escape from the

Earth’s gravitational field, is close to

(Neglect the effect of atmosphere) (2016)

(a) 2gR (b) gR

(c) gR /2 (d) gR ( )2 1−

15. A student measures the time period of

100 oscillations of a simple pendulum four

times. The data set is 90s, 91s, 92s and

95s. If the minimum division in the

measuring clock is 1s, then the reported

mean time should be (2016)

(a) ( )92 2± s (b) ( )92 5± s

(c) ( )92 ± 1.8s (d) ( )92 3± s

16. A particle performs simple harmonic

motion with amplitude A. Its speed is

trebled at the instant that it is at a

distance
2

3
A from equilibrium position.

The new amplitude of the motion is (2016)

(a)
A

3
41 (b) 3A (c) A 3 (d)

7

3
A

17. Distance of the centre of mass of a solid

uniform cone from its vertex is z0. If the

radius of its base is R and its height is h,

then z0 is equal to (2015)

(a)
3

4

h
(b)

h

R

2

4
(c)

5

8

h
(d)

3

8

2h

R

18. A particle of mass m moving in the

x-direction with speed 2v is hit by another

particle of mass 2 m moving in the

y-direction with speed v. If the collision is

perfectly inelastic, the percentage loss in

the energy during the collision is close to
(2015)

(a) 50 % (b) 56 % (c) 62 % (d) 44 %

19. From a solid sphere of mass M and radius

R, a cube of maximum possible volume is

cut. Moment of inertia of cube about an

axis passing through its centre and

perpendicular to one of its faces is (2015)

(a)
MR 2

32 2π
(b)

4

9 3

2MR

π
(c)

MR 2

16 2π
(d)

4

3 3

2MR

π

20. From a solid sphere of

mass M and radius R, a

spherical portion of radius
R

2







is removed as shown

in the figure. Taking gravitational

potential V = 0 at r = ∞, the potential at

the centre of the cavity thus formed is

(G = gravitational constant) (2015)

(a)
− GM

R
(b)

− GM

R2

(c)
− 2

3

GM

R
(d)

− 2 GM

R

21. For a simple pendulum, a graph is plotted

between its Kinetic Energy (KE) and

Potential Energy (PE) against its

displacement d. Which one of the following

represents these correctly? (graphs are

schematic and not drawn to scale) (2015)

22. A pendulum made of a uniform wire of

cross-sectional area A has time period T.

When an additional mass M is added to

its bob, the time period changes to TM . If

the Young’s modulus of the material of

the wire is Y, then 1/Y is equal to

(g = gravitational acceleration) (2015)

(a) 1

2

−






















T

T

A

Mg
M

(b)
T

T

Mg

A
M





−










2

1

(c) 1
2

− 















T

T

A

Mg
M

(d)
T

T

A

Mg
M





−










2

1
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(a)

(c)

(b)

(d)

E

KE

PE
d

E

PE

KE
d

E
E

KE

d

PE

PE

KE



23. A bob of mass m attached to an

inextensible string of length l is suspended

from a vertical support. The bob rotates in

a horizontal circle with an angular speed ω
rad/s about the vertical support. About the

point of suspension (2014)

(a) angular momentum is conserved

(b) angular momentum changes in magnitude
but not in direction

(c) angular momentum changes in direction but
not in magnitude

(d) angular momentum changes both in
direction and magnitude

24. A mass m supported by a

massless string wound

around a uniform hollow

cylinder of mass m and

radius R. If the string does

not slip on the cylinder,

with what acceleration will the mass fall

on release? (2014)

(a) 2 3g / (b) g / 2

(c) 5 6g / (d) g

25. Four particles, each of mass M and

equidistant from each other, move along a

circle of radius R under the action of their

mutual gravitational attraction, the speed

of each particle is (2014)

(a)
GM

R
(b) 2 2

GM

R

(c)
GM

R
( )1 2 2+ (d)

1

2
1 2 2

GM

R
( )+

26. A particle moves with simple harmonic

motion in a straight line. In first τ sec,

after starting from rest it travels a

distance a and in next τ sec, it travels 2a,

in same direction, then (2014)

(a) amplitude of motion is 3a

(b) time period of oscillations is 8π
(c) amplitude of motion is 4a

(d) time period of oscillations is 6π

27. There is a circular tube in a vertical

plane. Two liquids which do not mix and

of densities d1 and d2 are filled in the

tube. Each liquid

subtends 90° angle at

centre. Radius joining

their interface makes

an angle α with

vertical. Ratio d d1 2/ is
(2014)

(a)
1

1

+
−

sin

sin

α
α

(b)
1

1

+
−

cos

cos

α
α

(c)
1

1

+
−

tan

tan

α
α

(d)
1

1

+
−

sin

cos

α
α

28. On heating water, bubbles

beings formed at the bottom

of the vessel detach and rise.

Take the bubbles to be

spheres of radius R and

making a circular contact of

radius r with the bottom of

the vessel. If r <<R and the surface tension

of water is T, value of r just before bubbles

detach is (density of water is ρ) (2014)

(a) R
g

T
w2 2

3

ρ
(b) R

g

T
w2

6

ρ

(c) R
g

T
w2 ρ

(d) R
g

T

w2 3ρ

29. The pressure that has to be applied to the

ends of a steel wire of length 10 cm to keep

its length constant when its temperature is

raised by 100°C is (For steel, Young’s

modulus is 2 1011× Nm−2 and coefficient of

thermal expansion is 1.1 × − −10 5 1K ) (2014)

(a) 2 2 108. × Pa

(b) 2 2 109. × Pa

(c) 2 2 107. × Pa

(d) 2 2 106. × Pa

30. An open glass tube is immersed in
mercury in such a way that a length of
8 cm extends above the mercury level.
The open end of the tube is then closed
and sealed and the tube is raised
vertically up by additional 46 cm. What
will be length of the air column above
mercury in the tube now? (Atmospheric
pressure = 76 cm of Hg) (2014)

(a) 16 cm (b) 22 cm

(c) 38 cm (d) 6 cm
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R

2 r

α

d1

d2

R

m

m



31. This question has statement I and

statement II. Of the four choices given

after the statements, choose the one that

best describes the two statements. (2013)

Statement I A point particle of mass m
moving with speed v collides with
stationary point particle of mass M. If the
maximum energy loss possible is given as

f mv
1

2

2





, then f
m

M m
=

+





.

Statement II Maximum energy loss

occurs when the particles get stuck

together as a result of the collision.

(a) Statement I is true, Statement II is true, and
Statement II is the correct explanation of
Statement I

(b) Statement I is true, Statement II is true, but
Statement II is not the correct explanation of
Statement I

(c) Statement I is true, Statement II is false

(d) Statement I is false, Statement II is true

32. A hoop of radius r and mass m rotating
with an angular velocity ω0 is placed on a
rough horizontal surface. The initial
velocity of the centre of the hoop is zero.
What will be the velocity of the centre of
the hoop when it ceases to slip? (2013)

(a) rω0 4/ (b) rω0 3/

(c) rω0 2/ (d) rω0

33. What is the minimum energy required to

launch a satellite of mass m from the

surface of a planet of mass M and radius

R in a circular orbit at an altitude of 2R?
(2013)

(a)
5

6

GmM

R
(b)

2

3

GmM

R
(c)

GmM

R2
(d)

GmM

R3

34. Assume that a drop of liquid evaporates
by decrease in its surface energy, so that
its temperature remains unchanged.
What should be the minimum radius of
the drop for this to be possible? The
surface tension is T , denstiy of liquid is ρ
and L is its latent heat of vaporisation

(2013)

(a)
ρL

T
(b)

T

Lρ
(c)

T

Lρ
(d)

2 T

Lρ

35. A uniform cylinder of length L and mass
M having cross-sectional area A is
suspended, with its length vertical from a
fixed point by a massless spring such that
it is half submerged in a liquid of density
σ at equilibrium position. The extensition
x0 of the spring when it is in equilibrium
is (2013)

(a)
Mg

k
(b)

Mg

k

LA

M

 1 −





σ

(c)
Mg

k

LA

M
1

2
−





σ
(d)

Mg

k

LA

M

 1 +





σ

Answer with Explanations
1. (d) Key Idea First we found moment of inertia (MI) of

system using parallel axis theorem about centre of mass,

then we use it to find moment of inertia about given axis.

Moment of inertia of an outer disc about the axis
through centre is

= +MR
M R

2
2

2
2( ) = +





MR 2 4
1

2
= 9

2

2MR

For 6 such discs,

moment of inertia = ×6
9

2

2MR = 27 2MR

So, moment of inertia of system

= +MR
MR

2
2

2
27 = 55

2

2MR

Hence, I MR M RP = + ×55

2
7 92 2( )

⇒ I MRP = 181

2

2 and I MR
system

= 181

2

2

2. (a) Moment of inertia of remaining solid

= Moment of intertia of complete solid

− Moment of inertia of removed portion

∴
( )

I
MR M R

M
R= − + 

















9

2

3

2

2

3

2
2 2/

⇒ I MR= 4 2
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3. (c) ∴ Bulk modulus, K = Volumetric stress

Volumetric strain

= ∆
∆

p

V

V

⇒ K
mg

a
r

r

=
∆





3
Q V r

V

V

r

r
= =





4

3

33π , so
∆ ∆

⇒ ∆ =r

r

mg

Ka3

4. (a)

Momentum imparted due to first collision

= °2 45mvsin

= 2mv Qsin45
1

2
° =





∴ Pressure on surface = n mv2

Area

= × × × ×
×

−

−

10 2 3 32 10 10

2 10

23 27 3

2 2

.

( )

p = ×2.35 103 N/m2

5. (d) MI of a solid cylinder about its perpendicular
bisector of length is

I M
l R= +








2 2

12 4

⇒ I
mR ml m

l

ml= + = +
2 2 2 2

4 12 4 12πρ
[ ]Qρπr l m2 =

For I to be maximum,

dI

dl

m

l

ml= − 





+ =
2

24

1

6
0

πρ
⇒ m ml2 3

4 6µπρ
=

⇒ l
m3 3

2
=

πρ
⇒ l

m= 











3

2

1 3 1 3/ /

πρ

ρ
π

= m

R l2
⇒ R

m

l

2 =
πρ

⇒ R
m

m

m2

1 3 1 3 2 3
2

3

2

3
= 











= 









πρ

πρ
πρ

/ / / 1 3/

⇒ R
m= 









πρ

1 3 1 6
2

3

/ /

l

R

m

m
=

























3

2

2

3

1 3 1 3

1 3 1 6

/ /

/ /

πρ

πρ

= 





+ 





3

2

3

2

1 3 1 6/ /

⇒ l

R
= 3

2

6. (d) As the rod rotates in vertical plane so a torque is
acting on it, which is due to the vertical component of
weight of rod.

Now, Torque τ = force × perpendicular distance of
line of action of force from axis of rotation

= ×mg
l

sin θ
2

Again, Torque, τ = Iα

where, I = moment of inertia = ml2

3
[Force and Torque frequency  along axis of rotation

passing through in end]

α = angular acceleration

∴ mg
l ml

sin θ α× =
2 3

2

⇒ α = 3

2

g

l

sin θ

7. (c) Inside the earth surface

g
GM

R
r=

3
i.e. g r∝

Out the earth surface g
Gm

r
=

2
i.e. g

r
∝ 1

2

So, till earth surface g increases linearly with distance

r, shown only in graph (c).

8. (c) KE is maximum at mean position and minimum at

extreme position at t
T=



4
.

9. (d) Time period of oscillation is

T
I

MB
= 2 π

⇒ T = ×
× ×

−

−
2

7 5 10

67 10 0 01

6

2
π .

. .
= 0 665. s

Hence, time for 10 oscillations is t = 6 65. s.

10. (a) By ascent formula, we have surface tension,

T
rhg= ×
2

103 N

m
= ×dhg

4
103 N

m

⇒ ∆ ∆ ∆T

T

d

d

h

h
= + [given, g is constant]

So, percentage = × = +





×∆ ∆ ∆T

T

d

d

h

h
100 100

6 Mechanics Vol. 2

45°

mv mg sin q

mg

q
q

m
g

co
s

q

l/2

l/2

Initial condition At any time t



= ×
×

+ ×
×







 ×

−

−

−

−

0 01 10

125 10 145 10
100

2 0 01 10
2

2

2

.

.

.

.
= 15. %

∴ ∆T

T
× =100 15. %

11. (d) Stress = Weight

Area
= ×

×
9

9

3
0

2
0

W

A
= 






9 0

0

W

A

Hence, the stress increases by a factor of 9.

12. (b, d) We can apply L r v= ×m( ) for different parts.

For example :

In part (a), coordinates of A are
R R

2 2
,







Therefore, r i j= +R R

2 2
$ $ and v i= v$

So, substituting in L r v= ×m( ) we get,

L k= − mvR

2
$

Hence, option (a) is correct. Similarly, we can check
other options also.

13. (a)

At distance x0 from O, v R= ω
Distance less than x0, v R> ω
Initially, there is pure rolling at both the contacts. As
the cone moves forward, slipping at AB will start in
forward direction, as radius at left contact decreases.

Thus, the cone will start turning towards left. As it
moves, further slipping at CD will start in backward
direction which will also turn the cone towards left.

14. (d) v
GM

R
gRorbital = = ⇒ v gRescape = 2

∴ Extra velocity required

= −v vescape orbital = −gR ( )2 1

15. (a) True value = + + + =90 91 95 92

4
92

Mean absolute error

= − + − + − + −| | | | | | | |92 90 92 91 92 95 92 92

4

= + + +2 1 3 0

4
= 1.5

Value = ±( )92 1.5

Since, least count is 1 sec

∴ Value = ±( )92 2 s

16. (d) v A x= −ω 2 2 At, x
A= 2

3

v A
A

A= − 





=ω ω2

2
2

3

5

3

As, velocity is trebled, hence v A′ = 5 ω
This leads to new amplitude A ′

∴ ω ωA
A

A′ − 





=2

2
2

3
5

⇒ ω ω2 2
2

2 24

9
5A

A
A′ −





=

⇒ A A A A′ = + =2 2 2 25
4

9

49

9
⇒ A A′ = 7

3

17. (a) Centre of mass of uniform solid cone of height h is

at a height of
h

4
from base. Therefore from vertex it’s

3

4

h
.

18. (b) In all type of collisions, momentum of the system
always remains constant. In perfectly inelastic
collision, particles stick together and move with a
common velocity.

Let this velocity is vc . Then,

initial momentum of system = final momentum of

system

or m v m v m m c( )$ ( )$ ( )2 2 2i j v+ = +

∴ v i jc v v= +2

3
( $ $ )

| |vc or vc or speed = 





+ 





2

3

2

3

2 2

v v = 2 2

3
v

Initial kinetic energy

K m v m v
i

= +1

2
2

1

2
22 2( )( ) ( )( ) = 3 2mv

Final kinetic energy

K m v mvf =








 =1

2
3

2 2

3

4

3

2

2( )

Fractional loss = −





 ×K K

K
i f

i

100

= −





×( ) [( / ) ]

( )

3 4 3

3
100

2 2

2

mv mv

mv
= 56%

19. (b) Maximum possible volume of cube will occur when

3 2a R= (a = side of cube)

∴ a R= 2

3

Now, density of sphere,ρ
π

= M

R
4

3

3
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v
v v

f
ωR

ω ′R

ω

x0 x0



Mass of cube, m = (volume of cube)(ρ) = ( )( )a3 ρ

= 













 = 





2

3 4 3

2

3

3

3
R

m

R
M

( / )π π

Now, moment of inertia of the cube about the said axis is

I
ma=

2

6
=













2

3

2

3

2

π
σ

M R

= 4

9 3

2MR

π

20. (a) V V VR T C= −

VR = Potential due to remaining portion

VT = Potential due to total sphere

VC = Potential due to cavity

Radius of cavity is
R

2
. Hence, volume and mass is

M

8
.

∴ V
GM

R
R

R
R = − − 













3

2

2

15 0 5
2

. . + 





G M

R

( / )

( / )

8

2

3

2

= − GM

R

21. (a) Taking minimum potential energy at mean position
to be zero, the expression of KE and PE are

KE = −1

2

2 2 2m A dω ( ) and PE = 1

2

2 2m dω

Both graphs are parabola. At d = 0, the mean position,

PE = 0 and KE = =1

2

2 2m Aω maximum

At d A= ± , the extreme positions,

KE = 0 and PE = =1

2

2 2m Aω maximum

Therefore, the correct graph is (a).

22. (d) T
L

g
= 2 π …(i)

T
L L

g
M = +

2 π ∆

Here, ∆L
FL

AY

MgL

AY
= = ⇒ T

L
MgL

AY
g

M =
+

2 π …(ii)

Solving Eqs. (i) and (ii), we get

1
1

2

Y

A

Mg

T

T

M= 





−










23. (c) Angular momentum of the pendulum about the
suspension point O is

Then, v can be resolved into two components, radial
component r

rad
and tangential component rtan. Due to

v
rad

, L will be tangential and due to v tan, L will be
radially outwards as shown. So, net angular
momentum will be as shown in figure whose
magnitude will be constant (| | )L mvl= . But its direction
will change as shown in the figure.

L r v= m( )×

where, r = radius of circle.

24. (b) For the mass m, mg T ma− =

As we know, a R= α
So, mg T mR− = α …(i)

Torque about centre of pully

T R mR× = 2α ...(ii)

From Eqs. (i) and (ii), we get, a g= / 2

Hence, the acceleration with the mass of a body fall is g /2.

25. (d) Net force acting on any one particle M,

= + °GM

R

GM

R

2

2

2

22 2
45

( ) ( )
cos + °GM

R

2

22
45

( )
cos

= +





GM

R

2

2

1

4

1

2

This force will equal to centripetal force.

So,
Mv

R

GM

R

2 2

2

1

4

1

2
= +





v
GM

R
= +

4
1 2 2( )

= +1

2
2 2 1

GM

R
( )

Hence, speed of each particle in a circular motion is

1

2
2 2 1

GM

R
( )+ .
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O

R

M

m

v

v
v

m

M

RR

45°

45°

R

v

O O

v

m

l

L tan

O

L L

vrad

v tan

L rad
L



26. (d) In SHM, a particle starts from rest, we have

i.e. x A t= cosω , at t = 0, x A=
When t = τ, then x A a= − ...(i)

When t = 2τ, then x A a= − 3 …(ii)

On comparing Eqs. (i) and (ii), we get

A a A− = cosωτ ⇒ A a A− =3 2cos ωτ
As cos cos2 2 12ωτ ωτ= −

⇒ A a

A

A a

A

− = −





−3
2 1

2

⇒ A a

A

A a Aa A

A

− = + − −3 2 2 42 2 2

2

A aA A a Aa2 2 23 2 4− = + −
a aA2 2= ⇒ A a= 2

Now, A a A− = cosωτ

⇒ cos /ωτ = 1 2 ⇒ 2

3

πτ π
T

= ⇒ T = 6 π

27. (c) Equating pressure at A, we get

R d R d R dsin cos ( cos )α α α2 2 11+ + −
= −R d( sin )1 1α

(sin cos ) (cos sin )α α α α+ = −d d2 1

⇒ d

d

1

2

1

1
= +

−
tan

tan

α
α

28. (a) The bubble will detach if,

sin ( ) sinθ π θT dl T r× =∫ 2

Buoyant force ≥ Surface tension force
4

3

3π ρ θR g T dlw ≥ ∫ × sin

( ) ( ) ( )sinρ π π θw R g T r
4

3
23





≥ ⇒ sinθ = r

R

Solving, r
R g

T

w= 2

3

4ρ = R
g

T

w2 2

3

ρ

29. (a) If the deformation is small, then the stress in a
body is directly proportional to the corresponding
strain.

According to Hooke's law i.e.

Young’s modulus ( )Y = Tensile stress

Tensile strain

So, Y
F A

L L

FL

A L
= =/

/∆ ∆

If the rod is compressed, then compressive stress and
strain appear. Their ratio Y is same as that for tensile
case.

Given, length of a steel wire (L) = 10 cm

Temperature ( )θ = °100 C

As length is constant.

∴ Strain = =∆ ∆L

L
α θ

Now, pressure = stress = Y × strain

[Given, Y = ×2 1011 N/m2 and α = × − −1.1 10 K5 1]

= × × × ×−2 10 10 10011 51.1 = ×2.2 108 Pa

30. (a) Thinking Process In this question, the system is
accelerating horizontally i.e. no component of
acceleration in vertical direction. Hence, the pressure
in the vertical direction will remain unaffected.

i.e. p p gh1 0= + ρ

Again, we have to use the concept that the pressure in
the same level will be same.

For air trapped in tube, p V p V1 1 2 2=
p p g1 76= =atm ρ ⇒ V A1 8= ⋅

[A = area of cross-section]

p p g x g x2 54 22= − − = +atm ρ ρ( ) ( )

V A x2 = ⋅ ρ ρg A g x A x76 8 22× = +( )

x x2 22 78 8 0+ − × = ⇒ x = 16 cm

31. (d) Maximum energy loss

= −
+

p

m

p

m M

2 2

2 2 ( )


QKE =








p

m

2

2

Before collision the mass m and after collision the
mass is m M+

=
+











p

m

M

m M

2

2 ( )

=
+









1

2

2mv
M

m M
f =

+
M

m M
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8 cm 54
x

54–x

p2

θ

θ
r

R

α

d1

R
R α R sin α

d2

A

90 – α R



32. (c)

ω = v r/
From conservation of angular momentum about
bottommost point

mr mvr mr v r2
0

2ω = + × / ⇒ v
r= ω0

2

33. (a) E = Energy of satellite − energy of mass on the

surface of planet

= − − −





GMm

r

GMm

R2

Here, r R R R= + =2 3

Substituting in about equation we get, E
GMm

R
= 5

6

34. (d) Decrease in surface energy = heat required in

vaporisation.

∴ T dS L dm( ) ( )= ⇒ T r dr L r dr( ) ( ) ( )2 4 4 2π π ρ=

∴ r
T

L
= 2

ρ

35. (c) In equilibrium, Upward force = Downward force

kx F mgB0 + =

Here, kx0 is restoring force of spring and FB is buoyancy
force.

kx
L

Ag Mg0
2

+ =σ

x
Mg

LAg

k
0

2=
− σ

JEE Advanced
1. The potential energy of mass m at a

distance r from a fixed point O is given

by V r kr( ) /= 2 2, where k is a positive

constant of appropriate dimensions.

This particle is moving in a circular

orbit of radius R about the point O. If v

is the speed of the particle and L is the

magnitude of its angular momentum

about O, which of the following

statements is (are) true ?
(More than One Correct Option, 2018)

(a) v
k

m
R=

2
(b) v

k

m
R=

(c) L mk R= 2 (d) L
mk

R=
2

2

2. Consider a body of mass 1 0. kg at rest at

the origin at time t = 0 . A force

F i j= +( $ $)α βt is applied on the body,

where α = −1 0. Ns
1 and β = 1 0. N. The

torque acting on the body about the

origin at time t =1.0s is τ. Which of the

following statements is (are) true ?
(More than One Correct Option, 2018)

(a) | |τ = 1

3
N -m

(b) The torque τ is in the direction of the unit
vector + $k

(c) The velocity of the body at t = 1s is

v i j= + −1

2
2 1($ $) ms

(d) The magnitude of displacement of the body at

t = 1s  is
1

6
m

3. A uniform capillary tube of inner radius r is

dipped vertically into a beaker filled with

water. The water rises to a height h in the

capillary tube above the water surface in

the beaker. The surface tension of water is

σ. The angle of contact between water and

the wall of the capillary tube is θ. Ignore

the mass of water in the meniscus. Which

of the following statements is (are) true ?
(More than one Correct Option, 2018)

(a) For a given material of the capillary tube, h

decreases with increase in r

(b) For a given material of the capillary tube, h is

independent of σ

10 Mechanics Vol. 2
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(c) If this experiment is performed in a lift going up

with a constant acceleration, thenh decreases

(d) h is proportional to contact angle θ

4. A ring and a disc are initially at rest, side

by side, at the top of an inclined plane

which makes an angle 60° with the

horizontal. They start to roll without

slipping at the same instant of time along

the shortest path. If the time difference

between their reaching the ground is

( ) /2 3 10− s, then the height of the top

of the inclined plane, in metres, is .......... .
(Take, g = −10 2

ms ) (Numerical Value, 2018)

5. Consider a thin square plate floating on a

viscous liquid in a large tank. The height

h of the liquid in the tank is much less

than the width of the tank. The floating

plate is pulled horizontally with a

constant velocity u0. Which of the

following statements is (are) true?
(More than One Correct Option, 2018)

(a) The resistive force of liquid on the plate is
inversely proportional to h

(b) The resistive force of liquid on the plate is
independent of the area of the plate

(c) The tangential (shear) stress on the floor of
the tank increases with u0

(d) The tangential (shear) stress on the plate
varies linearly with the viscosity η of the liquid

6. A steel wire of diameter 0.5 mm and

Young’s modulus 2 1011 2× −
N m carries a

load of mass m. The length of the wire

with the load is 1.0 m. A vernier scale

with 10 divisions is attached to the end of

this wire. Next to the steel wire is a

reference wire to which a main scale, of

least count 1.0 mm, is attached. The 10

divisions of the vernier scale correspond

to 9 divisions of the main scale. Initially,

the zero of vernier scale coincides with

the zero of main scale. If the load on the

steel wire is increased by 1.2 kg, the

vernier scale division which coincides

with a main scale division is ......... .
(Take, g = −10 2

ms and π = 3 2. ).
(Numerical Value, 2018)

7. A planet of mass M, has two natural

satellites with masses m1 and m2. The

radii of their circular orbits are R1 and R2,

respectively. Ignore the gravitational

force between the satellites. Define v1 , L1 ,

K1 and T1 to be respectively, the orbital

speed, angular momentum, kinetic energy

and time period of revolution of satellite

1; and v L K2 2 2, , and T2 to be the

corresponding quantities of satellite 2.

Given, m m1 2 2/ = and R R1 2 1 4/ /= ,

match the ratios in List-I to the numbers

in List-II. (Matching Type, 2018)

List-I List-II

P. v v1 2/ 1. 1/8

Q. L L1 2/ 2. 1

R. K K1 2/ 3. 2

S. T T1 2/ 4. 8

(a) P → 4; Q → 2; R → 1; S → 3

(b) P → 3; Q → 2; R → 4; S → 1

(c) P → 2; Q → 3; R → 1; S → 4

(d) P → 2; Q → 3; R → 4; S → 1

8. In the List-I below, four different paths of

a particle are given as functions of time.

In these functions, α and β are positive

constants of appropriate dimensions and

α β≠ . In each case, the force acting on the

particle is either zero or conservative. In

List-II, five physical quantities of the

particle are mentioned: p is the linear

momentum, L is the angular momentum

about the origin, K is the kinetic energy,

U is the potential energy and E is the

total energy. Match each path in List-I

with those quantities in List-II, which are

conserved for that path.(Matching Type, 2018)

List-I List-II

P. r i j( )t t t= +α β 1. p

Q. r i( ) cost t= α ω + β ωsin t j 2. L

R. r i( ) (cost t= α ω + sin ωt j ) 3. K

S. r i j( )t a t t= + β
2

2
4. U

5. E
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(a) P → 1, 2, 3, 4, 5; Q → 2, 5; R → 2, 3, 4, 5; S → 5

(b) P → 1, 2, 3, 4, 5; Q → 3, 5; R → 2, 3, 4, 5;

S → 2, 5

(c) P → 2, 3, 4;    Q → 5;   R → 1, 2, 4;  S → 2, 5

(d) P → 1, 2, 3, 5; Q → 2, 5; R → 2, 3, 4, 5; S → 2, 5

Passage (Q. Nos. 9-10)

One twirl is a circular ring (of mass M and

radius R) near the tip of one’s finger as

shown in Fig. 1. In the process the finger

never loses contact with the inner rim of the

ring. The finger traces out the surface of a

cone, shown by the dotted line. The radius

of the path traced out by the point where

the ring and the finger is in contact is r.

The finger rotates with an angular velocity

ω0.

The rotating ring rolls without slipping on

the outside of a smaller circle described by

the point where the ring and the finger is in

contact (Fig. 2). The coefficient of friction

between the ring and the finger is µ and the

acceleration due to gravity is g.
(Passage Type, 2017)

9. The total kinetic energy of the ring is

(a) M R rω0

2 2( )− (b)
1

2
0

2 2M R rω ( )−

(c) M Rω0

2 2 (d)
3

2
0

2 2M R rω ( )−

10. The minimum value of ω0 below which

the ring will drop down is

(a)
g

R r2µ ( )−
(b)

3

2

g

R rµ ( )−

(c)
g

R rµ ( )−
(d)

2g

R rµ ( )−

11. Consider regular polygons with number of

sides n = 3 4 5, , …… as shown in the

figure. The centre of mass of all the

polygons is at height h from the ground.

They roll on a horizontal surface about

the leading vertex without slipping and

sliding as depicted. The maximum increase

in height of the locus of the centre of mass

for each each polygon is ∆. Then, ∆ depends

on n and h as (Single Correct Option, 2017)

(a) ∆ = 





h
n

sin2 π
(b) ∆ = 





h
n

sin
2π

(c) ∆ = 





h
n

tan2

2

π
(d) ∆ =







−



















h

n

1
1

cos
π

12. A wheel of radius R and mass M is placed

at the bottom of a fixed step of height R as

shown in the figure. A constant force is

continuously applied on the surface of the

wheel so that it just climbs the step

without slipping. Consider the torque τ
about an axis normal to the plane of the

paper passing through the point Q. Which

of the following option(s) is/are correct?

(More than One Correct Option, 2017)

(a)If the force is applied normal to the
circumference at point P , then τ is zero

(b)If the force is applied tangentially at point S,
then τ ≠ 0 but the wheel never climbs the step

(c)If the force is applied at point P tangentially,
then τ decreases continuously as the wheel
climbs

(d)If the force is applied normal to the
circumference at point X , then τ is constant

13. A rigid uniform bar AB of length L is

slipping from its vertical position on a

frictionless floor (as shown in the figure).

At some instant of time, the angle made

by the bar with the vertical is θ. Which of
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the following statements about its motion

is/are correct?

(More than One Correct Option, 2017)

(a)Instantaneous torque about the point in
contact with the floor is proportional to sinθ

(b)The trajectory of the point A is parabola

(c)The mid-point of the bar will fall vertically
downward

(d)When the bar makes an angle θ with the
vertical, the displacement of its mid-point
from the initial position is proportional to
( cos )1 − θ

14. A block of mass M has a circular cut with

a frictionless surface as shown. The block

rests on the horizontal frictionless surface

of a fixed table. Initially, the right edge of

the block is at x = 0, in a coordinate

system fixed to the table. A point mass m

is released from rest at the topmost point

of the path as shown and it slides down.

When the mass loses contact with the

block, its position is x and the velocity is

v. At that instant, which of the following

option(s) is/are correct?
(More than One Correct Option, 2017)

(a)The velocity of the point mass m is

v
gR

m

M

=
+

2

1

(b)The x component of displacement of the

centre of mass of the block M is −
+

mR

M m

(c)The position of the point mass is

x
mR

M m
= −

+
2

(d)The velocity of the block M is v
m=
M

gR− 2

15. A rocket is launched normal to the

surface of the Earth, away from the Sun,

along the line joining the Sun and the

Earth. The Sun is 3 105× times heavier

than the Earth and is at a distance

2 5 104. × times larger than the radius of

Earth. The escape velocity from Earth’s

gravitational field is ve = 11 2. km s−1. The

minimum initial velocity ( )vs required for

the rocket to be able to leave the

Sun-Earth system is closest to (Ignore the

rotation and revolution of the Earth and

the presence of any other planet)
(Single Correct Option, 2017)

(a) vs = 72 km s−1

(b) vs = 22 km s−1

(c) vs = 42 km s−1

(d) vs = 62 km s−1

16. Consider an expanding sphere of

instantaneous radius R whose total mass

remains constant. The expansion is such

that the instantaneous density ρ remains

uniform throughout the volume. The rate

of fractional change in density
1

p

d

dt

ρ





is

constant. The velocity v of any point of the

surface of the expanding sphere is

proportional to (Single Correct Option, 2017)

(a) R (b)
1

R

(c) R 3 (d) R
2

3

17. A drop of liquid of radius R = −10 2 m

having surface tension S = 01

4

.

π
Nm−1

divides itself into K identical drops. In

this process the total change in the

surface energy ∆ = −U 10 3 J. If K = 10α ,

then the value of α is
(Single Integer Type, 2017)
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Passage (Q. Nos. 18-19)

A frame of the reference that is accelerated
with respect to an inertial frame of
reference is called a non-inertial frame of
reference. A coordinate system fixed on a
circular disc rotating about a fixed axis with
a constant angular velocity ω is an example
of a non-inertial frame of reference.

The relationship between the force F
rot

experienced by a particle of mass m moving
on the rotating disc and the force F

in

experienced by the particle in an inertial
frame of reference is, F F v

rot in rot
= + ×2m ( )

r
ω

+ × ×m ( )
r r
ω ωr , where, v

rot
is the velocity of

the particle in the rotating frame of
reference and r is the position vector of the
particle with respect to the centre of the disc

Now, consider a smooth slot along a
diameter of a disc of radius R rotating
counter-clockwise with a constant angular
speed ω about its vertical axis through its
centre.

We assign a coordinate system with the
origin at the centre of the disc, the X-axis
along the slot, the Y-axis perpendicular to
the slot and the Z-axis along th rotation
axis ( )ω ω= k . A small block of mass m is

gently placed in the slot at r i= ( / ) $R 2 at t = 0

and is constrained to move only along the
slot. (Passage Type, 2016)

18. The distance r of the block at time t is

(a)
R

t
2

2cos ω (b)
R

t
2

cosω

(c)
R

e et t

4
( )ω ω+ − (d)

R
e et t

4

2 2( )ω ω+ −

19. The net reaction of the disc on the block,

is

(a) m R t mgω ω2 sin $ $j k−

(b)
1

2

2m R e e mgt tω ω ω( )$ $− +−
j k

(c)
1

2

2 2m R e e mgt tω ω ω( )$ $− +−
j k

(d) − −m R t mgω ω2 cos $ $j k

20. The position vector r of particle of mass m

is given by the following equation

r i j( ) $ $t t t= +α β3 2 where, α = −10

3

3
ms ,

β = −5 2
ms and m = 0.1 kg.

At t =1s, which of the following

statement(s) is (are) true about the

particle? (More than One Correct Option, 2016)

(a) The velocity v is given by v = + −( $ $)10 10i j ms 1

(b) The angular momentum L with respect to the
origin is given by L k= ( / ) $5 3 Nm-s

(c) The force F is given by F i j= +($ $)2 N

(d) The torque τ with respect to the origin is

given by τ =− 20

3
$kN-s

21. Two thin circular discs of mass m and 4m,

having radii of a and 2a, respectively, are

rigidly fixed by a massless, rigid rod of

length l a= 24 through their centres.

This assembly is laid on a firm and flat

surface and set rolling without slipping

on the surface so that the angular speed

about the axis of the rod is ω. The angular

momentum of the entire assembly about

the point ‘O’ is L (see the figure). Which of

the following statement(s) is (are) true?
(More than One Correct Option, 2016)

(a) The magnitude of the z-component of L is 55
ma2 ω

(b) The magnitude of angular momentum of
centre of mass of the assembly about the
point O is 81 2ma ω

(c) The centre of mass of the assembly rotates
about the Z-axis with an angular speed ofω/5

(d) The magnitude of angular momentum of the
assembly about its centre of mass is
17 ma2 ω/2
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22. A block with mass M is connected by a

massless spring with stiffness constant k

to a rigid wall and moves without friction

on a horizontal surface. The block

oscillates with small amplitude A about

an equilibrium position x0. Consider two

cases : (i) when the block is at x0 and

(ii) when the block is at x x A= +0 . In both

the cases, a particle with mass m (< M) is

softly placed on the block after which they

stick to each other. Which of the following

statement(s) is (are) true about the motion

after the mass m is placed on the mass M?
(More than One Correct Option, 2016)

(a) The amplitude of oscillation in the first case

changes by a factor of
M

m M+
, whereas in

the second case it remains unchanged

(b) The final time period of oscillation in both the
cases is same

(c) The total energy decreases in both the cases

(d) The instantaneous speed at x0 of the combined
masses decreases in both the cases

23. A ring of mass M

and radius R is

rotating

with angular speed

ω about a fixed

vertical axis passing

through its centre O

with two point

masses each of mass M / 8 at rest at O.

These masses can move radially outwards

along two massless rods fixed on the ring

as shown in the figure. At some instant,

the angular speed of the system is ( / )8 9 ω
and one of the masses is at a distance of
3

5
R from O. At this instant, the distance

of the other mass from O is

(More than One Correct Option, 2015)

(a)
2

3
R (b)

1

3
R (c)

3

5
R (d)

4

5
R

24. Two identical uniform discs roll without

slipping on two different surfaces AB and

CD (see figure) starting at A and C with

linear speeds v1 and v2, respectively, and

always remain in contact with the

surfaces.

If they reach B and D with the same

linear speed and v1 3= m/s, then v2 in m/s

is (g = 10 m/s
2) (Single Integer Type, 2015)

25. The densities of two solids spheres A and

B of the same radii R vary with radial

distance r as ρA r k
r

R
( ) = 





and

ρB r k
r

R
( ) = 





5

, respectively, where k is a

constant. The moments of inertia of the

individual spheres about axes passing

through their centres are IA and IB,

respectively. If
I

I

nB

A

=
10

, the value of n is

(Single Integer Type, 2015)

26. A bullet is fired vertically upwards with

velocity v from the surface of a spherical

planet. When it reaches its maximum

height, its acceleration due to the planet’s

gravity is 1 4/ th of its value at the

surface of the planet. If the escape

velocity from the planet is v v N
sec

= ,

then the value of N is (ignore energy loss

due to atmosphere) (Single Integer Type, 2015)

27. A large spherical mass M is fixed at one

position and two identical masses m are

kept on a line passing through the centre

of M (see figure). The point  masses are

connected by a rigid massless rod of

length l and this assembly is free to move

along the line connecting them.
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All three masses interact only through

their mutual gravitational interaction.

When the point mass nearer to M is at a

distance r l= 3 from M the tension in the

rod is zero for m k
M= 



288
. The value of

k is (Single Integer Type, 2015)

28. A spherical body of radius R consists of a

fluid of constant density and is in

equilibrium under its own gravity. If P r( )

is the pressure at r r R( )< , then the correct

options is/are
(More than One Correct Option, 2015)

(a) p r( )= =0 0 (b)

p r
R

p r
R

=





=





=

3

4
2

3

63

80

(c)

p r
R

p r
R

=





=





=

3

5
2

5

16

21
(d)

p r
R

p r
R

=





=





2 =

3

20

27

29. A person in a lift is holding a water jar,

which has a small hole at the lower end of

its side. When the lift is at rest, the water

jet coming out of the hole hits the floor of

the lift at a distance d of 1.2 m from the

person.

In the following, state of the lift’s motion

is given in Column I and the distance

where the water jet hits the floor of the

lift is given in Column II. Match the

statements from Column I with those in

Column II and select the correct answer

using the code given below the columns.

Column I Column II

P. Lift is accelerating vertlcally up. 1. d m= 1.2

Q. Lift is accelerating with an
acceleration loss than the
gravitational acceleration.

2. d m> 1.2

R. Lift is moving vertically up with
constant speed.

3. d m< 1.2

S. Lift is falling freely. 4. No water leaks
out of the jar

(More than One Correct Option, 2015)

Codes

P Q R S P Q R S

(a) 2, 3, 2, 4 (b) 2, 3, 1, 4

(c) 1, 1, 1, 4 (d) 2, 3, 1, 1

30. Two spheres P and Q for equal radii have

densities ρ1 and ρ2, respectively. The

spheres are connected by a massless

string and placed in liquids L1 and L2 of

densities σ1 and σ2 and viscosities η1 and

η2, respectively. They float in equilibrium

with the sphere P in L1 and sphere Q in L2

and the string being taut (see figure).

If sphere P alone in L2 has terminal

velocity vP and Q alone in L1 has terminal

velocity vQ , then

(Single Correct Option, 2015)

(a)
| |

| |

v

v

P

Q

= η
η

1

2

(b)
| |

| |

v

v

P

Q

= η
η

2

1

(c) v vP Q⋅ > 0 (d) v vP Q⋅ < 0

31. In plotting stress versus strain curves for

two materials P and Q, a student by

mistake puts strain on the y-axis and

stress on the x-axis as shown in the figure.

Then, the correct statements is/are
(More than One Correct Option, 2015)

(a) P has more tensile strength than Q

(b) P is more ductile than Q

(c) P is more brittle than Q

(d) The Young’s modulus of P is more than that
of Q
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32. Two independent harmonic oscillators of
equal masses are oscillating about the
origin with angular frequencies ω1 and ω2

and have total energies E1 and E2,
respectively. The variations of their
momenta p with positions x are shown in

the figures. If
a

b
n= 2 and

a

R
n= , then the

correct equations is/are
(More than One Correct Option, 2015)

(a) E E1 1 2 2ω ω= (b)
ω
ω

2

1

2= n

(c) ωω1 2
2= n (d)

E E1

1

2

2ω ω
=

33. A horizontal circular platform of radius

0.5 m and mass 0.45 kg is free to rotate

about its axis. Two massless spring

toy-guns, each carrying a steel ball of

mass 0.05 kg are attached to the platform

at a distance 0.25 m from the centre on its

either sides along its diameter (see

figure). Each gun simultaneously fires the

balls horizontally and perpendicular to

the diameter in opposite directions. After

leaving the platform, the balls have

horizontal speed of 9 1
ms

− with respect to

the ground. The rotational speed of the

platform in rads
−1 after the balls leave the

platform is (Single Integer Type, 2014)

34. A uniform circular disc of mass 1.5 kg and

radius 0.5 m is initially at rest on a

horizontal frictionless surface. Three

forces of equal magnitude F = 0.5 N are

applied

simultaneously

along the three sides

of an equilateral

triangle XYZ with

its vertices on

the perimeter of the

disc (see figure). One

second after applying the forces, the

angular speed of the disc in rad s
−1 is

(Single Integer Type, 2014)

35. A planet of radius R = ×1 10/ (radius of

earth) has the same mass density as

earth. Scientists dig a well of depth
R

5
on

it and lower a wire of the same length and

of linear mass density 10 3 1− −kgm into it.

If the wire is not touching anywhere, the

force applied at the top of the wire by a

person holding it in place is (take the

radius of earth = ×6 106
m and the

acceleration due to gravity of earth is

10 ms )2−
(Single Correct Option, 2014)

(a) 96 N (b) 108 N

(c) 120 N (d) 150 N

36. A glass capillary tube is the shape of

truncated cone with an apex angle α so

that its two ends have cross-sections of

different radii. When dipped in water

vertically, water rises in it to a height h,

where the radius of its cross-section is b.

If the surface tension of water is S, its

density is ρ, and its contact angle with

glass is θ, the value of h will be ( g is the

acceleration due to gravity)
(Single Correct Option, 2014)

(a)
2S

b gρ
θ αcos ( )− b)

2S

b gρ
θ αcos ( )+

(c)
2

2
S

b gρ
θ αcos ( / )− (d)

2
2

S

b gρ
θ αcos ( / )+
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37. During Searle’s experiment, zero of the

vernier scale lies between 3.20 × −10 2 m

and 3.25 × −10 2 m of the main scale. The

20th division of the vernier scale exactly

coincides with one of the main scale

divisions.

When an additional load of 2 kg is applied

to the wire, the zero of the vernier scale

still lies between 3.20 × −10 2 m and

3.25 × −10 2 m of the main scale but now

the 45th division of vernier scale coincides

with one of the main scale divisions. The

length of the thin metallic wire is 2 m and

its cross-sectional area is 8 10 7 2× −
m . The

least count of the vernier scale is

1.0 × −10 5 m. The maximum percentage

error in the Young’s modulus of the

wire is (Single Integer Type, 2014)

Passage (Q. Nos. 38-39)

A spray gun is shown in the figure where a
piston pushes air out of nozzle. A thin tube
of uniform cross-section is connected to the
nozzle. The other end of the tube is in a
small liquid container. As the piston pushes
air through the nozzle, the liquid from the
container rises into the nozzle and is
sprayed out. For the spray gun shown, the
radii of the piston and the nozzle are 20 mm
and 1 mm respectively. The upper end of the
container is open to the atmosphere.

(Passage Type, 2014)

38. If the piston is pushed at a speed of

5 1
ms

− , the air comes out of the nozzle

with a speed of

(a) 0.1 ms 1− (b) 1 ms 1− (c) 2 ms 1− (d) 8 ms 1−

39. If the density of air is ρa and that of the

liquid ρl, then for a given piston speed the

rate

(volume per unit time) at which the liquid

is sprayed will be proportional to

(a)
ρ
ρ
a

l

(b) ρ ρa l (c)
ρ
ρ

l

a

(d) ρl

40. A particle of mass m is projected from the

ground with an initial speed u0 at an

angle α with the horizontal. At the

highest point of its trajectory, it makes a

completely inelastic collision with another

identical particle, which was thrown

vertically upward from the ground with

the same initial speed u0. The angle that

the composite system makes with the

horizontal immediately after the

collision is (Single Correct Option, 2013)

(a)
π
4

(b)
π α
4

+ (c)
π α
4

− (d)
π
2

41. A bob of mass m, suspended by a string of

length l1, is given a minimum velocity

required to complete a full circle in the

vertical plane, At the highest point, it

collides elastically with another bob of

mass m suspended by a string of length l2,

which is initially at rest. Both the strings

are massless and inextensible. If the

second bob, after collision acquires the

minimum speed required to complete a

full circle in the vertical plane, the ratio

l l1 2/ is (Single Integer Type, 2013)

42. A uniform circular disc of mass 50 kg and

radius  0.4 m is rotating with an angular

velocity of 10 rad/s about its own axis,

which is vertical. Two uniform circular

rings, each of mass 6.25 kg and radius 0.2

m, are gently placed symmetrically on the

disc in such a manner that they are

touching each other along the axis of the

disc and are horizontal. Assume that the

friction is large enough such that the

rings are at rest relative to the disc and

the system rotates about the original axis.

The new angular velocity (in rad s−1) of

the system is (Single Integer Type, 2013)

43. Two bodies, each of mass M, are kept

fixed with a separation 2L. A particle of

mass m is projected from the mid-point of

the line joining their centres, perpendicular

to the line. The gravitational constant is

G. The correct statement(s) is (are)
(Single Correct Option, 2013)
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(a) The minimum initial velocity of the mass m to
escape the gravitational field of the two

bodies is 4
GM

L

(b) The minimum initial velocity of the mass m to
escape the gravitational field of the two

bodies is 2
GM

L

(c) The minimum initial velocity of the mass m to
escape the gravitational field of the two

bodies is
2GM

L

(d) The energy of the mass m remains constant

44. One end of a horizontal thick copper wire

of length 2L and radius 2R is welded to an

end of another horizontal thin copper wire

of length L and radius R. When the

arrangement is stretched by applying

forces at two ends, the ratio of the

elongation in the thin wire to that in the

thick wire is (Single Correct Option, 2013)

(a) 0.25 (b) 0.50 (c) 2.00 (d) 4.00

45. A solid sphere of radius R and density ρ is

attached to one end of a massless spring

of force constant k. The other end of the

spring is connected to another solid sphere

of radius R and density 3ρ.The complete

arrangement is placed in a liquid of

density 2ρ and is allowed to reach

equilibrium. The correct statement(s)

is (are) (Single Correct Option, 2013)

(a) the net elongation of the spring is
4

3

3π ρR g

k

(b) the net elongation of the spring is
8

3

3π ρR g

k

(c) the light sphere is partially submerged

(d) the light sphere is completely submerged
displayed by the sensor when the
temperature of the metal surface is raised to
2767°C?

46. A particle of mass m is attached to one end

of a mass less spring of force constant k,

lying on a frictionless horizontal plane.

The other end of the spring is fixed. The

particle starts moving horizontally from

its equilibrium position at time t = 0 with

an initial velocity u0. When the speed of

the particle is 0 5 0. u , it collides elastically

with a rigid wall. After this collision
(More than One Correct Option, 2013)

(a) the speed of the particle when it returns to its
equilibrium position is u0

(b) the time at which the particle passes through
the equilibrium position for the first time is

t
m

k
= π

(c) the time at which the maximum compression

of the spring occurs is t
m

k
= 4

3

π

(d) the time at which the particle passes through
the equilibrium position for the second time is

t
m

k
= 5

3

π

Answer with Explanations

1. (b, c) V
kr=

2

2

F
dr

kr
dV=− = − (towards centre) F

dV

dr

 =−





At r R= ,

kR
mv

R
=

2

(Centripetal force)

v
kR

m

k

m
R= =

2

⇒ L mvR
k

m
R= = 2

2. (a, c) F i j= +( )$ $α βt [at t = 0,v = 0 , r= 0]

α = 1, β = 1

F i j= +t$ $

m
d

dt
t

v
i j= +$ $

On integrating, m
t

tv i j= +
2

2
$ $ [m = 1kg]

d

dt

t
t

r
i j= +

2

2
$ $ [r= 0 at t = 0]

Again, on integrating,

r i j= +t t3 2

6 2
$ $

r

v

O



At t =1s, τ = × = +





× +( ) $ $ ($ $ )r F i j i j
1

6

1

2

τ = 1

3
$k

v = +t
t

3

2
$ $i j

At t =1s, v i j i j= +
 

= +1

2

1

2
2$ $ ($ $ )m / s

At t =1s, r r1 0− = +





−1

6 2

1
$ 0$ [ ]i j

s i j= +1

6

1

2
$ $

s = 





+ 





1

6

1

2

2 2

⇒ 10

6
m

3. (a, c) h
r g

= 2σ θ
ρ
cos

(a) → ∝h
r

1

(b) h depends upon σ.

(c) If lift is going up with constant acceleration.

g g a
eff

= +( ) ⇒ h
r g a

=
+

2 σ θ
ρ

cos

( )

It means h decreases.

(d) h is proportional to cosθ.

4. (0.75 m ) a
g

I

MR

=
+

sinθ

1
2

a
g

ring = sinθ
2

(I MR= 2)

a
g

disc = 2

3

sinθ
I

MR=










2

2

s
h

at= =
sinθ

1

2

2

= 





1

2 2
1
2g

t
sinθ

⇒ t
h

g

h

g
1 2

4 16

3
= =

sin θ

s
h

at= =
sinθ

1

2

2 = 





1

2

2

3
2
2g

t
sinθ

⇒ t
h

g
2 2

3=
sin θ

= 4h

g

t t
h

g

h

g
2 1

16

3

4− = − = −2 3

10

h
4

3
2 2 3−





= −

Soving this equation we get, h = 0 75. m.

5. (a, c, d)

F A
dv

dy
v = − 





η

Since, height h of the liquid in tank is very small.

⇒ dv

dy

v

y

u

h
= = 





∆
∆

0 ⇒ F A
u

h
v = − 





( )η 0

F
h

F u F A Fv v v∝ 





∝ ∝ ∝1
0, , , η

6. (3) Given, d = 0 5. mm,

Y = × −2 1011 2Nm ,

l = 1m

∆l
Fl

AY

mgl

d
Y

= =
π 2

4

= × ×

× × × ×−

12 10 1

4
5 10 2 104 2 11

.

( )
π

= 0 3. mm

LC of vernier = −





1
9

10
mm = 0.1 mm

So, 3rd division of vernier scale will coincide with main
scale.

7. (b) v
GM

R
=

Let R R1 = , then R R2 4=

If m m2 = , then m m1 2=
List-I

(P)
v

v

R

R

R

R

1

2

2

1

4
2 1= = = :

(Q) L mvR=
L

L

R m v

R m v

1

2

1

2

2

4

1

2
2 1 1= = =( )

( )
( ) :

(R)
K

K

m v

m v

1

2

1
2

2
2

1

2
2

1

2

2 4 8 1= = =
( )

( )

( ) :

(S)
T

T

R

R

1

2

1

2

3 2 3 2
1

4
1 8= 






 = 





=
/ /

:

8. (a) When force F = 0 ⇒ potential energy U = constant

F ≠ ⇒0 force is conservative ⇒ Total energy E =
constant
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A

Plate

hS

θ=60°



List-I

(P) r i j( ) $ $t t t= +α β
d

dt

r
v i j= = +α β$ $ = constant ⇒ p = constant

| |v = + =α β2 2 constant

⇒ K = constant

d

dt
F U

v
a= = ⇒ = ⇒ =0 0 constant

E U K= + = constant

L r v= × =m( ) 0

L = constant

P → 1 2 3 4 5, , , ,

(Q) r i j( ) cos $ sin $t t t= +α ω β ω
d

dt
t t

r
v i j= = − +αω ω βω ωsin ( $ ) cos $ ≠ constant

⇒ p ≠ constant

| | ( sin ) ( cos )v = + ≠ω α ω β ωt t2 2 constant

⇒ K ≠ constant

a
v

r= = − ≠d

dt
ω2 0

⇒ E = constant = +K U

But K ≠ constant ⇒ U ≠ constant

L r v k= × = =m m( ) ( $ )ωαβ constant

Q → 2 5,

(R) r i j( ) (cos $ sin $ )t t t= +α ω ω
d

dt
t t

r
v i j= = − + ≠αω ω ω[sin ( $ ) cos $ ] constant

⇒ p ≠ constant

| |v = αω = constant ⇒ K = constant

a
v

r=
d

dt
E= − ≠ ⇒ =ω2 0 constant, U = constant

L r v k= × = =m m( ) $ωα2 constant

R → 2 3 4 5, , ,

(S) r i j( ) $ $t t t= +α β
2

2

d

dt
t

r
v i j= = + ≠α β$ $ constant ⇒ p ≠ constant

| | ( )v = + ≠α β2 2t constant ⇒ K ≠ constant

a
v

j= = ≠ ⇒ =d

dt
Eβ$ 0 constant = +K U

But K ≠ constant

∴ U ≠ constant

L r v k= × = ≠m t( ) $
1

2

2αβ constant

S → 5

9. Question is not very clear.

10. (c) If height of the cone h r>>
Then, µN mg=

µ ωm R r mg( )− =0
2

ω
µ0 =

−
g

R r( )

11. (d)

cos
π
n

h

R







=

∆ = − = −R h
h

n
h

cos ( / )π

= −








h

n

1
1

cos ( / )π

12. (a, c)

(a) If force is applied normal to surface at P, then line
of action of force will pass fromQ and thus,τ = 0.

(b) Wheel can climb.

(c) τ θ θ= −F R mgR( cos ) cos2 , τ θ∝ cos

Hence, as θ increases

τ decreases. So its correct.

(d)

τ θ τ= −⊥Fr mg cos ; increases with θ.
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R
h π/n

R=Maximum
height

P
Q

F

θ
mg

F

r⊥

θ
mg

x

F



13. (a, c, d) When the bar makes an angleθ, the height of its

COM (mid-point) is
L

2
cosθ.

∴ Displacement = −L
L

2
cosθ = −L

2
1( cos )θ

Since, force on COM is only along the vertical
direction, hence COM is falling vertically downward.
Instantaneous torque about point of contact is

τ θ= ×mg
L

2
sin or τ θ∝ sin

Now, x
L=
2

sin θ

y L= cosθ
x

L

y

L

2

2

2

22
1

( / )
+ =

Path of A is an ellipse.

14. (a, b) ∆xcm of the block and point mass system = 0

∴ m x R Mx( )+ + = 0

where, x is displacement of the block.

Solving this equation, we get

x
mR

M m
= −

+

From conservation of momentum and mechanical
energy of the combined system

0 = −mv MV

mgR mv MV= +1

2

1

2

2 2

Solving these two equations, we get

∴ v
gR

m

M

=
+

2

1

15. (c) Given, v
GM

R
e

e

e

= =11 2
2

. /km s

From energy conservation,

K U K Ui i f f+ = +
1

2
0 02mv

GM m

r

GM m

R
s

s e

e

− − = +

Here, r = distane of rocket from sun

⇒ v
GM

R

GM

r
s

e

e

s= +2 2

Given, M Ms e= ×3 105

and r Re= ×2 5 104.

⇒ v
GM

R
G

M

R
s

e

e

e

e

= + ×
×









2

2
3 10

2 5 10

5

4
( )

.

= +
 ×

×





2

1
3 10

2 5 10

5

4

GM

R

e

e .

= ×2
13

GM

R

e

e

⇒ v s
~− 42 km / s

16. (a) m
R= ×4

3

3π ρ

On taking log both sides, we have

ln( ) ln( ) ln( )m R= 





+ +in
4

3
3

π ρ

On differentiating with respect to time,

0 0
1 3= + +
ρ

ρd

dt R

dR

dt

v
dt

KR
dR= = ⇒ v R∝

17. (6) From mass conservation,

ρ π ρ π⋅ = ⋅ ⋅4

3

4

3

3 3R K r ⇒ R K r= 1 3/

∴ ∆ ∆U T A T K r R= = ⋅ −( )4 42 2π π

= ⋅ −−T K R K R( )/4 42 2 3 2π π

∆U R T K= −4 12 1 3π [ ]/

Putting the values, we get

10
10

4
4 10 13

1
4 1 3−

−
−= × × −

π
π [ ]/K

100 11 3= −K / ⇒ K1 3 2/ 100 10~= =

Given that K = 10α

∴ 10 103 2α / = ⇒ α
3

2= ⇒ α = 6

18. (c) Force on block along slot

= = = 





m r ma m
vdv

dr
ω2

vdv
v

rdr
R

r

0

2

2∫ ∫= ω
/

⇒ v
r

R2 2
2

2

2 2 4
= −











ω

⇒ v r
R dr

dt
= − =ω 2

2

4

⇒ dr

r
R

dt
R

r t

2
24 0

4
−

=∫ ∫/

ω
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A

C
y

x
O

mg

y

x
θ

θ



ln

r r
R

R

+ −


















2
2

4

2

−
+ −



















=ln

R
R R

R
t

/ 2
4 4

2

2 2

ω

⇒ r r
R R

e t+ − =2
2

4 2

ω

⇒ r
R R

e r r
R

et t2
2 2

2 2

4 4
2

2
− = + −ω ω

⇒ r

R
e

R

Re

t

t
=

+
2

2
2

4 4

ω

ω

= +R
e et t

4
( )ω − ω

19. (b)

F F i krot in rot= + ×2m v( $ ) $ω + × ×m r( $ $ ) $ω ωk i k

mr mv m rω ω ω2 22$ ( $ ) $i F j i= + − +in rot

F jin = 2mvrω$

r
R

e et t= +
4

[ ]ω − ω

dr

dt
v

R
e er

t t= = −
4

[ ]ω ωω − ω

F jin = −2
4

m
R

e et tω ωω − ω[ ] $

F jin = −mR
e et tω ω − ω

2

2
[ ]$

Also, reaction is due to disc surface then

F j kreaction = − +mR
e e mgt tω ω − ω

2

2
[ ]$ $

20. (a,b,d) r i j= +α βt t3 2$ $

v
r

i j= = +d

dt
t t3 22α β$ $

a
r

i j= = +d

dt
t

2

2
6 2α β$ $

At t = 1s,

(a) v i j= × × + × ×3
10

3
1 2 5 1$ $

= +( $ $ )10 10i j m / s

(b) L r p= × = × + ×





× +10

3
1 5 1 10 10$ $ ( $ $ )i j i j0.1

= −





5

3
$k N - ms

(c) F a i j= = × × × + ×





m m 6
10

3
1 2 5$ $

= +( $ $ )2 i j N

(d) τ = ×r F = +





× +10

3
5 2$ $ ( $ $ )i j i j

= + + −10

3
10$ ( $ )k k

= −





20

3
$k N - m

21. (c,d )

(a) L L Lz O D= −− −CM CMcos sinθ θ

= × − ×81 24

5

24

5

17

2

1

24

2
2

a m
maω ω

= × −81 24

25

17

2 24

2 2ma maω ω

(b) L m
l l

OCM − = 





( )5
9

5

9

5
Ω = 81

5

2ml ω = ×81

5

2ml a

l

ω

L
mla a m

OCM − = =81

5

81 24

5

2ω ω

(c) Velocity of point P : aω = 1 Ω then

Ω = =aω
1

Angular velocity of C.M. w.r.t  point O.

Angular velocity fo CM w.r.t Z-axis

= Ω cosθ

ω ω
CM − =z

a

1

24

5

ω ω
CM − =z

a

5
= a

a

ω
24

24

5

(d) L
ma m a

D − = +CM

2 2

2

4 2

2
ω ω( ) = 17 2ma ω

2
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θ

θ

l

θ
4 /5l

P

4 /5l

CM

4 m
Z

Ω

ω

O

ω

a

cos θ = l

l a+√ 2 2
= √24

5

r vr

Y ( )j

ω ( )k



22. (a,b,d) Case 1

In case 1, Mv M m v1 2= +( )

v
M

M
2

m
v1=

+








k

M m
A

M

M m

k

M
A

+
=

+






2 1

A
M

k
2

m
A1=

+

Case 2

In case 2, A A2 1=

T
M m

k
= +

2 π in both cases.

Total energy decreases in first case whereas remain

same in 2 nd case. Instantaneous speed at x0

decreases in both cases.

23. (d) Let the other mass at this instant is at a distance of

x from the centre O.

Applying law of conservation of angular momentum,
we have I I1 1 2 2ω ω=

∴ ( )( )MR MR
M

R
M

x2 2
2

2

8

3

5 8
ω = + 





+










8

9
ω





Solving this equation, we get x R= 4

5
.

24. (7) In case of pure rolling, mechanical energy remains
constant (as work-done by friction is zero). Further in
case of a disc,

translational kinetic energy

rotational kinetic energy
= K

K

T

R

=

1

2
1

2

2

2

mv

Iω

=











=mv

mR
v

R

2

2
2

1

2

2

1

or, KT = 2

3
(Total kinetic energy)

or, Total kinetic energy

K K mv mvT= = 





=3

2

3

2

1

2

3

4

2 2

Decrease in potential energy = increase in kinetic
energy

or, mgh m v vf i= −3

4

2 2( ) or v gh vf i= +4

3

2

As final velocity in both cases is same.

So, value of
4

3

2gh vi+ should be same in both

cases.

∴ 4

3
10 30 3 2× × + ( ) = × × +4

3
10 27 2

2( )v

Solving this equation we get, v2 7= m/s

25. (6) Consider a shell of radius r and thickness dr

dI dm r= ( ) 2 ⇒ dI r dr r= 2

3
4 2 2( )ρ π ⇒ I dI= ∫

I

I

k
r

R
r dr r

k
r

R
r dr r

B

A

R

R
=

⋅
=

∫

∫

2

3
4

2

3
4

6

10

5

5

2 2

0

2 2

0

π

π

So, n = 6

26. (2) At height h

g
g

h

R

′ =

+





1
2

…(i)

Given, g
g′ =
4

Substituting in Eq. (i) we get, h R=
Now, from A to B,

decrease in kinetic energy = increase in potential energy
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r

dr

V1M

X0

Just before is placedm

V2M

X0

Just after is placedm

m

M

X A0 +

Just before is placedm

M

Just after is placedm

m



⇒ 1

2 1

2mv
mgh

h

R

=
+

⇒ v gh

h

R

gR
2

2 1

1

2
=

+
= ( )h R=

⇒ v gR2 =

or v gR=
Now, v gR v

esc
= =2 2

⇒ N = 2

27. (7) For point mass at distance r l= 3

GMm

l

Gm

l
ma

( )3 2

2

2
− = ...(i)

For point mass at distance r l= 4

GMm

l

Gm

l
ma

( )4 2

2

2
+ = ...(ii)

Equating the two equations we have,

GMm

l

Gm

l

GMm

l

Gm

l9 162

2

2 2

2

2
− = +

7

144

2 2

2

GMm Gm

l
=

m
M= 7

288

∴ k = 7

28. (c) Gravitational field at a distance r due to mass ‘m’

E
G r

r
=

ρ π4

3

3

2
= 4

3

G rρπ

Consider a small element of widthdr and
area ∆ A at a distance r.

Pressure force on this element outwards

= gravitational force on ‘dm’ from ‘m’ inwards

⇒ ( ) ( )dp A E dm∆ =

⇒ − ⋅ = 





⋅dp A G r A dr∆ ∆4

3
πρ ρ( )

− =








∫ ∫dp

G
rdr

O

P

R

r
4

3

2ρ π

− =
×

−p
G

r R
4

3 2

2
2 2ρ π

[ ]

⇒ p c R r= −( )2 2

r
R= 3

4
, p c R

R
1

2
29

16
= −











=








c

R7

16

2

r
R= 2

3
, p c R

R
2

2
24

9
= −









 =









c

R5

9

2

p

p

1

2

63

80
= r

R= 3

5
, p c R R3

2 29

25
= −





=








c

R16

25

2

r
R= 2

5
, p c R

R
4

2
24

25
= −









 =









c

R21

25

2

⇒ p

p

3

4

16

21
=

29. (c) d h h h h= =2 41 2 1 2

This is independent of the value of g.

(P) g g
eff

>
d h h= =4 1 2 1.2 m

(Q) g g
eff

<
d h h= =4 1 2 1.2 m

(R) g g
eff

=
d h h= =4 1 2 1.2 m

(S) geff = 0

No water leaks out of jar. As there will be no pressure
difference between top of the container and any other
point. P P P P1 2 3 0= = =

30. (a) For floating, net weight of system = net upthrust

⇒ ( ) ( )ρ ρ σ σ1 2 1 2+ = +Vg Vg

Since string is taut, ρ σ1 1< and ρ σ2 2>

v
r g

P = −2

2

2

2
2 1η

σ ρ( ) (upward terminal velocity)
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r l
M

m m

Mass = dm
= ( )( )∆ ρ

( )

A dr

= Mass

= ρ
3

=
4 π r3

m

p- dp
dr

∆A

p

r

1

h1

h2

2

d

3
v = 2gh1



v
r g

Q = −2

9

2

1
2 1η

ρ σ( )

(downward terminal velocity)

v

v

P

Q

= η
η

1

2

Further, vP ⋅ vQ will be negative as they are opposite to
each other.

31. (a, b) Y = stress

strain
or Y ∝ 1

strain
(for same stress say σ)

(strain) (strain)Q P<
⇒ Y YQ P>
So, P is more ductile than Q. Further, from the given
figure we can also see that breaking stress of P is
more than Q. So, it has more tensile strength.

32. (b,d) Ist Particle

P = 0 at x a=
⇒ ‘a’ is the amplitude of oscillation ‘A1’.

At x = 0, P b= (at mean position)

⇒ mv bmax = ⇒ v
b

m
max =

E mv
m b

m

b

m
1

2
2 2

2 2 2

1= = 





=max

A v
b

m
1 1ω = =max

⇒ ω1 2

1= =b

ma mn
( , )A

b
a

a
1 n2= =

IInd Particle

P = 0 at x R= ⇒ A R2 =
At x = 0, P R=

⇒ v
R

m
max =

E mv
m R

m

R

m
2

2
2 2

2 2 2

1= = 





=max

A
R

m
2 2ω =

⇒ ω2
1= =R

mR m

(b)
ω
ω

2

1
2

21

1
= =/

/

m

mn
n

(c) ω ω1 2 2 2 2

1 1 1= × =
mn m m n

(d)
E b m

mn

b n a

n

R1

1

2

2

2 2 2

2

22

1 2 2 2ω
= = = =/

/

E R m

m

R2

2

2 22

1 2ω
= =/

/
⇒ E E1

1

2

2ω ω
=

33. (4) Applying conservation of angular momentum

2
2

0
2

mvr
MR− =ω , ω = 4

2

mvr

MR

Substituting the values, we get

ω =
× 





× ×

−

−

( ) ( ) ( )4 5 10 9
1

4

45 10
1

4

2

2

ω = 4 rad/s

34. (2) Angular impulse = change in angular momentum

∴ ∫ =τ ωdt I

⇒ ω
τ

= ∫ dt

I
=

°∫0
3 30

t
F R dt

I

sin

Substituting the values, we have

ω = 3 (0.5) (0.5) (0.5) (1)

1.5 (0.5)

2

2
= 2 rad/s

35. (b) Given, R
R

planet
earth=
10

and density,

ρ
π

= M

R

earth

earth
4

3

3
=

M

R

planet

planet
4

3

3π

⇒ M
M

planet
earth=

103

g
GM

R
surface of planet

planet

planet

=
2

= ⋅
⋅

GM

R

e

e

10

10

2

3 2

= GM

R

e

e10 2
= gsurface of earth

10
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v
m

r

ω

v
m

MR

P

Q

S
tr

a
in

Stress

F

F

30°
F



g g
x

R
depth of planet surface of planet= 





where, x = distance from centre of planet.

∴ Total force on wire

F dx g
x

RR

R
= 



∫4 5/

λ =










λg

R

x

R

R
2

4 5
2

/

Here, g g= surface of planet ,

R R= planet

Substituting the given values, we get

F = 108 N

36. (d) Using geometry

b

R
= +





cos θ α
2

⇒ R
b=

+





cos θ α
2

Using pressure equation along the path MNTK

p
R

h g
S

0 p0
2− + =ρ

Substituting the value of R, we get

h
S

R g

S

b g
= = +





2 2

2ρ ρ
θ α

cos

37. (4) Y
F A= = × −/

,
∆

∆
l

l

l 25 10 50 m

∆Y

Y
× =

×
× =

−

−
100

10

25 10

5

100 4
5

%

38. (c) From continuity equation,

A v A v1 1 2 2=
Here, A A1 2400=
because r r1 220=
and A r= π 2

∴ v
A

v v
A

2
1

2
1 1400= =( )

= 400 5( ) mm/s

= 2000 mm/s

= 2 m/s

39. (a) p p va a1 2
21

2
− = ρ

p p v3 2
21

2
− = ρ

l l

p p3 1=

∴ 1

2

1

2

2 2ρ ρ
l l
v va a=

⇒ v va
al

l

= ρ
ρ

∴ Volume flow rate ∝ ρ
ρ

a

l

40. (a) From momentum conservation equation, we have,

p pi f=

∴ m u m u gH( cos )$ ( )$0 0
2 2α i j+ −

= ( )2m v …(I)

H
u

g
= 0

2 2

2

sin α
…(ii)

From Eqs. (i) and (ii)

v i j= +u u0 0

2 2

cos $ cos $α α

Since both components of v are equal. Therefore, it is
making 45° with horizontal.

41. (5) Velocity of first bob at highest point

.v gR gl1 1= = (to just complete the vertical circle)

= velocity of second bob just after elastic collision.

= velocity of second bob at the bottommost point

= 5 2gl ⇒ l

l

1

2

5=

42. (8) I I1 1 2 2ω ω=
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θ
α/2R

b

θ α
+

2

α
2

α
2

(a)

M

K
h

(b)

N

T

m
u0 cos α

m

u – gH0 2
2

j

i

1

3

2

ω1

ω2

⇒

Disc ,→ M R
Ring ,→ m r



∴ ω ω2
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43. (b)

Let v is the minimum velocity. From energy conservation,

U K U Kc c+ = +∞ ∞

∴ mV mvc + = +1
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∴ v Vc= −2 = − −
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45. (a)

On small sphere
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23 3π ρ π ρR g kx R g( ) ( )+ = …(i)

On second sphere (large)
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23 3π ρ π ρR g R g kx( ) ( )= + …(ii)

By Eqs. (i) and (ii), we get
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46. (a,d) (a) At equilibrium ( )t = 0 particle has maximum
velocity u0. Therefore velocity at time t can be written
as

u u t u t= =max cos cosω ω0

when, u u u t= =0.5 0 0cosω
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