10th MATHS: ONE MARK - Bookpack

Pre+pared by: M.PALANIYAPPAN, SGHSS, NERKUPPAI. Mobile: 9942904874

Unit-1: RELATIONS & FUNCTIONS

1. If $n(A \times B) = 6$	and $A = \{1, 3\}$ then	n(B) is		
(1) 1	(2) 2	(3) 3	(4) 6	
$2. A = \{a, b, p\}, I$	$B = \{2,3\}, C = \{$	$\{p,q,r,s\}$ then $n[($	$(A \cup C) \times B$] is	
(1) 8	(2) 20	(3) 12	(4) 16	
	$B = \{1, 2, 3, 4\},$ tement is true.	$C = \{5, 6\}$ and D	$D = \{5, 6, 7, 8\}$ the	n state which of the
	` , ` ,	` ,	$(2) (B \times D) \circ$	` '
	$(3) (A \times B)$	$\subset (A \times D)$	$(4) (D \times A) \circ$	$= (B \times A)$
	4 relations from a s (1) 3	$ set A = \{1, 2, 3, 4, (2) 2 $	5} to a set <i>B</i> , then th (3) 4	ne number of elements (4) 8
			umber less than 13} 5,49,121} (4) {1	
	airs $(a + 2, 4)$ and $(2) (5, 1)$			
			mber of non-empty (3) $2^{mn} - 1$	relations that can be $(4) 2^{mn}$
			the value of a and (4) (6,	
$f = \{(1,4), (1) \}$	2,3,4} and <i>B</i> 2,8), (3,9), (4,10)} function fee function	is a (2) Identity fun	ction	$f:A \rightarrow B$ given by
	and $g(x) = \frac{1}{3x}$, the (2) $\frac{2}{3x^2}$		(4) $\frac{1}{6x}$	<u> </u>
2.1	is a bijective functi	92	, then $n(A)$ is equal	,
$f = \{(0,1), (g = \{(0,2), (0,0)\}\}$), (5, 7)}), (7, 0)} then th	e range of $f \circ g$ is (3) $\{1, 2, 3, 4, 5\}$	(4) {0, 1, 2}

13. Let $f(x) = \sqrt{1 + x^2}$ (1) $f(xy) = f(x)$. $f(xy) \le f(x)$. $f(xy) \le f(x)$.	f(y)			
				$= \alpha x + \beta \text{ then the values of } -1, -2) \qquad (4) (1, 2)$
15. $f(x) = (x + 1)^3 - (1)$ linear			a function which is (3) reciprocal	(4) quadratic
Uni	t-2: NUMI	BERS	& SEQUEN	CES
1. Euclid's division lemm q and r such that a (1) $1 < r < b$	a = bq + r, wh	here r	must satisfy	b , there exist unique integers (4) $0 < r \le b$
_				eger is divided by 9 then the (4) 1, 3, 5
3. If the HCF of 65 and (1) 4		sible in	the form of 65 <i>m</i> - (3) 1	-117, then the value of m is (4) 3
4. The sum of the exp (1) 1	onents of the (2) 2	prime	factors in the prin (3) 3	me factorization of 1729 is (4) 4
5. The least number th (1) 2025			the numbers from (3) 5025	n 1 to 10 (both inclusive) is (4) 2520
$6.7^{4k} \equiv $ (mo	od 100)	(1) 1	(2) 2	(3) 3 (4) 4
7. Given $F_1 = 1$, $F_2 = 3$ (1) 3	and $F_n = F_{n-1}$ (2) 5		₋₂ then <i>F</i> ₅ is (3) 8	(4) 11
8. The first term of an arthe following will be			•	nmon difference is 4. Which of 91 (3) 7881 (4) 13531
9. If 6 times of 6 th term (1) 0	of an A.P. is equ (2) 6		times the 7 th term, (3) 7	then the 13 th term of the A.P. is (4) 13
10. An A.P. consists of 3	1 terms. If its 1	.6 th tern	n is m , then the su	m of all the terms of this A.P. is
(1) 16 m	(2) 62 m		(3) 31 m	$(4) \frac{31}{2} m$
11. In an A.P., the first t				How many terms of the A.P.
(1) 6	(2) 7		(3) 8	(4) 9

13. Let $f(x) = \sqrt{1 + x^2}$ then

- 12. If $A = 2^{65}$ and $B = 2^{64} + 2^{63} + 2^{62} + \dots + 2^{0}$ which of the following is true?
 - (1) B is 2^{64} more than A
- (2) A and B are equal
- (3) B is larger than A by 1
- (4) A is larger than B by 1
- 13. The next term of the sequence $\frac{3}{16}$, $\frac{1}{8}$, $\frac{1}{12}$, $\frac{1}{18}$, ... is
 - $(1) \frac{1}{24}$
- $(2) \frac{1}{27}$
- $(4) \frac{1}{91}$
- 14. If the sequence t_1, t_2, t_3, \dots are in A.P. then the sequence $t_6, t_{12}, t_{18}, \dots$ is
 - (1) a Geometric Progression
- (2) an Arithmetic Progression
 - (3) neither an A.P. nor a G.P. (4) a constant sequence
- 15. The value of $(1^3 + 2^3 + 3^3 + \dots + 15^3) (1 + 2 + 3 + \dots + 15)$ is
 - (1) 14400
- (2) 14200
- (3)14280
- (4) 14520

Unit-3: ALGEBRA

- 1. A system of three linear equations in three variables is inconsistent if their planes
 - (1) intersect only at a point
- (2) intersect in a line
- (3) coincides with each other
- (4) do not intersect
- 2. The solution of the system x + y 3x = -6, -7y + 7z = 7, 3z = 9 is

 - (1) x = 1, y = 2, z = 3 (2) x = -1, y = 2, z = 3
 - (3) x = -1, y = -2, z = 3 (4) x = 1, y = -2, z = -3
- 3. If (x-6) is the HCF of $x^2-2x-24$ and x^2-kx-6 then the value of k is
 - (1) 3
- (2)5
- (3)6
- (4)8

- 4. $\frac{3y-3}{y} \div \frac{7y-7}{3y^2}$ is

- (1) $\frac{9y}{7}$ (2) $\frac{9y^3}{(21y-21)}$ (3) $\frac{21y^2-42y+21}{3y^3}$ (4) $\frac{7(y^2-2y+1)}{y^2}$
- 5. $y^2 + \frac{1}{y^2}$ is not equal to

- (1) $\frac{y^4+1}{y^2}$ (2) $\left[y+\frac{1}{y}\right]^2$ (3) $\left[y-\frac{1}{y}\right]^2+2$ (4) $\left[y+\frac{1}{y}\right]^2-2$
- 6. $\frac{x}{x^2 25} \frac{8}{x^2 + 6x + 5}$ gives (1) $\frac{x^2 7x + 40}{(x 5)(x + 5)}$
- (2) $\frac{x^2 + 7x + 40}{(x-5)(x+5)(x+1)}$
- (3) $\frac{x^2 7x + 40}{(x^2 25)(x+1)}$ (4) $\frac{x^2 + 10}{(x^2 25)(x+1)}$

- 7. The square root of $\frac{256 \, x^8 y^4 z^{10}}{25 x^6 y^6 z^6}$ is equal to

 - $(1) \frac{16}{5} \left| \frac{x^2 z^4}{v^2} \right| \qquad (2) \frac{16}{5} \left| \frac{y^2}{x^2 z^4} \right| \qquad (3) \frac{16}{5} \left| \frac{y}{x z^2} \right| \qquad (4) \frac{16}{5} \left| \frac{x z^2}{v} \right|$

8. Which of the following (1) $4x^2$	g should be added to r (2) $16x^2$	=	ect square $(4) -8x^2$
9. The solution of $(2x - (1) - 1)$		(3) – 1, 2	(4) None of these
10. The values of <i>a</i> and (1) 100, 120		$6x^2 + ax + b$ is a period (3) -120,100	erfect square are (4) 12, 10
	then q, p, r are in _		res of the roots of the equation . P (4) none of these
12. Graph of a linear poly (1) straight line		(3) parabola	(4) hyperbola
13. The number of point X axis is (1) (f the quadratic poly (3) 0 or 1	nomial $x^2 + 4x + 4$ with the (4) 2
14. For the given matrix $(1) 2 \times 3$		the order of the m (3) 3×4	
15. If A is a 2×3 matrix (1) 3	•	• •	
16. If number of columns (1) diagonal matrix (3) square matrix	-	ual in a matrix then it (2) rectangular mat (4) identity matrix	
17. Transpose of a column (1) unit matrix	nn matrix is (2) diagonal matrix	(3) column m	natrix (4) row matrix
18. Find the matrix X if $(1) \begin{pmatrix} -2 & -2 \\ 2 & -1 \end{pmatrix}$		$ \begin{pmatrix} 7 \\ 5 \end{pmatrix} $ $ \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} $	$(4) \begin{pmatrix} 2 & 1 \\ 2 & 2 \end{pmatrix}$
19. Which of the follow	ving can be calculat	ed from the given r	matrices $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}$ and
$B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix},$	(i) A^2 (ii) B^2	(iii) AB	(iv) BA
(1) (i) and (ii) only (3) (ii) and (iv) only	Jy	(2) (ii) and (iii) onl(4) all of these	y

20. If $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 \\ -2 & 5 \end{pmatrix}$. Which of the following statements

are correct? (i) $AB + C = \begin{pmatrix} 5 & 5 \\ 5 & 5 \end{pmatrix}$ (ii) $BC = \begin{pmatrix} 0 & 1 \\ 2 & -3 \\ 4 & 10 \end{pmatrix}$

(ii)
$$BC = \begin{pmatrix} 0 & 1 \\ 2 & -3 \\ -4 & 10 \end{pmatrix}$$

(iii)
$$BA + C = \begin{pmatrix} 2 & 5 \\ 3 & 0 \end{pmatrix}$$

(iii)
$$BA + C = \begin{pmatrix} 2 & 5 \\ 3 & 0 \end{pmatrix}$$
 (iv) $(AB)C = \begin{pmatrix} -8 & 20 \\ -8 & 13 \end{pmatrix}$

(1) (i) and (ii) only

- (2) (ii) and (iii) only
- (3) (iii) and (iv) only
- (4) all of these

Unit-4: GEOMETRY

1. If in triangles *ABC* and *EDF*, $\frac{AB}{DE} = \frac{BC}{FD}$, then they will be similar, when

$$(1) \ \angle B = \angle E \qquad (2) \ \angle A = \angle D$$

$$(2) \angle A = \angle D$$

$$(3) \angle B = \angle D$$

$$(4) \angle A = \angle F$$

2. In Δ *LMN*, $\angle L = 60^{\circ}$, $\angle M = 50^{\circ}$. If Δ *LMN* $\sim \Delta$ *PQR* then the value of \angle *R* is

$$(1) 40^{\circ}$$

$$(2) 70^{\circ}$$

$$(3) 30^{\circ}$$

$$(4) 110^{\circ}$$

3. If $\triangle ABC$ is an isosceles triangle with $\angle C = 90^{\circ}$ and AC = 5 cm, then AB is

- (1) 2.5 cm
- (2) 5 cm
- (3) 10 *cm*

4. In a given figure $ST \parallel QR$, PS = 2 cm and SQ = 3 cm. Then the ratio of the area of $\triangle PQR$ to the area of $\triangle PST$ is

- (1) 25:4
- (2)25:7
- (3) 25:11
- (4) 25:13

5. The perimeters of two similar triangles $\triangle ABC$ and $\triangle PQR$ are 36 cm and 24 cm respectively. If $PQ = 10 \, cm$, then the length of AB is

- (1) $6\frac{2}{3}$ cm (2) $\frac{10\sqrt{6}}{3}$ cm (3) $66\frac{2}{3}$ cm (4) 15 cm

6. If in $\triangle ABC$, DE || BC. AB = 3.6 cm, AC = 2.4 cm and AD = 2.1 cm then the length of AE is

- (1) 1.4 cm
- (2) 1.8 cm
- (3) 1.2 cm
- (4) 1.05 cm

7. In a $\triangle ABC$, AD is the bisector of $\angle BAC$. If AB=8 cm, BD=6 cm and DC=3 cm. The length of the side AC is (1) 6 cm (2) 4 cm (3) 3 cm(4) 8 cm

8. In the adjacent figure $\angle BAC = 90^{\circ}$ and $AD \perp BC$ then

- (1) $BD \cdot CD = BC^2$
- (2) $AB \cdot AC = BC^2$
- (3) $BD \cdot CD = AD^2$
- (4) $AB \cdot AC = AD^2$

9. Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m, what is the distance between their tops?

- (1) 13 m
- (2) 14 m
- $(3) 15 \,\mathrm{m}$
- (4) 12.8 m

10. In the given figure, PR = 26 cm, QR = 24 cm, $\angle PAQ = 90^{\circ}$, PA = 6 cm and QA = 8 cm. Find $\angle PQR$

- $(1) 80^{\circ}$
- $(2)85^{\circ}$
- $(3) 75^{\circ}$ $(4) 90^{\circ}$

11. A tangent is perpendicular to the radius at the point of contact (3) infinity

(1) centre (4) chord

(2)

12. How many tangents can be drawn to the circle from an exterior point?

(1) one

(2) two

(3) infinite

(4) zero

13. The two tangents from an external points P to a circle with centre at O are PA and PB. If $\angle APB = 70^{\circ}$ then the value of $\angle AOB$ is

 $(1) 100^{\circ}$

 $(2) 110^{\circ}$

 $(3) 120^{\circ}$

 $(4) 130^{\circ}$

14. In figure CP and CQ are tangents to a circle with centre at O. ARB is another tangent touching the circle at R. If CP = 11 cm and BC = 7 cm, then the length of BR is

(1) 6 cm

(2) 5 cm

(3) 8 cm

(4) 4 cm

(1) 120° (3) 110°

(4) 90°

Unit-5: COORDINATE GEOMETRY

1. The area of triangle formed by the points (-5, 0), (0, -5) and (5, 0) is

(1) 0 sq.units

(2) 25 sq.units

(3) 5 sq.units

(4) none of these

2. A man walks near a wall, such that the distance between him and the wall is 10 units. Consider the wall to be the *Y* axis. The path travelled by the man is

(1) x = 10

(2) y = 10

(3) x = 0

(4) y = 0

3. The straight line given by the equation x = 11 is

(1) parallel to X axis

(2) parallel to Y axis

(3) passing through the origin

(4) passing through the point (0, 11)

4. If (5,7), (3, p) and (6,6) are collinear, then the value of p is

(1) 3

(2)6

(3)9

(4) 12

5. The point of intersection of 3x - y = 4 and x + y = 8 is

(1)(5,3)

(2)(2,4)

(3)(3,5)

(4) (4, 4)

6. The slope of the line joining (12, 3), (4, a) is $\frac{1}{8}$. The value of 'a' is

(1) 1

(2) 4

(3) - 5

(4) 2

7. The slope of the line which is perpendicular to line joining the points (0,0) and (-8,8) is

(1) -1

(2) 1

 $(3) \frac{1}{3}$

(4) - 8

8. If	slope of the line <i>PQ</i>	is $\frac{1}{\sqrt{3}}$ then the slope	of the perper	idicular bisector o	f <i>PQ</i> is
	(1) $\sqrt{3}$	$(2) -\sqrt{3}$	(3) $\frac{1}{\sqrt{3}}$	(4) 0	
9. If	is 5 then the equati				axis whose abscissae (4) $y = 5$
10.	7x - 3y + 4 = 0 is	the passing through the $0 (2) 3x - 7y + 3$		_	
11.	Which of the follow (1) l_1 and l_2 are p		? (2) l_1 and	l_4 are parallel	(iv) $l_4: 4x + 3y = 2$
12.	(1) The slope is 0.5(2) The slope is 5 a(3) The slope is 0.5	quation $8y = 4x + 21$ and the y intercept is and the y intercept is and the y intercept is and the y intercept is	is 2.6 1.6 is 1.6	e following is true	
13.	(1) Two sides are p	ı quadrilateral is a tra arallel. are parallel.	(2) Two	parallel and two	non-parallel sides.
14.	When proving that a (1) The slopes of tw (3) The lengths of a		(2) The sl		ir of opposite sides
15.	• •	intersection of two line $3x - y - 7 = 0$ + $y = 7$	(2) $x + y =$	$= 3; \ 3x + y = 7$ $- 3 = 0; \ x - y - 1$	7 = 0
		Unit-6: TRIC	GONOME	TRY	
1. T	he value of $sin^2\theta + (1) tan^2\theta$	$\frac{1}{1+tan^2\theta}$ is equal to (2) 1	(3)	$cot^2 heta$	(4) 0
2. <i>t</i>	$an\theta \ cosec^2\theta - tan\theta$ (1) $sec\theta$	θ is equal to (2) $\cot^2 \theta$	(3) $sin\theta$	(4) co	t heta
3. If	$\frac{1}{3}(\sin\alpha + \csc\alpha)^2$ (1) 9	$+ (\cos\alpha + \sec\alpha)^2 =$ (2) 7	$= k + tan^2\alpha + (3) 5$	$\cot^2 \alpha$, then the (4) 3	value of k is equal to

4. If $sin\theta + cos\theta = a$ (1) $2a$	and $sec\theta + cosec\theta =$ (2) $3a$	b, then the value of (3) 0	$b(a^2 - 1)$ is equal to (4) $2ab$
5. If $5x = \sec\theta$ and $\frac{5}{x}$	$t = tan\theta$, then $x^2 - \frac{1}{x^2}$; is equal to	
(1) 25	(2) $\frac{1}{25}$	(3) 5	(4) 1
6. If $sin\theta = cos\theta$, then	_	_	_2
$(1) \frac{3}{2}$	(2) $\frac{3}{2}$	$(3)\frac{2}{3}$	$(4)\frac{-2}{3}$
7. If $x = atan\theta$ and (1) $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$		1 (3) $\frac{x^2}{a^2} + \frac{y^2}{b^2}$	$\frac{x^2}{a^2} = 1 (4) \frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$
8. $(1 + \tan \theta + \sec \theta)$			
(1) 0	(2) 1	(3) 2	(4) -1
9. $a \cot \theta + b \csc \theta =$ $(1) a^2 - b^2$	$= p \text{ and } b \cot \theta + a \cot \theta +$		q^2 is equal to (4) $b - a$
10. If the ratio of the h		he length of its shado	ow is $\sqrt{3}:1$, then the angle of
(1) 45°	(2) 30°	(3) 90°	(4) 60°
=	bove the first, the dep	_	the pole is 60°. The height of
1) $\sqrt{3} b$	· • •	(3) $\frac{b}{2}$	(4) $\frac{b}{\sqrt{3}}$
	high. Its shadow is $x = 30^{\circ}$, then x is equal to		the sun's altitude is 45° than
(1) 41.92 m	(2) 43.92 m	(3) 43 m	(4) 45.6 m
multistoried build	•	espectively. The hei	call building from the top of a ght of the multistoried building
(1) 20, $10\sqrt{3}$	(2) 30, $5\sqrt{3}$	(3) 20, 10	$(4)\ 30,10\ \sqrt{3}$
is double that of the	he other. If from the relevations of their tops	middle point of the lir	nd the height of the first person ne joining their feet an observer ry, then the height of the shorter
$(1)\sqrt{2}x$	$(2) \frac{x}{2\sqrt{2}}$	$(3) \ \frac{x}{\sqrt{2}}$	(4) 2x

	eflection in the lake is	3 45°. The height o	of location o	of the cloud from the
lake is (1) $\frac{h(1+1)}{1-t}$	$\frac{(\tan \beta)}{(\tan \beta)}$ (2) $\frac{h(1-1)}{1+t}$	$\frac{\tan\beta}{\sin\beta}$ (3) h tan	$(45^{\circ} - \beta)$	(4) none of these
	Unit-7: ME	ENSURATION		
1. The curved surface at $(1) 60\pi cm^2$	area of a right circula (2) $68\pi \ cm^2$			
2. If two solid hemisphe	eres of same base radions of this new solid is	us r units are joined	l together al	long their bases, then
	(2) $6\pi r^2$ sq. units	(3) $3\pi r^2$ sq. uni	ts (4	$8\pi r^2 { m sq.} { m units}$
3. The height of a right (1) 12 <i>cm</i>	t circular cone whose (2) 10 cm	e radius is 5 <i>cm</i> an (3) 13 <i>cm</i>		ght is 13 <i>cm</i> will be 4) 5 <i>cm</i>
4. If the radius of the baratio of the volun (1) 1:2	ase of a right circular ne of the cylinder the (2) 1:4	-	volume of	_
5. The total surface area	a of a cylinder whose r	radius is $\frac{1}{3}$ of its hei	ight is	
(1) $\frac{9\pi h^2}{8}$ sq. units	(2) $24\pi h^2$ sq. un	$(3) \frac{8\pi h^2}{9} \text{ so}$	q. units	(4) $\frac{56\pi h^2}{9}$ sq. units
	n, the volume of the m			
7. If the radius of the (1) made 6 times	base of a cone is trip (2) made 18 times	_		then the volume is a unchanged
8. The total surface area (1) π	a of a hemi-sphere is h (2) 4π	ow much times the (3) 3π	square of its $(4) 2\pi$	s radius.
9. A solid sphere of rac		and cast into a shap	e of a solid	cone of same radius.
(1) 3x cm	(2) x cm	(3) 4x cm	(4) 2x cr	n
10. A frustum of a right Then, the volume of	f the frustum is	_		
(1) $3328 \pi \ cm^3$	(2) $3228 \pi \ cm^3$	(3) $3240 \pi cm^3$	(4) 3340	πcm^3
11. A shuttle cock used (1) a cylinder and a	a sphere	(2) a hemisphere a	and a cone	
(3) a sphere and a	cone	(4) frustum of a co	one and a he	misphere

=	Il of radius r_1 units is $r_1 : r_2$ is (1) 2:			ach of radius r_2 (4) 1:4
•	on cm^3) of the greatest $1 cm$ and height $5 c$	=	cut off from a cylind	rical log of wood
$(1) \frac{4}{3} \pi$	(2) $\frac{10}{3}\pi$	(3) 5π	$(4) \frac{2}{3}$	$\frac{0}{\pi}$
respectively.	d radius of the cone of Height of the frusture: 2 then $r_2 : r_1$ is		•	-
(1) 1:3	(2) 1:2	(3) 2:1	(4) 3:1	
15. The ratio of the same height is	e volumes of a cylinde s (1) 1:2:3	er, a cone and a spher (2) 2:1:3		me diameter and (4) 3:1:2
	Unit-8: STA	TISTICS & PR	OBABILITY	
1. Which of the following (1) Range	lowing is not a measu (2) Standard dev	re of dispersion? viation (3) Ari	ithmetic mean	(4) Variance
2. The range of the (1) 0	e data 8, 8, 8, 8, 8 (2) 1	8 is (3) 8	(4) 3	
	eviations of the data f sitive (2) alway		zero (4) no	on-zero integer
4. The mean of 100 deviations is	0 observations is 40 a (1) 40000		viation is 3. The sun (3) 160000	
5. Variance of first	20 natural numbers i	s (1) 32.25	(2) 44.25 (3) 3	33.25 (4) 30
6. The standard do (1) 3	eviation of a data is 3 (2) 15	. If each value is mul		e new variance is
	deviation of x, y, z (1) $3p + 5$		ndard deviation of $(3) p + 5$	
8. If the mean and (1) 3.5	coefficient of variatio (2) 3 (n of a data are 4 and (3) 4.5 (4)		dard deviation is
	lowing is incorrect? (2) $0 \le P(A) \le$	≤ 1 (3) $P(\emptyset) = 0$	(4) P(A)+P(\bar{A}) = 1
10. The probability r green mark	y of a red marble selection y of a red marble selection (1) $\frac{q}{p+q+r}$	ected at random from (2) $\frac{p}{p+q+r}$		red, q blue and $(4) \frac{p+r}{p+q+r}$

11. A page is selected at random from a b	ook. The prob	ability that the	e digit at unit	s place of the
page number chosen is less than 7 is	$(1)\frac{3}{10}$	$(2)\frac{7}{10}$	$(3)\frac{3}{9}$	$(4)\frac{7}{9}$

- 12. The probability of getting a job for a person is $\frac{x}{3}$. If the probability of not getting the job is $\frac{2}{3}$ then the value of x is (1) 2 (2) 1 (3) 3 (4) 1.5
- 13. Kamalam went to play a lucky draw contest. 135 tickets of the lucky draw were sold. If the probability of Kamalam winning is $\frac{1}{9}$, then the number of tickets bought by Kamalam is (1) 5 (2) 10 (3) 15 (4) 20
- 14. If a letter is chosen at random from the English alphabets $\{a, b, ..., z\}$, then the probability that the letter chosen precedes x (1) $\frac{12}{13}$ (2) $\frac{1}{13}$ (3) $\frac{23}{26}$ (4) $\frac{3}{26}$
- 15. A purse contains 10 notes of Rs.2000, 15 notes of Rs.500, and 25 notes of Rs.200. One note is drawn at random. What is the probability that the note is either a Rs.500 note or Rs.200 note? (1) $\frac{1}{5}$ (2) $\frac{3}{10}$ (3) $\frac{2}{3}$ (4) $\frac{4}{5}$

Answers - Bookback

Unit - 1: Relations and Functions

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(3)	(3)	(1)	(2)	(3)	(4)	(3)	(1)	(3)	(3)	(1)	(4)	(3)	(2)	(4)

Unit –2: Numbers and Sequences

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(3)	(1)	(2)	(3)	(4)	(1)	(4)	(3)	(1)	(3)	(3)	(4)	(2)	(2)	(3)

Unit – 3: Algebra

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
(4)	(1)	(2)	(1)	(2)	(3)	(4)	(2)	(3)	(3)	(2)	(1)	(2)	(4)	(2)	(2)	(4)	(2)	(3)	(1)

Unit – 4: Geometry

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(3)	(2)	(4)	(1)	(4)	(1)	(2)	(3)	(1)	(4)	(2)	(2)	(2)	(4)	(1)

Unit – 5: Coordinate Geometry

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(2)	(1)	(2)	(3)	(3)	(4)	(2)	(2)	(1)	(3)	(3)	(1)	(2)	(1)	(2)

Unit –6: Trigonometry

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(2)	(4)	(2)	(1)	(2)	(2)	(1)	(3)	(2)	(4)	(2)	(2)	(4)	(2)	(1)

Unit – 7: Mensuration

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(4)	(1)	(1)	(2)	(3)	(2)	(2)	(3)	(3)	(1)	(4)	(1)	(1)	(2)	(4)

Unit - 8: Statistics and Probability

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
(3)	(1)	(3)	(2)	(3)	(4)	(2)	(1)	(1)	(2)	(2)	(2)	(3)	(3)	(4)

www.tamilaruvi.in

www.kaninikkalvi.com

TNPSC, TRB TET, TRB PG ASSISTANT, GROUP I GROUP II, GROUP IV, UPSC, RRB, NMMS, NEET, BANK EXAM, CTET, UGC, NTA-NET, CSIR-NET, SET, SLAS, POSTAL, SET, CURRENT AFFAIRS, TNUSRB

ஆசிரியர்கள<u>்</u> மற்றும் மாணவர்களுக்கு தேவையான கையேடுகள், செய்திகள், கல்வி போட்டித் அரசாணைகள் தேர்வுகளுக்கு தேவையான நடப்பு செய்திகள், சமச்சீர் புத்தகங்கள், அறிவு புத்தகங்கள் போன்றவற்றை மேற்கண்ட பொது இணையதளங்களில் இருந்து பதிவிறக்கம் செய்து கொள்ளலாம்.

"Dream is not that which you see while sleeping. It is something that does not let you sleep."

- APJ Abdul Kalam