chapter 16

molecular Basis of Inheritance

Chapter Contents

- Introduction
- The DNA
- The Search for Genetic Material
- RNA World
- Replication
- Transcription
- Genetic Code
- Translation
- Regulation of Gene

Expression

- Human Genome Project
- DNA Fingerprinting
- Some Important Definitions
- Quick Recap

Introduction

"Factors/Genes" were first detected and analyzed by Mendel and subsequently many other scientists, by following their patterns of transmission from generation to generation. These studies, while greatly elucidating the nature of inheritance in living organisms. provided no insight into the structure or molecular composition of "factors". In 1926, the quest to determine the mechanism for genetic inheritance reached the molecular level and the nature of the putative genetic material was investigated culminating in the realisation that DNA-deoxyribonucleic acid is the genetic material at least for the majority of organisms. This is the substance which controls the inheritance of traits from one generation to the next and it is also able to express its effect through the formation and functioning of traits.
Nucleic acid is of two types in all living systems ie., deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). DNA is genetic material in all organisms except some viruses. RNA is genetic material in riboviruses. In others, RNA functions as a messenger carrying genetic information, an adapter for picking up amino acids. siructural and catalytic molecule in some cases.
(n this chapter, we are going to discuss the structure of DNA, its replication, the process of making RNA from DNA (transcription), genetic code that determines the sequence of amino acids in proteins, the process of protein synthesis (translation) and elementary basis of their regulation. The essentials of human genome sequencing and its consequences will also be discussed in the last section.

THE DNA

DNA is a long polymer of deoxyribonucleotides. It is an acidic substance present in nucleus, which was first identified by Friedrich Meischer in 1869. He named it as "Nuclein". Altmann found these substances to be acidic in nature, hence he named it nucleic acid. The length of DNA is usually defined as number of nucleotides or a pair of nucleotide referred to as base pairs (bp) present in it. This also is the characteristic of an organism.

[^0]4 Molecular Basis of Inheritance
IVEEI \& AIIMS
Few examples are given below
Few examples are given beiow:

Organism	Genetic material	No. of nucleotides or bp
$\phi 174$ bacteriophage	ssDNA, Circular	5386 bases
Lambda (2.) phage	dsDNA, Linear	48502 bp
Escherichia coll	dsDNA. Circular	$4.6 \times 10^{6} \mathrm{bp}$
Human genome	dsDNA. Linear	$3.3 \times 10^{9} \mathrm{bp}$

Structure of Polynucleotide Chain
The basic unit of DNA is a nucleotide which has three components - a nitrogenous base, a pentose sugar (deoxyribose) and a phosphate group. There are two types of nitrogenous bases
(i) Purines: Heterocyclic, 9-membered double-ring structure with N at position 1, 3, 7 and 9, e.g., Adenine (A) and Guanine (G)
(ii) Pyrimidines : Heterocyclic, 6-membered single-ring structure with N at 1 and 3 position, e.g., Cytosine (C), Thymine and Uracil. Cytosine is common in both DNA and RNA; thymine is present in DNA and uracil is present in RNA at the place of thymine.
A polynucleotide chain shows following types of linkage or bond in its components
(i) N -glycosidic linkage : A nitrogenous base is linked to the pentose sugar through a N -glycosidic linkage to form a nucleoside. Purine nucleosides have $1^{\prime}-9$ glycosidic linkage (carbon 1^{\prime} of sugar and 9 position of $A / G)$. Pyrimidine nucleosides have $1^{\prime}-1$ linkage $i . e$. ., sugar carbon 1^{\prime} and 1 position of T / C).
(ii) Phosphoester linkage : When a phosphate group is linked to $5^{\prime}-\mathrm{OH}$ of a nucleoside through phosphoester linkage a corresponding nucleotide is formed. Two nucleotides are linked through $\mathbf{3}^{\prime}-5^{\prime}$ phosphodiester linkage to form a dinucleotide
A polymer thus formed has a free phosphate moiety at 5^{\prime}-end of sugar, which is referred as 5^{\prime}-end of polynucleotide chain. Similarly, at the other end of the polymer the sugar has a free $3^{\prime}-\mathrm{OH}$ group which is referred to as 3^{-}-end of polynucleotide chain. The backbone in a polynucleotide chain is formed due to sugar and phosphates. The nitrogenous base linked to sugar moiety projects from the backbone.

5 phosphate

Fig. : A Polynucleotide chain

Types of Nucleosides in DNA	Types of Nucleotides in DNA
(i) Deoxyadenosine $(\mathrm{A}+\mathrm{S})$ (ii) Deoxyguanosine ($\mathrm{G}+\mathrm{S}$) (iii) Deoxycytidine ($\mathrm{C}+\mathrm{S}$) (iv) Deoxythymidine ($\mathrm{T}+\mathrm{S}$)	$\mathrm{P}=$ dAMP (deoxyadenósine monophosphate) $P=$ dGMP (deoxyguanosine monophosphate) $\mathrm{P}=\mathrm{dCMP}$ (deoxycytidine monoghosphate) $\mathrm{P}=\mathrm{dTMP}$ (deoxytuymidine monophosphate)
Types of Nucleosides in RNA	Types of Nucleotides in RNA
(i) Adenosine $(A+S)$ (ii) Guanosine $(G+S)$ (iii) Cytidine $(\mathrm{C}+\mathrm{S})$ (iv) Uridine $(\mathrm{U}+\mathrm{S})$	$\mathrm{P}=\mathrm{AMP}$ (adenosine monophosphate) $P=$ GMP (Guanosine monophosphate) $\mathrm{P}=\mathrm{CMP}$ (Cytidine monophosphate) $\mathrm{P}=$ UMP (Uridine monophosphate)

Note: S and Prepresents sugar and phosphate respectively. Sugar is ribose $\left(\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}\right)$ in RNA and deoxynibose $\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{O}\right)$ in DNA.

NEET \& AIIMS
Molecular Basis of Inheritance
Derivation of DNA Structure
Two lines of investigations helped in derivation of DNA structure $i . \theta$.
(a) X-ray Crystallography and
(b) Chargaff's rule
(a) X-ray Crystallography : Maurice Wilkins and Rosalind Franklin obtained very fine X -ray diffraction pictures of DNA. It was suggested that structure of DNA was sort of helix with 3.4 A periodicity. But they had not proposed a definitive model for DNA.
(b) Erwin Chargaff's Rules: Chargaff's along with his colleagues, performed base composition studies and put forward certain generalisations for double-stranded DNA, called as Chargaff's rule (Not applicable for single-stranded DNA).
(i) Purines and pyrimidines occur in equal amounts.
(ii) Purines found in DNA are adenine and guanine. Pyrimidines of DNA are thymine and cytosine. $A+G=T+C$
(iii) $\frac{A+G}{T+C}=1$, this value is constant for all species.
(iN) Base ratio $\frac{A+T}{C+G}$ is specific for a species. It is used to identify the species. It is less than one in prokaryotes, e.g. E. coli $=0.92$ and more than one in eukaryotes, e.g., Humans $=1.52$
(v) Sugar deoxyribose and phosphate residues occur in equal number
(v) Purine adenine is equimolar with pyrimidine thymine.
(vi) Purine guanine is equimolar with pyrimidine cytosine.

James Watson and Francis Crick on the basis of previous informations proposed a very simple but famous double helix model for the structure of DNA. One of the hallmarks of their proposition was base pairing between the two strands of polynucleotide chains. However this proposition was based on the observations of Erwin Chargaff. The base pairing confers a very unique property to the polynucleotide chains. They are said to be complementary to each other and therefore if the sequence of bases in one strand is known then the sequence in other strand can be predicted. Thus if one DNA strand has A, the other would have T and if one has G, the other would have C. Therefore, if the base sequence of one strand is CATTAGGAC, the base sequence of other strand would be GTAATCCTG. Also, if each strand from a DNA acts as template for synthesis of a new strand, the two double-stranded DNA or daughter DNA produced would be identical to the parental DNA molecule.
Salient features of the double helix structure of DNA are
(i) DNA consists of two polynucleotide chains. The backbone is constituted by sugar-phosphate and the bases project inside.
(ii) The two chains of DNA run in anti-parallel fashion with $5^{\prime} \rightarrow 3^{\prime}$ polarity in one and $3^{\prime} \rightarrow 5^{\prime}$ polarity in other chain.

(iii) The bases in two strands are paired through hydrogen bonds forming base pairs (bp). Adenine forms two H-bonds with thymine from opposite strand and viceversa. Similarly, guanine is bonded with cytosine with three H -bonds. As a result, always a purine comes opposite to a pyrimidine. This generates approximately niform

NEET \& AIMIS

Double-stranded polynucleotide chain

The DNA double helix

Knowledge Cloud

(i) Types of DNA and their comparison.

DNA types	Base pairs per turn (n)	Rotation	Vertical rise per bp	Helical diameter bp (h)
A	11	Right handed	2.56 A	23 A
B	10	Right handed	3.4 A	20 A
C	9.33	Right handed	3.3 A	19 A
Z	12	Lert handed	3.8 A	18.4 A

(ii) Linear double-stranded DNA in eukaryotes and PPLO (Monerans)
(iii) Repetitive DNA : it is the part of DNA which contains the same sequence of nitrogen bases repeated more than once in genome. The area with long sequence of short repetitive DNA is called satellite DNA because it separates out during density gradient ultracentrifugation as small dark bands.

$$
\left.\begin{array}{lllllll}
5 & \begin{array}{llllll}
3 \\
\hline & A & A & A & A & A \\
\hline
\end{array} & A & A \\
3 & T & T & T & T & T & T
\end{array}\right]
$$

(iv) Palindromic DNA : it has base sequence which reads the same on both strands either in $5^{\circ} \rightarrow 3^{\prime}$ or $3 \rightarrow 5^{\prime}$ direction. Different types of palindromic sequences are recognized by restriction endonucleases, e.g.

$$
\begin{aligned}
& 5^{\prime}-\mathrm{G} \text { A A T T C }-3^{\prime} \\
& 3^{\prime}-\mathrm{C} \text { T T A A G-5 }
\end{aligned}
$$

(v) Denaturation and Renaturation : Separation of two strands of DNA from each other due to breakage of H -bonds when it is exposed to high temperature, acid or alkali is called denaturation or melting Reassociation of separated DNA by H-bonds formation is called renaturation or anneaing. DNA with more $A=T$ has low melting areas and denatured more easily. $D N A$ with more $G=C$ than $A=T$ has high melting areas.
(vi) C-value : Total amount of DNA per genome
(vii) The amount of DNA is expressed in picogram.
$1 \mathrm{pg}=10^{-12} \mathrm{gm}$.
(viii) DNA functions
(a) Hereditary information
(b) Variations : It occurs due to crossing over at the time of meiosis.
(c) Mutations : Sudden inheritable variations due to change in genetic material
(d) Autocatalytic function or DNA replication i.e. DNA \rightarrow DNA synthesis
e) Heterocatalytic function: DNA \rightarrow RNA proteins, normones synuthesis
(i) Control of metabolism. Growth and differentiation
g) DNA fingerpinting

Central Dogma of Molecular Biology

- ouphins one way or unidrectional flow of information from master copy DNA to workng copy RNA and from RNA to buidding molecule or ta
roped by Francis Crick.

Reverse Central Dogma or Teminism of information was reported in 1970 by H. Temin and D. Baltimore. They An exception to this one wayerse transcription in some viruses. These viruses produce an enzyme reverse indender which can synthesize DNA over RNA template. This discovery was important in understanding解 be shown as follows

Reverse flow of information
Packaging of DNA Helix
The distance between two consecutive base pairs is $0.34 \mathrm{~nm}\left(0.34 \times 10^{-0} \mathrm{~m}\right)$ then length of DNA for a human diploid call is $66 \times 10^{9} \mathrm{bp} \times 0.34 \times 10^{-9} \mathrm{~m}=22$ metres. This length is far greater than the dimension of a typical nucleus which is approximately $10^{-6} \mathrm{~m}$
Similarly, the number of base pairs in E colf is 4.6×10^{6} so the total length comes out to be 1.36 mm which is placed in a cell having size $1 \mu \mathrm{~m}$. So, the long sized DNA can be accommodated in small area only through packaging or compaction.
DNA Packaging in Prokaryotes
In prokaryotes, DNA is not scattered throughout the cell although they do not have a defined nucleus. DNA is found in cytoplasm in super colled stage. The colls are maintained by non-histone basic protein polyamines which have positive charge. The packaged structure of DNA is called nucleoid or genophore.
DNA Packaging in Eukaryotes
In eukaryotes, this organisation is much more complex and is carried out by a set of positively charged basic proteins called histones. Histones are rich in the basic amino acids residues lysines and arginines with charged side chains There are five types of histone proteins i.e., $\mathrm{H}_{1}, \mathrm{H}_{2} \mathrm{~A}, \mathrm{H}_{2} \mathrm{~B}, \mathrm{H}_{3}$ and H_{4}. Four of them occur in pairs to produce histone octamer or nu-body (two copies of each $\mathrm{H}_{2} \mathrm{~A}, \mathrm{H}_{2} \mathrm{~B}, \mathrm{H}_{3} \& \mathrm{H}_{4}$). The negatively charged DNA is wrapped around the positively charged histone octamer to form a structure called nucleosome.

Fig. : Nucleosome

Fig. : EM picture - "Beads-on-String"

NEET \& AIIMS
About 200 bp of DNA is wrapped over nu-body lo complete about 1 1/4 turns. This forms nucleosome of size $110 \times 60 \mathrm{~A}$. DNA present between two adjacent nucleosome is called linker DNA with about 80 bp . The pucleosome constitute repeating unit of a structure in nucleus called chromatin. The nucleosomes in cromatin gives a 'beads on string' appearance under electron microscope. The nucleosomes further coils form solenoid/chromatin fibre. It has diameter of 30 nm . Chromatin fibres are further coiled and condensed at metaphase stage of cell division to form chromosomes. The packaging of chromatin at higher level require additional set of proteins that collectively are referred as Non-histone chromosomal (NHC) proteins.
Chromatin is differentiated into two regions, on the basis of staining behaviour in a typical nucleus

1. Heterochromatin

 2. Euchromatin(i) It is darkly stained region
(i) Lightly stained region
(ii) Chromatin is densely packed
(ii) Loosely packed chromatin
(iii) Transcriptionally it is inactive
(iii) Transcriptionally it is active

Fig.: Various steps in the folding and superfolding of basic chromatin components to generate an eukaryotic chromosome

Knowledge Cloud

Non-histone chromosomal proteins are of three types :
i) Scaffold or structural NHC
(ii) Functional NHC protein e.g., DNA polymerase, RNA polymerase that controls gene expression)

NHC protein e.g., DNA poly
2. Chemical composition of chromosome
DNA
RNA
Histone proteins -40%
Acidic proteins -50%
Lipid
$\mathrm{Ca}^{* 2}, \mathrm{Mg}^{* 2}, \mathrm{Fe}^{22}-8.5 \%$
$\mathrm{Ca}^{+2}, \mathrm{Mg}^{+2} \cdot \mathrm{Fe}^{+2}$ - Traces

Aokash Educational Services Prt. Lud. Corporrite ombo

Central Dogma of Molecular Biology
It explans one way or unidrectional fow of information from master cepy RNA to building moleoule or trat expressing molecule polypeptide. Central dogma of molecular biology way proposed by Francis Crick

Reverse Central Dogma or Teminism
An exception to this one way flow of information was reported in 1970 by H . Temin and D. Baltimore. The independently discovered reverse transcription in some viruses. These viruses produce an enzyme reverse fransoriptase which can synthesize DNA over RNA template. This discovery was important in understanding cancer and, hence, these two scientists were awarded Nobel prize. The modified flow of information now can be shown as follows

Packaging of DNA Helix
The distance between two consecutive base pairs is $0.34 \mathrm{~nm}\left(0.34 \times 10^{-9} \mathrm{~m}\right)$ then length of DNA for a human diploid cell is $6.6 \times 10^{9} \mathrm{bp} \times 0.34 \times 10^{-5} \mathrm{~m}=2.2$ metres. This length is far greater than the dimension of a typical nudeus which is approximately $10^{-6} \mathrm{~m}$.
Simiarly, the number of base pairs in E coll is 4.6×10^{6} so the total length comes out to be 1.36 mm which is placed in a cell having size $1 \mu \mathrm{~m}$. So, the long sized DNA can be accommodated in small area only through packaging or compaction.
ONA Packaging in Prokaryotes
In prokaryotes, DNA is not scattered throughout the cell although they do not have a defined nucleus. DNA sfound in cytoplasm in super colled stage. The coils are maintained by non-histone basic protein polyamines which have positive charge. The packaged structure of DNA is called nucleoid or genophore.

DNA Packaging in Eukaryotes

In eukaryotes, this organisation is much more complex and is carried out by a set of positively charged basic proteins called histones. Histones are rich in the basic amino acids residues lysines and arginines with charged side chains. There are five types of histone proteins $i e ., \mathrm{H}_{1}, \mathrm{H}_{2} \mathrm{~A}, \mathrm{H}_{2} \mathrm{~B}, \mathrm{H}_{3}$ and H_{4}. Four of them occur in pairs to produce histone octamer or nu-body (two copies of each. $\mathrm{H} A, \mathrm{~A}, \mathrm{~B}, \mathrm{H}_{3} \& \mathrm{H}_{4}$). The negatively charged DNA is wrapped around the positively charged histone octamer to form a structure called nucleosome.

Fig. : Nucleosome

Fig. : EM picture - "Beads-on-String"

NEET \& AIIMS
Molecular Basis of Inhertance 169
About 200 bp of DNA is wrapped over nu-body to complate about 1%, turns. This forms nudeosome nucleosome DNA present between two adjacent nucleosome is called linker DNA with about 80 bp. The chromatin gives a 'beads on string' appearance under nucleus called chromatin. The nucleosomes in to form solenoid/chromatin fibre It has diameter of 30 electron microscope. The nucleosomes further coils at metaphase stage of cell division to form chromosomes . The packaging of are further coiled and condensed additional set of proteins that collectively are referred as Non-histone chromosomal (NHC) provel require
Chromatio is differentiated into

1. Heterochromatin
2. Euchromatin
(i) It is darkly stained region
(i) Lightly stained regior
(ii) Chromatin is densely packed
(i) Loosely packed chromatin
(iii) Transcriptionally it is inactive
(iii) Transcriptionally it is active

to generate an eukaryotic chromosome
Knowledge Cloud
3. Non-histone chromosomal proteins are of three types:
(i) Scaffold or structural NHC
(ii) Functional NHC protein e.g. DNA polymerase, RNA polymerase
(iii) Regulatory NHC protein e.g., HMG (High mobility group proteins that controls gene axpression).
4. Chemical composition of chromosome
DNA
RNA
Histone proteins -40%
Acidic proteins $\quad-80 \%$
Lipid
Ca

Example 1: If a DNA molecule has 2000 bp then calculate the.	
	(a) Number of sugar and phosphate molecules
	(b) Number of N -glycosidic linkage
Solution :	(a) Total number of nucleotides $=4000$
	Nucleotide \rightarrow Nitrogen base + Sugar + Phosphate
	Thus, total no. of sugar $=4000$, and phosphate $=4000$.
	(b) N -glycosidic linkage occurs in between nitrogen base and sugar.
	Total no. $=4000$
Example 2 :	DNA was extracted from Streptococcus bacterium. The proportion of Adenine was found to be 28%, then calculate the amount of cytosine.
Solution :	According to Chargaff rule
	Equimolar concentration of $\mathrm{A}=\mathrm{T}$ and $\mathrm{G}=\mathrm{C}$
	$A=T \rightarrow 28+28=56 \%$
	Thus G = C amount is 44% with $22 \% \mathrm{G}$ and $22 \% \mathrm{C}$.
	$\mathrm{C}=22 \%$

Example 3: If the sequence of one strand of DNA is written as follows
$5^{5}-$ TGCAGCTAGCTAGCATCG-3
Write down the sequence of complementary strand in $5^{\prime} \rightarrow 3^{\prime}$ direction.
Solution :
$5^{\prime} \overline{\text { TGCAGCTAGCTAGCATCG }}^{3}$
$3^{\prime} \frac{\text { A CGTCGATCGATCGTAGC }}{\leftarrow} 5^{\circ}$
In $5^{\prime} \rightarrow 3^{\prime}$ direction; CGATGCTAGCTAGCTGCA

Example 4 : Enumerate the number of beaded structures (nucleosomes) present in the nucleus of diploid eukaryotic cell which possess $2.4 \times 10^{6} \mathrm{bp}$.
Solution : One nucleosome has 200 bp .
$\frac{2.4 \times 10^{6}}{200}=1.2 \times 10^{4}$ or 12×10^{3} nucleosomes

Try Yourself

1. Select true or false statement :
(a) Two nucleotides in a strand are linked through H -bond to form a dinucleotide.
(b) The pitch of the DNA helix is 3.4 nm .
(c) Deoxythymidine is monomer nucleotide of DNA.
(d) DNA is packaged with non-histone basic protein to form nucleoid.

Can you suggest simple name to the process of RNA \rightarrow DNA synthesis?

EXERCISE

1. Which of the following bond is not associated with a deoxyribonucleotide?
(1) Phosphoester bond
(2) Glycosidic bond
(3) Phosphodiester bond
(4) More than one option is correct
2. RNA possess additional \qquad group at position in the sugar than the DNA
(1) $\mathrm{OH}, 5^{\prime}$
(2) $\mathrm{H}_{1}{ }^{2}$
(3) $\mathrm{OH}, 2$
(4) $\mathrm{H}, 5^{\circ}$
3. Hallmark of the Watson and Crick three dimensional DNA model was based upon the findings of
(1) Wilkins and Franklin
(2) Erwin Chargaff
(3) Hershey and Chase
(4) Meselson and Stah
4. Which of the following DNA form has maximum number of base pairs per turn?
(1) A-DNA
(2) B-DNA
(3) C-DNA
(4) Z-DNA
5. Which of the following is a part of nu-body?
(1) Histone octamer
(2) DNA + Core of nucleosome
H1 protein
(4) $1 \frac{3}{4}$ turn of DNA +H 1 protein

Choose the correct steps in the organisation of eukaryotic chromosome
(1) Nucleosome \rightarrow Solenoid \rightarrow Supersolenoid
(2) Solenoid \rightarrow Nucleosome \rightarrow Chromatid
(3) DNA \rightarrow Solenoid \rightarrow Nucleosome
(4) Chromatin \rightarrow Solenoid \rightarrow Nucleosome
7. Heterochromatin
(1) Is transcriptionally active
(2) Is densely packed
(3) Replicated during early S-phase
(4) Stains lightly
8. Non-histone proteins
(1) Are of five types
(2) Are involved in nucleosome formation
(3) Control gene expression
(4) Are basic proteins
9. The number of glycosidic bonds associated with DNA of diploid human cell are
(1) 6.6×10^{9}
(2) $2 \times 6.6 \times 10^{9}$
(3) 3.3×10^{9}
(4) $3.3 \times 10^{9}-2$
10. Which of the following does not confer stability to the helical structure of DNA ?
(1) Phosphodiester bond
(2) H -bond
(4) More than one option is correct

HE SEARCH FOR GENETIC MATERIAL

Even though the discovery of nuclein by Meischer and the propositiontior principle of inneritance by Mendel we aimost at the same time, but that the DNA acts as a genetic material took long to be discovered and prover

The experiments given below prove that DNA is the genetic material

1. Transforming Principle: The transformation experiments, conducted by Frederick Griffith in 1928, are great evidence in establishing the nature of genetic material. He performed series of experiments by selecting two strains of bacterium Streptococcus pneumoniae (also called Pneumococcus) namely, s-ll and R-II.
(i) S-III strain/smooth or capsulated type have a mucous (Polysaccharide) coat and produce smooth shiny colonies in culture plate. These are virulent and cause pneumonia.
(ii) R-II strain/rough or non-capsulated type have no mucous coat and produce rough colonies. These are non-virulent and do not cause pneumonia
The experiment can be described in following four steps

(a) S strain	\rightarrow	Injected into mice	\rightarrow	Mice die
(b) R strain	\rightarrow	Injected into mice	\rightarrow	Mice live
(c) S strain (heat-killed)	\rightarrow	Injected into mice	\rightarrow	Mice live
(d) S-strain (heat-killed) + R-strain (live)	\rightarrow	Injected into mice	\rightarrow	Mice die

Griffith was able to kill bacteria by heating them. He observed that heat-killed S-strain bacteria injected died. Moreover, he recovered living S-bacteria a mixture of heat-killed S and live R-bacteria, the mice He concluded
bacteria. This occurred perhaps due to absoption of sow been transformed by the heat-killed S -strain type bacteria from heat-killed smooth bacteria of some transforming principle or substance by rough polysaccharide coat and become virulent. This it had enabled the R-strain to synthesize a smooth However, the biochemical nature of genetic Thas must be due to the transfer of the genetic material Biochemical characterisation of drat his experiments.
McCarty (1944) repeated the experiment in-vitro to ide: Oswald Avery, Colin Macleod and Maclyn substance. They proved that this substance is DNA to identify the biochemical nature of transforming to be protein.
They purified biochemical i.e., proteins, DNA and RNA from the heat-killed S-cells to see which ones could transform live R-cells into S-cells. They discovered that DNA alone from S-bacteria caused R-
bacteria to become transformed.
They also discovered that protein-digesting enzymes $i . e$., protease and RNA-digesting enzymes $i . e$., with DNase did inhibit transformation, so the transforming substance was not a protein or RNA. Digestion that DNA is the hereditary material, but not all biologists were caused the transformation. They concluded

Fig.
2. Evidence from Experiments with Balecular Basis of Inheritance 173 material came from the experiments of Alfred Hershey The unequivocal proof that DNA is the genetic (T_{2} bacteriophage) that infects bacterium Alfed Hershey and Martha Chase (1952). They worked with virus of DNA and protein coat. Thus, it is ontains information for the pr, it is the most suitable material to determine whether DNA or protein the production of new virus particles
contains phosphorus and proteins could be found out by labelling them with radioactive tracers. DNA infected with phages in not sulphur. Therefore, phage DNA was labelled with P^{32} by growing bacteria in culture medium containing ${ }^{32} \mathrm{PO}_{4}$. Similarly, protein of phage contains sulphur phages in infection, blending and centrifugation.
(i) Infection: Both types of labelled phages were allowed to infect normally cultured bacteria in separate experiments
(ii) Blending : These bacterial cells were agitated in a blender to break the contact between virus and bacteria.
(iii) Centrifugation : The virus particles were separated from the bacteria by spinning them in a centrifuge.
After the centrifugation the bacterial cells showed the presence of radioactive DNA labelled with P^{32} while radioactive protein labelled with S^{35} appeared outside the bacterial cells i, θ, in the medium. Labelled DNA was also found in the next generation of phage. Bacteria that were infecter in the mium. Labelled radioactive proteins were not radioctiv. This phage. Bacteria that were infected with viruses that had viruses. DNA is therefore the genetic material indicated that proteins did not enter the bacteria from the

74 Molecular Basis of inheritance
Properties of Genetic Material (DNA versus RNA) Now it is clear that the debale between proteins versus DNA as the genetic matenia was unequivocally resolved from Hershey-Chase experiment. However, it subsequeriophage, etc
genetic material $\theta .9$., Tobacco Mosaic viv,
molecule that can act as genetic material must fulfill the following criteria
i) It should chemically and structurally be stable.

It should be able to generate its replica (replication)
iii) It should provide the scope for slow mutation that are required for evolution.
(iv) It should be able to express itself in the form of Mendelian characters.

The genetic material should be stable enough not to change with different stages of life cycle, age or with change in physiology of the organism. DNA being more stable is preferred as genetic material, as
(a) Free 2 OH of RNA makes it more labile and easily degradable. Therefore DNA in comparison is more stable.
(b) Presence of thymine (5-Methyl uracil) at the place of uracil also confers additional stability to DNA.
(c) RNA being unstable, mutates at a faster rate. Consequently, viruses having RNA genome can directly code for the synthesis of proteins, hence can easily express the characters.

RNA WORLD
RNA was the first genetic material. There are evidences to suggest that essential life processes, such as metabolism, translation, splicing etc. evolved around RNA. RNA used to act as a genetic material as well as a catalyst. There are some important biochemical reactions in living systems that are catalysed by RNA transferase (peptide bond formation). But. RNA being a catalyst was P (Cleavage), Snurps (Splicing). Peptidyl DNA has evolved from RNA with chemical modifications the and having complementary strand further resists changes by evolving a stable. DNA being double stranded structural molecule and in some cases catalytic. From above discussion it is of repair. RNA is adapter, and DNA can function as genetic material, but DNA being stable is preferred for very much clear both RNA For the transmission of genetic information RNA is better material. REPLICATION

Watson and Crick had immediately proposed a scheme for DNA replication while proposing the double helical synture of DNA. The scheme suggested that the two strands would separate and act as template for the one parental and one newtary strands. After the conis sche wication, each DNA molecule would have replication.
The Experimental Proof
The following experiment suggests that DNA replication is semiconservative
(A) Matthew Meselson and Franklin Stahl (1958) performed following experiment using heavy nitrogen (${ }^{5} \mathrm{~N}$) in E . coll.
(i) They grew E. coll in a medium containing ${ }^{15} \mathrm{NH}_{4} \mathrm{Cl}$ as the only nitrogen source for many as well as other nitrogen-containing of nitrogen. ${ }^{15} \mathrm{~N}$ was incorporated into newly synthesised DNA fom the normal DNA by centrifugation in a cesium chioride (CsCI) delecule could be distinguished f CsCl , on centrifugation, forms density gradient bands of a solutiony gradient. A dense solue top hat increases gradually towards bottom with highest density solution of lower density at the top
iii) Then they transferred the colls into
definite time intervals as the cells multiplied, and extral ${ }^{4} \mathrm{NH}_{4} \mathrm{Cl}$ and took samples at various stranded helix. The various samples were separated inacted the DNA that remained as doublethe densities of DNA.
(iii) Thus, the DNA that was extracted from the cirle had a hybrid or intermediate density. DNA extracted from the culture afler another generation 20 minutes $2^{\text {nd }}$ generation or 40 minutes was composed of equal amounts of this hybrid DNA ($\mathbf{N}^{14} \mathrm{~N}^{15}$) $i . e$. light DNA $\left(N^{14} N^{14}\right)$. Increase in the amount of light DNA and decrease in hybrid DNA N^{15}) and of be possible due to semiconservative mode of replication.

> Fig : Meselson and Stahl's Experiment
(B) Taylor et. al. have proved semiconservative mode of chromosome replication in eukaryotes using tritiated thymidine (${ }^{3} \mathrm{H}$-thymidine) in root of Vicia faba (Faba beans).

Knowledge Cloud

Cairns proved semiconservative mode of replication in E. coli by using tritiated thymidine (H^{3} - tdR) in autoradiography experiment. He proposed θ-model for replication in circular DNA.

The Machinery and the Enzymes/DNA Replication Mechanism

The process of replication in living cells requires a set of enzymes. The main enzyme is referred to as DNA -dependent DNA polymerase It is highly efficient with the ability to polymerise some 2000 bp per second Not only do these polymerases have to be fast, but they also have to catalyse the reaction with high degree of accuracy Any mistake during replication would result into mutations. The whole genome of Escherischia coli having $4.6 \times 10^{6} \mathrm{bp}$ is replicated within 38 minutes. DNA replication completes in following steps
(i) Origin of Replication : Replication begins at a particular region of DNA which is called origin of replication. It is because of the requirement of the origin of replication that a piece of DNA theeded to be propagated during recombinant DNA procedures, requires a vector. The vectors provil On the other replication. Prokaryotes have single origin of replication. it hand, eukaryotes have several thousands origins of replication
(ii) Activation of deoxyribonucleotides : Four types of deoxyribonucleotides, namely, dAMP, dGMP, dTMP and dCMP are activated by phosphate, energy and enzyme phosphorylase into triphosphate state and dCMP are activated by phosphate, erve dual purposes. In addition to acting as substrates, they provide energy for polymerisation reaction, because the two terminal phosphat provide energy for polymerisation reaction, because deoxynucleoside triphosphates are high engy dATP

dAMP		
dGMP	$+2 \mathrm{H}_{3} \mathrm{PO}_{4}$	Phosphoryeso Energ
dCMP	$+2 \mathrm{H}_{3} \mathrm{PO}_{4}$	
dTMP		

(iii) Unwinding of helix : Unwinding of double helical parental molecule is brought about by enzyme helicase, which is ATP dependent. Unwinding of DNA molecule into two strands results in the formation help of single strand binding replication fork. These exposed single strands are sab Road, New Dehhi-110005 Ph 017-47023456
 Equcationa! Services Pvt. Ltd. Corporate Office: Aakash Tawer. 8, Puss Road, New De

176 Molecular Basis of Inheritance
NEET \& Allins
proteins (SSBP). Due to unwinding, a supercoiling gets developed on the end of DNA opposite s replicating fork. This tension is released by enzyme topoisomerase. In prokaryotes, DNA gyrase ha poisomerase activity

Fig. : Watson-Crick model for

iv) Formation of primer strand: A new strand is now to be synthesised opposite to the parental strands ONA polymerase III is the true replicase in E. coll, which is incapable of initiating DNA synthesis, ie, it is unable to deposit the first nucleotide in a daughter strand. Another enzyme, known as primase symesizes a short primer strand of RNA. The primer strand then serves as a stepping stone to star emoved enzymatically emoved enzymatically.
(v) Elongation of new strand : The DNA dependent DNA polymerases catalyse polymerisation only in one direction, that is $5^{\prime} \rightarrow 3^{\prime}$. This creates some additional complications at the replicating fork. Consequently, the replication is continuous on one template strand with polarity $3^{\prime} \rightarrow 5^{\prime}$. It is now known as leading daughter strand. The replication is discontinuous in the form of short Okazaki fragments on other
 synthesised fragments are latter joined by the enzyme DNA ligase.
cell division cycle should the high DNA takes place at S-phase of cell-cycle. The replication of DNA and nto polyploidy. should be highly coordinated. A failure in cell division after DNA replication results

Knowledge Cloud

DNA polymerases are of 3 main types i.e., DNA polymerase I, II and III in prokaryotes. All exonuclease as well as polymerase activity.
Exonuclease activity

DNA polymerase I
ONA polymerase I
by UV rays.) and $3^{\prime} \rightarrow 5^{\circ}$
DNA polymerase II
$3^{\prime} \rightarrow 5^{\prime}$
DNA polymerase III : $\quad 3^{\prime} \rightarrow 5^{\prime}$ per minute
 $5^{\prime} \rightarrow 3^{\text {w }}$ with polymerisation
2. In eukaryotes, DNA polymerases are of 5 types, these are 2000 bp per second
3. Synthesis of leading or continuous strand is fast with DNA polymerase $\alpha, \beta, \gamma, \delta$ and ε.
agging or discontinuous strand is slow and requires many primers. Main polymerizing enzyme is DNA polymerase primers.

Aakash Educational Services Pvt. Ltd. Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph 011-47623456

NEET \& AIIMS
Example 5 : Fill in the blanks
(a) Viruses grown in the presence of radioactive phosphorus contained radioactive not radioactive but
n.
\qquad but

Solution
(b) RNA is labile and easily degradable due to the presence of \qquad group in sugar.
(a) DNA, protein

Example 6 : If hybrid DNA is allowed to replicate for one generation in medium containing N^{14} and for second generation in medium containing N^{15} then what is the proportion of light, heavy and hybrid DNA obtained respectively?

Example 7 : Consider the given diagram and answers the questions

(a) What is the polarity of template strand which forms continuous complementary strand?
(b) Mention the polarity of template strand which forms Okazaki's fragments.

Solution: (a) $3^{\prime} \rightarrow 5^{\prime}$ polarity in template strand
(b) $5^{\prime} \rightarrow 3^{\prime}$ polarity in template strand

Example 8 : During DNA synthesis in bacteria which of the following enzyme is not required?
(1) DNA dependent DNA polymerase
(2) DNA dependent RNA polymerase
(3) RNA dependent DNA polymerase
(4) DNA gyrase

Solution: Answer (3)
A required for DNA synthesis in Retroviruses
RNA-dependent DNA polymerase is required for DNA

INEET \＆AllMs

Try Yourself

3．Fill in the blanks
（a）DNA in chromosomes replicate semiconservatively was experimentally proved in Vicia faba by \qquad
\qquad ．
b）Deoxyribonucleoside triphosphates acts as \qquad and they provide \qquad polymerisation．
（c）The discontinuously synthesised fragments are joined by the enzyme \qquad during DNA replication．
4．（i）What is the site of DNA replication in cell cycle？
（ii）What will be the result of failure in cell division after DNA replication？

EXERCISE

11．Which of the following types of bacteria were used in Griffith＇s transformation experiment？
（1）Diplococcus．R－III and S－II type
2）Pneumococcus，T_{2} phage
（3）Streptococcus，R－II and S－III type
（4）Diplococcus，E．coli
12．The biochemical nature of transforming principle was defined by
（1）Griffith
（2）Avery，Macleod，McCarty
（3）Watson and Crick
（4）Taylor

13．In Hershey and Chase experiment，the protein of T_{2} phage was made radioactive by using
（1） S^{32}
（2）P^{31}
（3） S^{35}
（4）p^{32}
4．Choose the correct option w．r．t．RNA．
（1）Presence of thymine in place of uracil
2）Absence of free $2^{\prime} \mathrm{OH}$ in sugar
（3）Mutates at faster rate
（4）Is non－catalytic
15．Semiconservative DNA replication was proved by Messelson and Stahl，in which DNA was made
（1）Radioactive using N^{15}
（2）Heavy using N^{14}
（3）Heavy using ${ }^{15} \mathrm{NH}_{4} \mathrm{Cl}$
（4）Radioactive using ${ }^{14} \mathrm{NH}_{4} \mathrm{Cl}$
16．During DNA replication，strand separation by breaking the H －bonds is performed by
（1）Topoisomerase
（2）Gyrase
（3）Helicases
17．RNA primer is removed by
（4）More than one option is correct
（1）DNAP－1
（2）DNAP－II
（3）DNAP－III
（4）Primase

18．How many types of DNA polymerases are associated with eukaryotic cell？
（1）Three
（2）Four
（4）Two
（1）Ribonucleoside
sprovide energy for DNA polymerisation？
（3）Ribonucleotide
（2）Deoxyribonucleoside
0．DNA replication is
（1）Semi－conservative，continuous，unidirectional
（3）Semi－conservative semi－discontinuous
（4）Deoxyribonucleoside triphosphate
（2）Conservative，continuous
（4）Semi－continuous，conservative
akash Educational Services Pyt．Lid．

NEET \＆AIIMS
TRANSCRIPTION
The process of copying genetic information from one strand of the DNA into RNA is known as transcipen
Like DNA replication，the principle of complementarity gove DNA into RNA is known as transcription． adenosine which forms base pair with uracil instead of thymine．the process of transcription，except the But，unlike DNA replication where total DNA of an orgasm
of DNA and only one of the strands is copied into RNA．Here duplicated，in transcription only a segment replication both strands are template．
There are two explanations for both the strands of DNA not being copied during transcription
（1）If both strands act as template，they would code for RNA molecule with different sequences．And in turn， segment of the DNA would be coding for two different pro proteins would be different．Hence，one information transfer machinery．
（2）The two RNA molecules if produced simultaneously would be complementary to each other，hence would form a double－stranded RNA．This would prevent the translation of RNA into protein．
Transcription Unit
The segment of DNA that takes part in transcription is called transcription unit．It has three components：
（i）A promoter
（ii）The structural gene
（iii）A terminator
Template Strand and Coding Strand
There is a convention in defining the two strands of the DNA in the structural gene of a transcription unit Since the two strands have opposite polarity and the DNA－dependent RNA polymerase also catalyse the polymerisation in only one direction i．e． $5^{\prime} \rightarrow 3^{\prime}$ polarity．The strand that has the polarity $3^{\prime} \rightarrow 5^{\prime}$ acts as template，and is called template strand or non－coding strand．The other strand with polarity $5^{\prime} \rightarrow 3^{\prime}$ and the sequence same as RNA，except thymine at the place of uracil，is displaced during transcription．And this strand is called coding strand or sense strand or non－tomplate strand．
Structural genes are flanked on both sides by a promoter and a terminator in transcription unit

Fig．：Schematic structure of a transcription unit
Promoter sequences are present upstream towards 5^{\prime} end of the structural gene of transcription unit（the eference sequences are present upstream is of coding strand）．It is a DNA sequence that provides binding site for RNA made with respect to the polarity of coding stra in a transcription unit that also defines the template隹 RNA polymerase．It is the presence of a promoter in a the defintion of template and coding strand could and coding strands．By switching its position with terminator，the def ance Certain short sequences we reversed．The binding sites for RNA polymerase lie within the promoter sequence．Certan showidge cloud）．
within the promotor sites are conserved，known as recognition sequence．（See knowedge the process
The terminator is present at 3^{\prime} end（downstream）of coding strand and it usually defines the end of of transcription

ranscranscription

Cription Unit and the Gene
DNA and it is difficult to
A gene is defined as then are located on the DNA rRNA molecule also terally define a gene in terms of DNA sequence．The DNA sequence coding of DNA coding for a polypepside
define a gene．Cistron is defined as a functional unit of gene，it is a segm．Delh－410505 phi cit－4762：＋565

180 Molecular Basis of Inheritance
The structural gene in a transcription unit is monocistronic (mostly in eukaryotes) and polycistronic (mosth) The structura gene interia). Monocistronic gene synthesises one type of polypeptide or protein. Polycistronit in pro synthesises different proteins or polypeptides
The monocistronic structural genes have interrupted coding sequences i.e. the genes in eukaryotes are spit The coding sequences or expressed sequences are defined as exons which appear in mature or processe RNA. The exons are interrupted by introns. Introns are intervening sequences that do not appear in mature or processed RNA. The split-gene arrangement further complicates the definition of a gene in terms of a DNA segment.

Types of RNA and Process of Transcription
There are three major types of RNA : mRNA (messenger RNA), tRNA (transfer RNA) and rRNA (ribosomal RNA)

S. No.	mRNA	rRNA	tRNA
1.	5% oftotal RNA in cell	80%	15%
2.	Longest	Smaller	Smallest
3.	It is called template/nuclear/ messenger or informational RNA as it carries genetic informationprovided by DNA	Has structural (forms ribosome) and catalytic role during translation	Soluble or adapter RNA and carries amino acids

see RNAs are needed to synthesise protein in a cell.
A) Transcription in Prokaryotes : It occurs in cytoplasm with the help of trancripting enzyme. The transcripting enzyme $i . e$. DNA-dependent RNA polymerase is only of one type and transcribe all type of RNAs ie., mRNA, tRNA and rRNA. All three RNAs are needed to synthesize a protein in a cell. RNA polymerase is a holoenzyme that is made of polypeptides $\left(\alpha_{2} \beta \beta^{\prime} \omega\right) \sigma$. The enzyme without σ subun is referred to as core enzyme. The process of transcription completes in 3 -steps
(I) Initiation: It is catalysed by sigma (σ) factor or initiation factor. It binds to the promoter site of DNA and confers specificity. In the absence of σ-factor, transcription starts non-specifically by core enzyme at any base on DNA.
(ii) Elongation : The RNA polymerase (core enzyme) is only capable of catalysing the process of elongation.
(iii) Termination : Rho factor (ρ) is required for termination of transcription

Aubsuh Edacational Services Pvi, Ltd. Corporato. Offico: Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph. $011-47623456$

RNA polymerase binds to promoter region of the DNA and the process of transcription begins, It uses hucleoside triphosphates as substrate and polymerises in a template-depended fashion following the rule of complementarity. It also helps in the opening of helix and continues elongation, only a short stretch of RNA is attached to the enzyme. Once the polymerase reaches the terminator region, the nascen RNA and RNA polymerase falls off and it results in termination of transcription
Following points can be summarised for bacterial transcription
(i) mRNA does not require any processing to become active
(ii) Transcription and translation take place in the same compartment as there is no separation of cytosol and nucleus.
(iii) Many times the translation can begin much before the mRNA is fully transcribed. Thus, the transcription and translation can be coupled in bacteria
(B) Transcription in Eukaryotes : There are three types of transcripting enzymes i.e. RNA polymerases in the nucleus in addition to RNA. polymerase found in the organelles. There is a clear-cut division of labour. Functions of different RNA polymerases in eukaryotes are given below
(i) RNA polymerase $1: 5.8 \mathrm{~S}, 18 \mathrm{~S}, 28 \mathrm{~S}$ rRNA synthesis
(ii) RNA polymerase II : hnRNA (heterogeneous nuclear RNA)
(iii) RNA polymerase III : tRNA, ScRNA, 5S rRNA and SnRNA (small nuclear RNA) synthesis

The nascent RNA synthesised by RNA polymerase II is called hnRNA or primary transcript. It contains both unwanted base sequences (introns) alternated with useful base sequences (exons).

Fig. : Process of Transcription in Eukaryotes
This primary transcript is converted into functional mRNA after post-transcripion por involves 3 steps
: Capping at 5^{\prime} end occurs rapididy after the start of
(i) Modification of 5^{\prime} end by capping: Capping at 5 eniphosphate is added to the 5^{\prime}-end of transcription. An unusual nucleotide i.e. methyl guanosis essential for formation of mRNA-ribosome hnRNA. It is catalysed by guanyl transferase Cap is essens cap is identified by 18SrRNA of hnRNA. It is catalysed by guanyi transierase is lacking because cap is icentied by translation is not possible if cap complex. ribosome unit.

Splining. Tailing is the addition of adenylate residues about 200-300 at 3 end in (ii) Tailing and Splicing: Tailing is the addition of hnRNA with the help of Poly A polymerase. Splicing lemplate-independent mannier introns and joining of exons in a defined order. Introns are removed is the process of rem nudear RNA (SnRNA) and protein complex called small nuclear ribonucleoproteins or SnRNPs (Snurps)
The fully processed hnRNA is now called mRNA and it is transported out of the nucleus for translation
The split-gene arrangements represent probably an ancient feature of genome. The presence of introns is reminiscent of antiquity. and the process of splicing represents the dominance of RNA-worid

Fig. : Post-transcriptional processing in eukaryotes
Aakash Educational Services Pvt. Ltd. Corporate Offica Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph 011-47623456

NEE: -

EXERCISE

21. Which of the following is a genetic RNA?
(1) MRNA
2) $\mathbb{R N A}$
(3) $\mathrm{hn}-\mathrm{RNA}$
3) RNA present in plant viruses
2. The mRNA of prokaryotes is
(1) Polycistronic
(2) Monocistronic
(3) Formed by splicing of hnRNA
(4) Carries genetic message to DNA
3. Capping in hnRNA is catalysed by
(1) Poly A polymerase
(2) SnRNA
(3) Guanyl transferase
(4) Catalytic RNA
4. Which of the following type of ribosomal RNA is not present in eukaryotic cytoplasm?
(1) 18 S
(2) 28 S
(3) 5.8 S
(4) 16 S
5. Mark the correct option (w.r.t. function of RNAP-1)
(1) 5.8 S rRNA
(2) 5 S tRNA
(3) SnRNA
(4) ScRNA
Soluble RNA is
(1) TRNA
(2) mRNA
(3) TRNA
(4) hnRNA
6. Find the incorrect match

(1) Central dogma	$:$	F. Crick
(2) Reverse central dogma	$:$	Temin and Baltimore
(3) Split genes	$:$	Komberg
(4) mRNA	Jacob and Monad	

28. Recognition sequence for transcription in prokaryotes is
(1) TATATAT
(2) TATAAT
(3) TATAAAT
(4) CAAT
29. Transcription starts non-specifically in the absence of
(1) Sigma factor
(2) Rho factor
(3) Core enzyme
(4) DNA polymerase
Tailoring of hnRNA is done by
(1) Snurps
(2) Introns
(3) Exons
(4) 18 SrRNA

44tash Exducational Services Pyt. Lid. Carporite omice A Alash Tower B. Pu

DNA (or RNA) carries all genetic information. It is expressed in the form of proteins which are made 20 different types of amino acids. The information about the number and sequence of these amino up of forming protein is present in DNA and is passed on to MRNA during transcription. Thus, genetic codes inter-relationship between nucleotides sequence of DNA or MRNA and amino acids sequence in polypeptide. It is a mRNA sequence containing coded information for one amino acid and consists of a
3 nucleotides. 3 nucleotides.
The proposition and deciphering of genetic code were most challenging. In a very true sense, it required involvement of scientists from several disciplines - physicists, organic chemists, biochemists and geneticists It was George Gamow, a physicist, who coined the term genetic code and argued that since there are only, 4 bases and if they have to code for 20 amino acids, the code should constitute a combination of bases He suggested that in order to code for all the 20 amino acids, the code should be made up of 3 nucleotides This was a very bold proposition, because a permutation combination of $4 \times 4 \times 4\left(4^{3}\right)$ would generate 64 , codons, generating many more codons than required.
The important discovery was the result of experiments by Marshall W. Nirenberg and J. Heinrich Matthaei and later by H.G. Khorana. Nirenberg and Matthaei used a synthetic poly U RNA and deciphered Matthaei俍 copolymers) copolymers). Using synthetic DNA, he prepared polynucleotide with known repeating sequmers and CUCUCUCUCUCU, which produced only two amino acids, leucine (CUC) and serine (UCU) sequence e.g., Severo ochoa enzyme is polynucleotide phosphorylase it was also her
defined sequences in a template-independent manner board for genetic code was prepared which is given below : enzymatic synthesis of RNA. Finally a checker-

> Table : The Codons for the Various Amino Acids

Salient Features of Genetic Code

(i) Triplet code : Each codon is made of three adjacent nitrogen
and 3 codons do not code for any amino acids, hence nitrogen bases, 61 codons code for amino acids
(ii) Non-ambiguous and specific codons : Onence they function as stop codons unambiguous and specific. Note
(Note: GUG is ambiguous codon, it normally codes for valine but at initiating position, codes for
methionine)
(iii) Commaless nature : The codon is read in MRNA in a contiguous fashion without any punctuations.

Anhioh Edacationat Services Pvet Lid. Conporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph 011-47623456

NEET \& AIIMS
(iv) Degeneracy of code : Some amino acids are Molecular Basis of Inheritance 185 4 degenerate e.g. serine, leucine, arginine by 6 codons, proline valine the one codon, hence the code is Exception - AUG (Met) and UGG (Tip) ae
Universal code : The code is nearly universal edegenerate codons,
Some exceptions to this rule have been found in mitochondria and por phenylalanine in all organisms.
(vi) Initiation codon/start signal : AUG has dual functions, it and protozoa. (See knowledge doud) initiator codon.
(vii) Stop signals : Polypeptide chain termination is signalled by three termination codons - UAA (ochre) UAG (amber) and UGA (opal). They do not specify any amino acids, hence called as nonsense cocons
or stop codons.
(viii) Non-overlapping codon : Each codon is independent and one codon does not overlap the next codor Mutations and Genetic Code

The relationship between genes and DNA are best understood by mutation studies. Effects of large deletions and rearrangem a function. A classical example of gene mutation or point. It may result in loss or gain of a gene in the gene for beta globin chain that results in the change of amino mutation is a change of single base pair into a diseased condition catled as sickel cell anemia. the reading frame from the point of insertion or deletion. Insertion or deletion of one or two bases changes insert or delete one or multiple codon hence one or multiple amino acids, and reading frame its multiple bases from that point oriwards. Such mutations are referred to as frame shift mutations. This forms remains unaltered of proof that codoh is a triplet and it is read in a contiguous manner.

tRNA - The Adapter Molecule

The existence of tRNA was postulated by Francis Crick. It was also known as soluble RNA (sRNA) before the genetic code was postulated. These constitute about 15% of the total cellular RNA.
Crick postulated the presence of an adapter molecule that would on one hand read the code and on other hand would bind to specific amino acid. It acts as intermediate molecule between triplet code of mRNA and amino acid sequence of polypeptide chain. All trNAs have almost same basic stucture. There are over bo types of This is the three-dimensional stuccure of thNA was proposed Io be ine ted This is the actual structure of IRNA. The secondary struclure 5^{\prime} NA has been di 3^{\prime} end, unpaired CCA clover-leaf. All tRNA molecules have a guanine residue a IRNAs are specific for each amino acid. For sequence is present. Amino acid gets attached at this end only. IRNAs are specin o IRNAs for stop codons.
initiation, there is another specific tRNA that is knowr
 A. Clover leaf model to show basic plan of IRNA secondary strucd configuration B. Three-Dimensional Stucture showing inve. Pusa Road, New Dehh-1100es Ph, 0it-47623456 Aakash Educational Services Put. Ltd. Corporate Ofrice: Aokesh Tomet, 8, Pusa Road, New Den

There are three loops in IRNA
(i) Aminoacyl synthetase binding loop or DHU loop (dihydroxyuridine loop) - $1^{\text {st }} \operatorname{loop}$ from 5^{\prime} end.
(ii) Ribosomal binding loop with 7 unpaired bases - It is 1st loop from 3^{\prime} end also called as T世C loop
(iii) Anticodon loop with 7 unpaired bases. Out of the 7 bases in anticodon loop, 3 bases act as anticodon for a particular triplet codon present on mRNA.

Knowledge Cloud

1. In prokaryotes, recognition sequence is present in promotor region at upstream for RNA polymerase (ii) TTGACA : 35 . fecognition sequence.
to the start point; another sequence is CAAT bp long - TATATAT or TATAAAT) located 20 bp upstream
2. Split gene was discovered by Richard J. Rox present between -70 and -80 bp
introns as intervening sequence is split gene:erts and Philip Sharp. Eukaryotic gene with exons and
gene

S. No.	Universal	Mitochondrial code (mammals, yeast)
1.	55 anticodons (tRNA)	22 anticodons (tRNA)
2	3 termination codons	4 termination codons
	UAA, UAG UGA	UAA, UAG AGA, AGG
	(a) UGA = Termination codon	(a) UGA code for tryptophan
	(b) AGA, AGG code for arginine	(b) AGA and AGG are termination codons

5. Wobble hypothesis: A change in nitrogen bat
any change in the expression of the codon because the cosition of a codon does not normally cause codon is termed as Whe third nitrogen base in a codon codon is mostly read by the first two nitrogen economy in number ar tre position. It helps one tRNA to read mores not influence the reading of the
6 Shine Dal
Shine Dalgarno (SD) sequence : it is 5° AGGAGGU
prokaryotes. It helps in binding of 30 S subugit ${ }^{\prime}$-AGGU- 3^{\prime} sequence at 5^{\prime}-end near initiation codon in
6. Ribosomal RNA (rRNA) is most stable thit of ribosome on it

In eukaryotes, IRNAs are of 4 theble type of RNA and is constituent of ribosome.
in prokaryotes - $5 \mathrm{~S}, 23 \mathrm{~S}, 16 \mathrm{~S}$ types of rRN, $5.8 \mathrm{~S}, 28 \mathrm{~S}$ and 18 S .
Genetic RNA: RNA is 160 types of rRNA
Genetic RNA : RNA is genetic material in most plant viruses.

9. Beadie and Tatum put forward a theory-one gene-one enzyme in support of the earlier hypothesis that enzynts are proteinaceous in nature and each is produced by a single gene. They conducter experiments on the nutritional strains of pink mould, Neurospora crassa. This fungus grows on simple prototroph. An organism that is unable to synthesize a particular cellular metach an organism is called acid or coenzyme is called auxotroph. Beadle and Tatum produced argininetabolite, such as an amino (mutants of Neurospora unable to synthesize arginine) by piving X rays treat (an amino acid) auxotrophs synthesis passes through the following path:

$$
\begin{array}{ccc}
\text { Gene 1 } & \text { Gene 2 } & \text { Gene 3 } \\
\downarrow & \downarrow \\
\text { Enzyme 1 } & \begin{array}{l}
\text { Enzyme 2 } \\
\downarrow
\end{array} & \begin{array}{l}
\text { Enzyme 3 }
\end{array} \\
\end{array}
$$

$$
\text { Precursor } \xrightarrow{\downarrow} \text { Ornithine } \xrightarrow{\downarrow} \text { Citrulline } \xrightarrow{\downarrow} \text { Arginine }
$$

They found that any step of this metabolic chain could be blocked by a mutation in a specific enzyme catalyzing the reaction, each enzyme representing a different gene product. Thus, Beadle and Tatum reached a conclusion that each gene functions to produce a single enzyme.

Some proteins, e.g. haemoglobin and other quaternary proteins are made up of two or more than two polypeptide chains. Ingram suggested the "one gene-one polypeptide hypothesis to explain the genetic determination of synthesis of the peptide chains of the haemoglobin. Later Jacobson and Baltimore proposed one mRNA - one polypeptide hypothesis.

Example 9: If the sequence of coding strand in a transcription unit is written as follows:

$$
5-C G T A T C G A T C G G T T A C G A-3
$$

Write down the sequence of complementary strand in $3^{3} \rightarrow 5^{\prime}$ direction.
Solution: Complementary strand: 3^{\prime} - GCATAGCTAGCCAATGCT-5
Example 10 : Identify the labelled structure in given diagram

Example 11 : When the polymerase reaches
by which polypeptide molecule?
Solution : Rho-factor (ρ-factor)

Example 12 : Select incorrectly matched pair:
(1) Catalytic RNA
(2) Snurps
(3) Capping
(4) Ambiguous codon

Answer (1)
Answer (1)
Catalytic RNA - 23S/28S rRNA as the structural part of peptidyl translerase (nooz)

Try Yourself

What should be the nature of genetic code if there would have been 65 amino acids?
6. Fillil in the blanks
(a) The transcription and translation can be coupled in \qquad
(b) \qquad do not appear in mature or processed RNA.
(c) The terminator is located at \qquad end of non-template strand.
(d) The codon is read in mRNA in a contiguous fashion, there are no \qquad
e) Gene mutation involving insertion or deletion of one nitrogen base is

TRANSLATION

It refers to the polymerisation of amino acids to form a polypeptide. The order and sequence of amino acids are defined by the sequence of bases in the mRNA.

The cellular factory responsible for synthesising proteins is the ribosome. The ribosome consists of structural RNAs and about 80 different proteins. In its inactive state, it exists as two sub units, a large subunit and a smali sub unit Ribosomes have two sites for binding amino acyl tRNA, P-site (peptidyl site) and A-site aminoacy). When the small subunit encounters an mRNA, the process of translation of the mRNA to protein begins.
The steps of translation mechanism are
(a) Activation of amino acids : In the presence of enzyme aminoacyl - IRNA synthetase (E), specific amino acid (AA) bind with ATP
$A A_{1}+A T P \xrightarrow{E_{1}, \mathrm{Mg}^{2+}} A A_{1}-A M P-E_{1}$ complex + PPi
(b) Charging of tRNA : The AA,-AMP-E, complex reacts with specific tRNA. Thus, amino acid is transferred to IRNA. As a result, the enzyme and AMP are liberated. It is also called as aminoacylation of tRNA.
$\mathrm{AA}_{1}-$ AMP-E E_{1} complex $+\mathrm{tRNA}, \longrightarrow \mathrm{AA}_{1}-\underset{\text { (Chargeat PRNA) }}{\text { tRNA }}+\mathrm{AMP}+\mathrm{E}_{1}$
(c) Formation of polypeptide chain : It completes in three steps
(1) Chain initiation : It requires 3 initiation factors in prokaryotes and 9 initiation factors in eukaryotes (i) Binding of mRNA with smaller subunit of ribosomes ($30 \mathrm{~S} / 40 \mathrm{~S}$)
$30 \mathrm{~S}+$ mRNA $\longrightarrow 30 \mathrm{~S}-\mathrm{mRNA}$ complex
In eukaryotes, there is formation of 4OS-mRNA complex.
(ii) Binding of 3OS-mRNA with tRNA, non-formylated methionine is attached with tRNA in eukaryotes and formylated in prokaryotes.
$30 \mathrm{~S}-\mathrm{mRNA}+$ tRNA $_{\text {tmet }} \xrightarrow[\text { GTP }]{ } 30$ S-mRNA-tRNA INet
(iii) Attachment of larger subunit of ribosome. It is 50 S in prokaryotes $\& 60 \mathrm{~S}$ in eukaryotes.
(2) Chain elongation : After the formation of complete ribosome - mRNA-tRNA complex, an aminoacy acceptor site (A -site) is established next to the P-site. It exposes mRNA codon next to the initiation codon. A new aminoacy IRNA complex reaches the A-site and forms codon - anticodon bonding. This requires elongation factor and energy ie., GTP. A peptide bond is formed between COOH group of first amino acid (methionine) and NH_{2} group of second amino acid. If two charged IRNAs are elose enough the formation of peptide bond between them would be favoured energetically. The
presence of a catalyst would enhance the rate of peptide bond formation. It is catalysed by enzyme peptidyl transferase (a type of ribozyme - catalyic RNA ie. 23 S rRNA in bacteria and 28 SrRNA eukaryotes). The elongation factors are required in this process. Translocation is movement of nibosome on mRNA. The ribosome move from codon to codon aling the mRNA. Amino aciss are added one by one, transtated into polypeptice sequences dictated by DNA and represented by mRNA.

A translational unit in mRNA is the sequence of RNA that is flanked by the start codon (AUG) and the stop codon and codes for a polypeptide. An mRNA also has some additional sequences that are not translated and are referred as untranslated regions (UTRs). The UTRs are present at both 5^{\prime}-end before start codon and $3^{\prime-}$-end after stop codon. They are required for efficient translation process.
(3) Chain termination : The termination of polypeptide is signalled by one of the three termination codons (UAA, UAG UGA). A GTP-dependent factor known as release factor is associated with termination codon. It is eRF, in eukaryotes and RF, and RF, in prokaryotes, that help in terminating translation and releasing the complete polypeptide from the ribosome.

(A) Binding of first charged TRNA at P site

(C) Peptide bond formation by peptidyl transferase

(B) Binding of next charged tRNA at A site
(D) Translocation movement of ribosome on mRNA, so peptidyl tRNA is at P Pite. A site is open for the next charged t-RNA

(E) Translation

Knowledge Cloud

There are some metabolic inhibitors which inhibit the synthesis of proteins in bacteria. These antibiotics are used in checking the growth of certain bacteria which are pathogenic in nature e.g.,
Tetracycline - Inhibits binding of aminoacyl-tRNA to ribosomes
Streptomycin - Inhibits initiation of translation and causes misreading
Chloramphenicol
Enthromycin Inhibits peptidyl transferase activity Inhibits translocation of mRNA along ribosomes
Neomycin
Inhibits interaction between IRNA and mRNA.

EXERCISE

1. Formylated methionine acts as translation initiation in
(1) Eubacteria
(2) Eukaryotes
(3) Viruses
(4) Archaebacteria
2. Which of the following codons is known as ochre?
(1) UAG
(2) UGA
(3) UAA
(4) UVU
3. Which of the following is an ambiguous codon?
(1) $A \cup G$
(2) GUG
(3) UAG
(4) GAG

Which property of genetic code is utilised in wobble hypothesis?
(1) Degeneracy
(2) Non-overlapping
(3) Non-ambiguous
4) Universa

In the mitochondrial DNA. UGA codes for
(1) Chain termination
(3) Tryptophan

Chain initiation
4) Tyrosine
(1) Peptidy translerase acids during translation is done by
(I) Peptidyl transferase
2. Aminoacy-IRNA synthetase
(3) Methionine
37. Movement of ribosome on mRNA is called
(1) Transcription
(3) Translocation
(2) Translation

The elongation factors required for prokaryotes are
(1) EF-Tu and EF-Ts
(3) elF_{2}
(2) eEF,
39. Which of the following inhibits binding of al \quad (4) $e E F_{2}$
(1) Neomycin
(3) Streatomycin
(2) Erythromycin

The mechanism by which a gene is able to expmess Tetracycline
(1) Gene expression
(3) Transliccation
(2) RNA synthesis
$\begin{array}{ll}\text { Ashiah Edicationar Senvices PvL. Lod. Caporate oflice Ade arn To } & \text { (4) Formylation }\end{array}$
Wase Towat: A, Puse Rood, New Dolnt-110005 Ph. O11-47623456

NEET 8 AIMS
REGULATION OF GENE EXPRESSION
Molecular Basis of Inheritance

Regulation of gene expression refers to a very broad term that may occur at various levels. Considering that gene expression results in the formation of a polypeptide, it can be regulated at several levels.
In eukaryotes, the regulation of gene expression could be exerted at four levels.
(I) Transcriptional level : Formation of primary transcript.
(ii) Processing level : Regulation of splicing.
(iii) Transport of mRNA from nucleus to the cytoplasm
(iv) Translational level

The genes in a cell are expressed to perform a particular function or a set of functions. In eukaryotes, functionally related genes do not represent an operon but are present on different sites, chromosomes. Here structural gene is called split gene which is a mosaic of exons and introns, i.e., the base triplet - amino acid matching is not continuous. The entire split gene is transcribed to form a continuous strip of mRNA. The removal of non-coding intronic part and fusion of exonic coding parts of RNA is called RNA splicing. About $50-90 \%$ of primary transcribed RNA is discarded during processing. The development and differentiation of embryo into adult organisms are also a result of the coordinated regulation of expression of several sets of genes.
It is metabolic, physiological or environmental condition that regulates the expression of gene.
Britten-Davidson gene battery model: It is most popular for eukaryotic genes expression. It proposes the occurrence of 5 types of genes - producer, receptor, integrator, sensor and enhancer silencer.
In prokaryotes, control of the rate of transcriptional initiation is the predominant site for control of gene expression. In a transcription unit, the activity of RNA polymerase at a given promoter is regulated by interaction with accessory proteins, which affects its ability to recognise start sites. These regulatory proteins can act both activators (positively) and repressor (negatively). The functioning of operator depends upon the protein products.

Operon Concept

Francois Jacob (a geneticist) and Jacques Monod (a biochemist) proposed a model of gene regulation, known as operon model in bacteria. Operon is a co-ordinated group of genes such as structural gene, operator gene, promoter gene, regulator gene which function together and regulate a metabolic pathway as a unit, e.g., lac operon, trp operon, ara operon, his operon, val operon eto.
(i) Regulator gene : It synthesises a biochemical or regulator protein which can act posilively as activator and negatively as repressor. It control, the activity of operator gene.
(ii) Operator gene : It is a gene which receives the product of regulator gene. It allows the functioning of the operon when it is not covered by the biochemical produced by regulator gene.
(iii) Promoter gene : Provides attachment site for RNA polymerase.
(iv) Structural gene : Transcribes mRNA for polypeptide synthesis.

Lac Operon

The lac operon
gene, one operat refers to lactose) consists of one regu. A polycistronic structural gene is regulated by a
common promoter and rege and three struct
In E. promoter and regulatory gene.
In $E_{\text {, coll, breakdown of lactose requires three enzymes. These anze addition of lactose itself stimulates }}^{\text {co-ordinated }}$
the prodinated manner by functional unit of DNA Le, lace operin, system.
the production of required enzymes, thus it is called inducible system.

1. Structural genes: Three structural genes are
(i) $\quad z$: The z gene codes for β-galactosidase which is primarily responsible for the hydrolysis of the disaccharide, laclose
(ii) lac y : The y gene codes for permease, whas which can transer acetyl group to β-galactoside
(iii) lac a : The a gene codes with a protein molecule or regulator molecule, which prevents the 2. Operator gene : It inter genes,
transcription of structural genes.
2. Promoter gene : The gene possess for a protein known as repressor protein, it is synthesised all Regulator gene $i($.-gene, thats why it is constitutive gene which is functional always.
operon is switched off when repressor protein produced by regulatory or inhibitor gene binds to operator gene RNA polymerase gets blocked, so there would be no transcription.

Repressor protein + Operator gene \rightarrow Switched off
Regulation of lac operon by repressor is referred to as negative control or regulation.
If lactose is provided in the growth medium of the bacteria, the lactose is transported into the cells through the action of permease. A very low level of expression of lac operon has to be present in the cell all the time, otherwise lactose cannot enter the cells. In the presence of an inducer, such as lactose or allolactose, the repressor is inactivated by interaction with inducer. This allows RNA polymerase access to the promoter and transcription proceeds.

Inducer (Lactose) + Repressor \rightarrow Switched on
Pesitive
Lac operon is under control of positive regulation as well.

Tryptophan Operon - Repressible Operon System
Operon model can also be explained using feed-back repression. In tryptophan (trp) operon, three enzymes are necessary for the synthesis of amino acid tryptophan. These enzymes are synthesized by the action of these five different genes in a co-ordinated manner. The addition of tryptophan, however, stops the production or enzymes. Thus, the system is known as repressible system.

CEET 8 Anc....
In this system, there are five structural genes, tro A ip B, ipp needed for the synthesis of tryptophan, an amino acid. Regulaton, tip D and trp E, coding for three enzyme is known as apo-repressor because it does not get bound to the gene (R) produces repressor proteinzyme remains in 'switched on' position. remptophan when added, binds to the apo-repressor and is called co-reprer gene Tryptophar complex (activated repressor) now binds to operatorepressor. This apo-repressor and corepressorase. Thus, transcription would not occur and tryptophanator gene and blocks the function of RNA polymerase. repression is functional when there is no further neep operon would be in switched off position. Feed-back repressin of continuation of this anabolic pathway. This operon stops the product and, hence, there is no requirement of

Fig. : Tryptophan operon model of gene regulation in bacteria
In the prokaryotes, control of the rate of transcriptional initiation is the predominant site for control of gene expression.

Knowledge Cloud

1. Constitutive genes are those genes which are constantly expressing themselves in a cell because their products are required for the normal cellular activities, e.g., genes for glycolysis, ATPase., igene as lac operon.
2. Nonconstitutive genes or Luxury genes are not always expressing themselves in a cell. They are switched on or off according to the requirement of cellular activities, e.g., gene for nitrate reductase in plants. Lactose system in E. coli. (z, y, a gene)
3. Trp operon is repressible operon with five structural genes. The operon nomally remains switched on and functional in anabolic pathway for tryptophan synthesis. Fe
no need of end products and their concentration is increased.

4. Homeotic Genes

- These genes control development.
- Such genes have been studied extensively in Drosophila.
- The control is exerted through homeodomain proteins.
frmed by a conserved sequence or homeobox.
- Homeobox are present in the coding region of homeotic genes
- Mutation are present in the coding region on one body part into another e.g. an insect leg may change into antenna. Oncogenes: The tumour forming property of cells is due io -ncogene whie those preseni as and and and as oncogenes. Oncogenes present in virus are known as present in the form of pro are known as c-oncogene. c-oncogene arenes.
mutation may convert these genes into oncogenes. (atation may convert these genes inlo ond

Molecular Basis of Inheritance \quad IVELT \& AllMS

EXERCISE

41. The genes which are constantly expressing themselves in cell are called as
(1) Luxury genes
(2) Constitutive genes
(3) Non-constitutive genes
(4) More than one option is correct
42. How many structural genes are present in lac-operon of E . coli?
(1) 4
(2) 3
(3) 2
(4) 1
43. In lac-operon, β-galactosidase enzyme is made by
(1) lac-y
2) lac-a
(3) lac-z
(4) $\mathrm{lac-i}$
44. Inducer molecule in lac-operon of E coli is chemically a/an
(1) Disaccharide
(2) Amino acid
(3) Protein
(4) RNA
45. Tryptophan operon is
(1) Catabolic system
(2) Repressible system
(3) Inducible system
(4) Having three structural genes
46. Choose the correct option w.r.t. the chemical nature of apo-repressor and co-repressor respectively in tp-operon?
(1) Protein, Amino acid
(2) Amino acid, Protein
(3) Lipoidal, Sugary
(4) Sugary, Lipoidal
47. Gene battery model was proposed by
(1) Jacob and Monad
(2) Gamow
(3) H.G. Khorana
(4) Britten and Davidson
An insect leg may change into antenna due to mutation in
(1) c-oncogene
(2) v-oncogene
(3) Homeotic genes
(4) Proto-oncogene
48. In repressible operon system, co-repressor molecule is
(1) Lactose
(2) Tryptophan
(3) Galactoside
(4) Glucose
49. Select incorrectly matched pair
(1) $\mathrm{Lac} z$
(2) Operator gene
Constitutive gene
(3) Lac a - Smailest gene of
(4) Promotor gene - RNA polymerase

Aakash Educational Services Pvit Ltd. Corporate Office: Aakash Tower, 8, Pusa Road, Now Delhi-110005 Ph. 011-47623456

NEET \& AIIMS
HUMAN GENOME PROJECT (HGP)
\qquad

Genetic make-up of an organism or an individual lies in the DNA sequences. The differences in two individuals will naturally be reflected in the differences of their nucleotide sequences. They can be known only if the entire human genome is mapped. With the establishment of genetic-engineering techniques where it was possible to isolate and clone any piece of DNA and availability of simple and fast techniques for determining DNA sequences, a very ambitious project of sequencing human genome was launched in the determining DNA HGP was the international 1990.
understanding of all the collaborative research program whose goal was the complete mapping and as genome

Human genome project as "Mega project" was a 13 -year-project, co-ordinated by the US Department of Energy and the National Institute of Health. Soon Welcome Trust (UK) co-ordiled by the US Department of Energy art Naion (UK) joined the project as major partner, additional and others. The project was completed in 2003 HGP has been called a megaproject due to
(i) Huge cost estimated to be 9 billion US dollars, the cost of sequencing 1 bp is US\$3
(ii) Very large number of base pairs ($3 \times 10^{9} \mathrm{bp}$) to be identified and sequenced
(iii) Requires a large number of scientists, technicians and supporting staff.
(iv) Storage of data generated which requires some 3300 books, each with 1000 pages and each page having 1000 typed letters. However, high-speed computational devices for storage, retrieval and analysi of data made it easier to do the same.
(v) The scierige of Bioinformatics also developed during this period and helped HGP

Goals of HGP

> =ollowing are the important goals of HGP

Identification of all the approximately $20,000-25,000$ genes in human DNA
(i) To determine the sequences of the 3 billion chemical base pairs that make up human DNA
(iii) To store this information in databases.
(iv) To improve tools for data analysis.
(v) Transfer-related technologies to other sectors, such as industries.
(vi) ELSI : To solve any ethical, legal and social issues
(vii) Bioinformatics i, e, , close association of HGP with the rapid development of a new area in biology.
(viii) Sequencing of model organisms : Non-human organisms DNA sequences can lead to an understanding of their natural capabilities that can be applied towards solving challenges in health-care, agriculture, energy production, environmental remediation. Many non-human model organisms such as bacteria, yeast, Caenorhabditis elegans (a free-living non-pathogenic nematode), Drosophila, plants like rice and Arabidopsis, etc., have been sequenced. As for examples

Organisms	Base pairs	No. of genes
E. coli	4.7 million	4,000
Saccharomyces cerevisiae	12 million	6,000
Caenorhabditis elegans	97 million	18,000
Drosophila melanogaster	180 million	13,000
Arabidopsis	130 million	25,000
Oryza sativa	430 million	$32000-50000$

Aakash Educational Services Pvt. Ltd. Corporate Office: Aakash Tower, 8, Pusa Road, New Dethi-110005 Pn. 011-47623456

Methodologies

The methods involved two major approaches :
(i) ESTsiExpressed Sequence Tags: Identifying all genes that are expressed as RNA.
(ii) Sequence Annotation : Sequencing the whole set of genome that contained all the coding sequences and later assigning different regions in the sequence with functions.
For sequencing, the total DNA from a cell is isolated and converted into random fragments of relatively smaller sizes (recall DNA is a very long polymer, and there are technical limitations in sequencing very long piece of DNA) and cloned in suitable host using specialised vectors. The cloning resulted into amplification of eac pece of DNA fragment so that it subsequently could be sequenced with ease. The commonly used host were bacteria and yeast, and the vectors were called as BAC (bacterial artificial chromosomes), and YAC lyeast artificial chromosomes)

Fig. : A representative diagram of human genome projec
The fragments were sequenced using automated DNA sequencers that worked on the principle of a metho developed by Frederick Sanger. Sanger is also credited for developing method for determination of amino acd sequence in proteins. These sequences were then arranged based on some overlapping regions present in them. This required generation of overlapping fragments for sequencing. Alignment of these sequences was humanly not possible. Therefore, specialised computer-based programs were developed. These sequences were subsequently annolated and were assigned to each chromosome. The sequence of chromosome 1 was $\gamma-$ to be sequenced).
Salient Features of Human Genome
Some of the salient observations drawn from human genome project are as follows :
The human genome contains 3164.7 million nucleotide bases
iii) The average gene consists of 3000 bases, but size varies greatly, with the largest known human gene being dystrophin as 2.4 million bases and TDF gene as smallest gene with 14 bases
(iii) The total number of genes is estimated at 30,000 much lower than previous estimates of 80,000 to $1,40,000$ genes. Almost all (99.9 percent) nucleotide bases are exactly the same in all people.
(iv) The functions are unknown for over 50 percent of discovered genes
(V) Less than 2 percent of the genome codes for proteins.
(vi) Repeated sequences make up very large portion of the human genome.
(vi) Repetitive sequences are stretches of DNA sequences that are repe
$t 0$ thousand tirnes. They are thought to have no direct coding structure, dynamics and evolution.
(vil) Chromosome 1 has most genes (2968) and the Y has the fewest (231).
(ix) Scientists have identified about 1.4 millon locations where single base DNA differences occur in humans This is known as SNPs - single nucleotide polymorphisms, pronounced as 'snips'. This information promises to revolutionise the process of finding chromosomal locations for disease-associated sequences
and tracing human history.
Aakash Educational Sorvices Pvt. Ltd Corporate Offica: Aakash Tower. 8, Pusa Road, Now Delhi-110005 Ph. 011-47623456

Applications and Future Challenges

1. Completion of first phase of human genome project has been compared to discovery of antibiotics because it has opened a vast data base of knowledge about various aspects of human genome
2. Soon we shall be mapping all the human genes, all sequences, transposons and junk DNA.
3. There are more than 1200 genes that cause common cardiovascular ailments, endocrine disease like diabetes, Alzheimer's disease, cancers and other neurological ailments. After taking their snapshots, it will be possible to know the method to alter them and remove the possibility of the disorders.
4. Single gene defects produce a number of hereditary diseases, that can be corrected.
5. It will be possible to study interactions between various genes, proteins, as well as mechanism of forming tissues, organs, tumours or switch over to different developmental stages.
6. It holds promise of healthier and longer living, designer drugs and genetically modified diets according to needs of individual human beings.

DNA FINGERPRINTING

It is the technique used for determining nucleotide sequences of certain areas of DNA which are unique to each individual. DNA fingerprinting can distinguish one human being from another with the exception of monozygotic twins. 99.9 percent of base sequences among humans is the same. They have 0.1% of genome or 3×10 differences in the base sequence. The differences occur not only in genes but also in repetitive DNA
DNA fingerprinting involves identifying differences in some specific regions in DNA sequence called as repetitive DNA These repetitive DNA are separated from bulk genomic DNA as different peaks during density gradient centrifugation. The bulk DNA forms a major peak and the other small peaks are referred to as sateliite DNA. Satellite DNA is classified into following categories on the basis of base composition (A:T rich or G:C rich), length of segment and number of repetitive units. These categories are

VNTRs (Variable Number of Tandem Repeats) or minisatellites surrounded by conserved restriction sites. A small DNA sequence is arranged tandemly in many copy numbers. The copy numbers varies from chromosome to chromosome in an individual. The number of repeats show very high degree of polymorphism. As a result the size of VNTR varies from 0.1 to 20 kb .
2. SSRs (Single Sequence Repeats) or STRs (Short Tandem Repeats) or microsatellites with $1-6 \mathrm{bp}$. These sequences normally do not code for any proteins, but they form a large portion of human genome. These sequences show high degree of polymorphism and form the basis of DNA fingerprinting. Polymorphism is the variation at genetic level. Since DNA from every tissue (such as blood, hair-follicle, skin, bone, saliva, sperm etc.), from an individual show the same degree of polymorphism, they become very useful identfication too in forensic applications. Further, as the polymorphisms are inheritable from parents to children, DN fingerprinting is the basis of paternity testing, in case of disputes.
As polymorphism in DNA sequence is the basis of genetic mapping of human genome as well as of DN fingerprinting, it is essential that we understand that what DNA polymorphism means in simple terms Polymorphism (variation at genetic level) arises due to mutations. Allelic sequence variation has traditionally ans if more than (allele) at a locus occurs in huma population with frequency greater than 0.01 . In simple terms, if an inheritable mutation is observed in a population at high frequency it is referred to as DNA polymorphism. The probability of such variation to be observed in non-coding DNA sequence would be higher as mutations in these sequences may not have any immediate effect in an individual reproductive ability. These mutations keep on accumulating generation atter generation and form one of the basis of variability/polymorphism. There is a variety of different types o olymorp speciation, such polymorphism play very important role.
h polymorphism play very important role.

Thus, the basis of DNA fingerprinting is VNTR (a satellite DNA as probe that shows very high degree of polymorphism). The technique of DNA fingerprinting was developed by Alec Jeffreys. The technique, as used earlier, involved Southem blot hybridisation using radiolabelled VNTR as probe. It included
(i) Isolation of DNA.
(ii) Digestion of DNA by restriction endonucleases,
(iii) Separation of DNA fragments by electrophoresis, or (RFLP Restriction Fragment Length Polymorphism)
CB (V) Translerring (blotting) of separated DNA fragments to synthetic membranes, such as nitrocellulose or nylon (v) Hybridisation using labelled VNTR probe.
(vi) Detection of hybridised DNA fragments by autoradiography.

After hybridisation with VNTR probe, the autoradiogram gives many bands of different sizes. These bands give a characteristic pattern for an individual DNA.
The sensitivity of the technique has been increased by use of polymerase chain reaction (PCR). Consequently DNA from a single cell is enough to perform DNA fingerprinting analysis.

Sakash Educationas Servicos Pve Ltad Corporate Orice: Aakash Tower, e, Pusa Road, New Delhh+110005 Ph. 011-47623456

NEET \& AllMS
Practical Applications

1. Paternity-maternity disputes
2. Criminal identification and forensics

ig. : Schematic representation of DNA fingerprinting
3. Personal identification

Close relations of an intending immigrant

Knowledge Cloud

1. The term genomics was introduced by Thomas Roderick
2. Structural genomics involves mapping and sequencing of genes

Functional genomics involves the identfication of function of a particular gene.
Application genomics involves use of genomics information for crop improvement etc.
3. cDNA : It stands for complementary DNA, a synthetic type of DNA generated from mRNA By using mRNA as template, scientists use enzymatic reactions to convert its information back-inlo cDNA and then clone it as cDNA library.
and equal to 1 million base pairs and roughty equal to 1 cM .
5. Livi slands for megabase, a indian experts in the field of DNA fingerprinting
6. Laiji Singh and V.K. Kashyap are incian exper in many types of large scale genetic analysis. They can

Microarray : Micro arrays are devices used in may
be used to study how large number of genes are expressed as messenger RNalthe
and how a cells regulatory network control vast batteries of gases simulan . New Delh-110005 phi-011-4)

Example 13 : Arrange charged tRNA molecules according to given mRNA sequence

Solution:
1 - (c). $2-$ (a). $3-$ (d). 4 - (b)
=
Example 14 : Which gene of lac operon is always functioning? Mention its product.
Solution : Regulator gene synthesises repressor protein
na
Example 15 : Lac operon exerts negative control wher
(1) Repressor binds promoter gene
(2) Repressor binds operator gene
(3) Inducer binds repressor
(4) Repressor binds with structural gene

Solution: Answer (2)
When repressor binds operator gene
Example 16 : State True or False
(a) WWTR is non-rodibactive and probe is radioactive.
(b) Less than 2% of genome contain non-ooding sequences
(c) Sequencing of whole genome with both coding and non-ooding regions is ESTs.
(d) Transfer of VITR from gel to nylon paper is blotting fechnique

Solution :
(a) - True
(b) - Faise
(c) - Faise
(d) - True

Try Yourself

7. Select true or false statement
(a) Attachment of smaller unit of ribosome on mRNA brings the initiation codon at A site.
(b) Peptidyl transferase is RNA enzyme formed by 235 rRNA of larger subunit of 708 ribosome.
(c) Gene regulation is exerted at four levels in eukaryotes.
(d) VNTR varies in size from 0.01 to 200 kb .
8. Mention the correct sequence of steps followed after separation of DNA fragments by electrophoresis in DNA fingerprinting.
(a) Hybridization
(b) Autoradiography
(c) Blotting

EXERCISE

51. During DNA fingerprinting, separation of DNA fragments is done by
(1) Autoradiography
(2) Hybridisaton
13) Denaturation
(4) Electrophoresis

52 Sequencing the whole set of genome that contained all the coding and non-ooding sequences and later assigning different regions in the sequence with functions is known as
(1) Sequence annotation
(2) PCR
(3) Northem blot
(4) Microartay
53. The last step of DNA fingerprinting is
(1) Blotting
(2) Autoradiography
(3) Hybridisation
(4) Isolation of desired DNA
54. DNA fingerprinting can be used
(1) To solve cases of disputed patemity and maternity
(2) For criminal identification and forensics
(3) For personal identfication
(4) More than one option is correct
55. Human genome is said to have approximately
(1) $3 \times 10^{9} \mathrm{bp}$
(2) $3 \times 10^{6} \mathrm{bp}$
(3) $6.6 \times 10^{5} \mathrm{bp}$
(4) $3.3 \times 10^{6} \mathrm{bp}$
ish Towes: 8. Pusa foad. Ners beni-tcooss ph pithtrouks

56. How many total number of genes are found in human genome?
(1) 18,000
(2) 30,000
(3) 13,000
(4) 4,000
57. \qquad $\%$ of the genome codes for protein in human beings.
(1) 98%
(2) 50%
(3) 24%
(4) $<2 \%$
58. In humans, the largest gene is present on
(1) Chromosome-1
(2) Y -chromosome
(3) X-chromosome
(4) Chromosome-7
59. TDF gene is the smallest gene in humans with
(1) 231 bp
(2) 14 bp
(3) 2968 bp
(4) 3000 bp
60. SNPS stands for
(1) Single nucleoside polymorphism
(2) Simple nucleotide polymorphism
(3) Single nucleotide polymorphism
(4) Simple nucleoside polymorphism

- Replication fork: Small opening of the DNA where the replication occurs.

- Origin of replication: Definite region (s) in DNA where the replication originates.
- Transcription: Process of copying genetic information from one strand of the DNA into RNA.
- Coding strand: DNA strand of transcription unit which has the polarity $5^{\prime} \rightarrow 3^{\prime}$ and the sequence same as RNA, except T at the place of U.
- Cistron: A segment of DNA coding for a polypeptide.
- Exons: Coding sequences or expressed sequences in DNA.
- Introns: Non-coding sequences or intervening sequences in DNA
- Splicing: Removal of introns from primary transcript.
- Frame shift mutation: Insertion or deletion of one or more bases changes the reading frame from the point of insertion or deletion.
- Translation: Process of polymerisation of amino acids to form a polypeptide
- Aminoacylation of tRNA: Amino acids are activated in the presence of ATP and linked to their cognate IRNA.
- UTR: Specific sequences in mRNA that are not translated.
- Operators: Accessibility of promoter regions of prokaryotic DNA is in many cases regulated by the interaction of proteins with sequences, termed operators.
- ESTs: Identifying all the genes that are expressed as RNA.
- Sequence annotation: Sequencing of whole set of genome that contained all the coding and non-coding sequence, and later assigning different regions in the sequence with functions.
- Repetitive DNA: A small stretch of DNA is repeated many times in genome

Quick Recap

1. Nucleotide monomers constitute a polymer called nucleic acid. It is of two types RNA and DNA.
2. While DNA is store house of information, RNA helps in transfer and expression of information.
3. As DNA is structurally and chemically more stable, it is better genetic material. Atthough both DNA and RNA serve as genetic material.
4. RNA was first to evolve, and DNA was derived from it.
5. Bases in two DNA strands show hydrogen bonding $(A=T, G=C)$ and follows Chargaft's rule, so that both the strands are complementary and its replication is semiconservative
6. Segment of DNA that codes for an RNA is known as gene. During transcription one ONA strand acts as template which directs the synthesis of complementary RNA strand acts as template which directs the synthesis of compio

7. In prokaryotes, transcription and translation is a continuous process. In eukaryotes the genes are split exons are interrupted by introns. Introns are removed and exons are joined, to produce functional RNA,
8. The mRNA contains genetic code in combination of three (triplet code) to code for an amino acid. This genetic code is read by tRNA which acts as a adapter molecule.
9. There is specific tRNA for each amino acid. Each tRNA binds to amino acid at one end and with codons by H -bonding at another end.
10. Translation occurs at ribosome, here ribozyme (rRNA enzyme) acts as catalyst which helps in peptide bond formation. Process of translation has evolved around RNA, which shows that life began around RNA.
11. Since transcription and translation are energetically very expensive they are tightly regulated e.g., Lac operon which is regulated by amount of lactose in medium i.e., regulation of enzyme synthesis by its substrate.
12. Human genome project aimed for sequencing every base in human genome.
13. DNA finger-printing is based upon principle of polymorphism in DNA sequence,

[^0]: takash Educational Services Pvt. Ltd. Corporate Office
 Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph, 011-47623456

